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The world when the LHC started…

This was precision
2



The precision of jets

• The detector design goal was 1% precision on the jet energy scale (in the 
central region and at mid-pT i.e. ~60 GeV)


However, we are still at basically at the stage of JES and everything else 
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What if that paradigm changes? What if we went from jet uncertainties of 
1-5% to those of 0.1-0.5%?


From today’s vantage point, this suggestion is not ridiculous 



Why and how this paradigm can be broken… 

• How to break the paradigm? 


• Our reconstruction was designed for the computers of the 90s


• We have a huge amount of data


• Will go into two longish examples
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Computers from the 90s… 

• There is a huge interest and effort to apply machine learning to object 
calibration and reconstruction
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Staying with examples of jets… 

• We take calorimeter cells, build topo-clusters and then these to build jets
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trigger accepts events from the 40 MHz bunch crossings at a rate below 100 kHz, which the high-level
trigger further reduces in order to record events to disk at about 1 kHz.

An extensive software suite [34] is used in the reconstruction and analysis of real and simulated data, in
detector operations, and in the trigger and data acquisition systems of the experiment.

3 Datasets

3.1 Monte Carlo Simulations

In this study, the detector response to single pions was studied using the full ATLAS detector simulation
[35] based on Geant4 [36]. Single pions were generated starting at the origin of the detector with uniform
kinematic distributions in azimuthal angle q, pseudo-rapidity with |[ | < 3, and the logarithm of truth pion
energy ⇢

true
c from 0.2 to 2,000 GeV. In total, 10 million c

0, 5 million c
+, and 5 million c

� events were
produced.

The presence of pile-up (multiple ?? collisions in the same LHC bunch crossing) manifests as noise in
the calorimeter cell energy measurements. While the simulations used in this note contain only single
pion events and no pile-up events, the reconstruction of topologically-connected calorimeter clusters [2]
was performed using the expected pile-up noise levels present during 2018 data-taking to account for the
e�ects of noise suppression on the cluster energy scale.

3.2 Input Variables

3.2.1 Topo-clusters

Topo-clusters are topologically-connected groups built out of calorimeter cells that follow cell signal-
significance patterns generated by the showers [2]. The clustering algorithm that forms topo-clusters
removes cells with insignificant signals that are not close to the cell with significant signal to noise ratio,
i.e. signal-significance. The clustering algorithm has predefined minimum signal significances that vary
based on what portion of the topo-cluster they represent. For instance, the default ratio threshold of ( = 4
is used for the seed of a topo-cluster as follows:

|⇢
EM
seed, cell | > (f

EM
noise, cell !

|⇢
EM
seed, cell |

f
EM
noise, cell

> 4

Additional significance thresholds are applied to control the topo-cluster growth and the collection of
marginal cell signals important for full hadronic energy reconstruction.

Hadrons can generate more than one cluster in their shower development. Once a topo-cluster has been
formed, its shape and location information can be exploited to apply a local energy calibration and
corrections depending on whether the cluster is electromagnetic or hadronic. The motivation for a local
energy calibration arises from the intention to provide a calorimeter signal for physics object reconstruction
which is calibrated outside any particular assumption about the type of object.
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Staying with examples of jets… 

• We consolidate (lose) 
information at each step


• To calibrate we define the 
probability a cluster is EM-like 
- based on i.e. energy-
weighted average signal 
densities, longtitudal depth, 
first energy-weighted moment
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Figure 10: Distribution of the likelihood PEM
clus(⇢clus/EEM

clus, �clus) for reconstructed topo-clusters to originate from an
electromagnetic shower as a function of the shower depth �clus and the normalised cluster signal density ⇢clus/EEM

clus,
with ⇢clus = h⇢celli being the energy-weighted average of ⇢cell. The shown distribution is determined as described
in the text, in a selected bin of the cluster energy EEM

clus and the cluster direction ⌘clus. The red line indicates the
boundary of the PEM

clus > 50 % selection, below which the topo-cluster is classified as mostly electromagnetic (“EM-
like”) and above which it is classified as mostly hadronic (“HAD-like”). The small EM-like area at the edge of the
HAD-like region stems from neutral pions showering late. These areas are typical in regions of the detector where
the second layer of the EM calorimeter is thinner and substantial parts of the shower are deposited in its last layer.
The larger volume of the cells in this last layer leads to the reduced energy density while the position at the back of
the EM calorimeter means a larger �clus.

the corresponding simulations of charged pions to determine the HAD calibrations and corrections. The
signals in these simulations are reconstructed with thresholds corresponding to the nominal �EM

noise for a
given run period, which reflects the pile-up conditions according to Eq. (1) in Sect. 2.2.2. Only electronic
noise is added into the signal formation in the MC simulation, so that the derived calibrations and cor-
rections e↵ectively correct for signal losses introduced by the clustering itself. In particular, additional
signal from pile-up and modifications of the true signal by out-of-time pile-up are not considered, as these
are expected to cancel on average.

5.2 Cluster classification

As discussed in Sect. 4, most topo-clusters provide geometrical and signal moments sensitive to the nature
of the shower producing the cluster signal. In particular, electromagnetic showers with their compact
shower development, early starting point and relatively small intrinsic fluctuations can generate cluster
characteristics very di↵erent from those generated by hadronic showers. The latter are in general sub-
jected to larger shower-by-shower fluctuations in their development and can be located deeper into the
calorimeter. In addition, the hadronic showers show larger variations of their starting point in the calori-
meter. A classification of each topo-cluster according to its likely origin determines the most appropriate
mix of EM and HAD calibration and correction functions to be applied.

31



Exploring machine learning at the cell level

9



Exploring machine learning at the cell level

Very promising results - also many ideas on improved reconstruction. Stay tuned!
10
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Figure 9: Median energy response (0, 2, 4) and IQR (1, 3, 5 ) for the EM and LCW baselines as well as the GNN and
Deep Sets as a function of true cluster energy. The GNN shows better performance than the baseline across both
charged and neutral pions. The Deep Sets median energy response ratio (4) is in general closer to unity throughout
the full energy spectrum considered, and especially for ⇢ < 1 GeV, than the baseline. Its IQR ( 5 ) is comparable to
the baseline.
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The power of data

• In determining the JES, we rely on a series of standard candles (like Z+jets, 
gamma+jets) and testbeam data (taken largely in 2004)
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Figure 3. Energy Linearity after calibration for four different material configurations in front
of the calorimeter: no material (black triangles), 25mm Al (red circles), 50mm Al (blue circles)
and 75mm (black rectangles).

 (GeV)beamE
0 50 100 150 200 250

/E Eσ

0

0.01

0.02

0.03

0.04

0.05
 0.1)%± (0.4 ⊕ E 0.4)%/±/E = (9.7 EσData:           

  0.2%⊕ E 0.1)%/±/E = (9.6 EσSimulation:  

 (GeV)beamE
0 50 100 150 200 250

/E Eσ
0

0.01

0.02

0.03

0.04

0.05
 0.2)%± (0.0 ⊕ E 0.3)%/±/E = (11.1 EσData:           

  0.2%⊕ E 0.1)%/±/E = (10.0 EσSimulation:  

 (GeV)beamE
0 50 100 150 200 250

/E Eσ

0

0.014

0.028

0.042

0.056

0.07
 0.1)%± (-0.0 ⊕ E 0.3)%/±/E = (12.3 EσData:           

  0.2%⊕ E 0.1)%/±/E = (10.5 EσSimulation:  

 (GeV)beamE
0 50 100 150 200 250

/E Eσ

0

0.016

0.032

0.048

0.064

0.08
 0.2)%± (0.4 ⊕ E 0.9)%/±/E = (12.6 EσData:           

  0.2%⊕ E 0.1)%/±/E = (11.4 EσSimulation:  

Figure 4. Energy resolution after calibration (using calibration hits) from Period 5 data and
for 4 different material configurations in front of the calorimeter: no material (top left), 25mm
Al (top right), 50mm Al (bottom left) and 75mm (bottom right).
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The power of data

• Measure the momentum in the 
tracker to the energy in the 
calorimeter (e/p)


• Apply that correction to single 
particles in MC to correct the 
response w.r.t data

12



The LHC as ‘test beam’

• The LHC has a natural sample of single particles 
- taus (and we produce a lot of them

13Note this figure is wrong!



The e/p results

• E/p results give better precision compared to other standard candles


• Big improvement to the overall uncertainty

Paper link

14

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/JETM-2022-06/


A lesson to be learned here

• You would be surprised to learn how much of our modelling still replies on the very early LHC 
data


• Heavy-flavour, jet shapes, fragmentation, forward energy flow mostly done on old data 
(although this is changing in places), tuning (we have been talking about it for a long time)


• ATLAS had a huge measurement program at 7 TeV for low pT/inclusive processes, some at 
8 TeV and very few at 13 TeV


• The shortcomings of this will start coming up more and more


• New methodologies aside, much of our data is untapped even using established 
methodologies


• Support from the theory community that measurements like these are important is critical to 
raising their visibility within the experimental collaborations 15



A direct application

• Jet cross sections are very 
powerful but are dominated 
by jet uncertainties, as 
expected

16



Improving how we handle MC differences 

• Big uncertainties because of the relative jet energy response between different MC generators


• Particle momentum and compostion also plays a big role as the calorimeter response is very 
sentitive to it
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Figure 1: The ratio of the average jet energy response for (a) gluon-initiated and (b) quark-initiated jets in various
MC simulation samples to the jet energy response of the nominal P����� sample, as a function of the true jet ?T for
jets within the pseudorapidity range |[ | < 0.7.

defined by the difference between the responses to gluon-initiated jets from different MC generator setups
multiplied by the fraction of gluon-initiated jets in the measured phase space (e.g. in Ref. [49], as the
difference between P����� 8 and H�����++).

The jet energy response is defined as the ratio of the jet transverse momentum at detector-level (?reco
T ) to that

at particle-level (?true
T ). The ratio of the average jet response, `(?reco

T /?
true
T ), between several MC generator

setups and the nominal P����� sample is shown in Figures 1(a) and 1(b) for ' = 0.4 particle flow jets that
are initiated by either gluons or quarks and antiquarks, respectively. For gluon-initiated jets, differences
between P����� and alternative models are as large as 2.5% at ?T = 60 GeV. For quark-initiated jets, the
differences are smaller, with a spread below ⇠1% above ?T = 60 GeV.

Several fragmentation- and hadronization-related effects can change the jet response. The calorimeter
energy response to hadrons rises with energy [61, 62], so the momentum spectrum of the particles associated
with the jet is expected to play an important role in jet response modeling. The particle composition also
plays a role because the calorimeter response to neutral pions, which decay via c

0
! WW, is significantly

higher than for hadronic showers, and for charged hadrons the particle flow algorithm is able to use track
measurements. Additionally, the ATLAS detector’s response to hadrons has also been found to vary
slightly depending on the species of particle [61], which is consistent with analysis of test-beam data for
pions, protons and charged kaons [68, 69]. While the particle composition is partly determined by isospin
symmetries, the production of baryons and kaons occurs via different mechanisms in hadronization models
that are parameterized and tuned to experimental data [70–72].

Since both the particle spectra from jet fragmentation and the particle content of a jet can affect the
detector response, their modeling must be tuned to experimental measurements. Many measurements
of jet fragmentation functions and other pertinent substructure observables have been performed at the
SPS [73–75], LEP [76–87], the LHC [67, 88–95], and other colliders [96–110], typically without explicit
particle identification. However, the ALICE experiment has performed some measurements [111–113] that
do probe the particle content.

Figure 2 shows the mean baryon energy fractions for central (|[ | < 0.7), particle-level, gluon-initiated

9
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Improving how we handle MC differences 

• Detailed studies to reduce the 
modelling dependences


• Allowed us to apply a more intellegent 
treatement for MC differences

18



The results

• Together with the improvements from e/p have a factor of 2-5 reduction in the 
uncertainties

19



Reaching percent-level uncerainties in the cross sections

20



Impact of precision results

• This data has a variety of uses from 
PDFs to alpha_s

21



A special shout out to the forward region

• Forward region is critical - but very hard. 

22
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Figure 4: The energy-equivalent cell noise in the ATLAS calorimeters on the electromagnetic (EM) scale as a
function of the direction |⌘| in the detector, for (a) the 2010 configuration with µ = 0, (b) the 2011 configuration
with µ = 8 (both plots from Ref. [16]), and (c) the 2012 configuration with µ = 30. The various colours indicate the
noise in the pre-sampler (PS) and the three layers of the LAr EM calorimeter, the three layers of the Tile calorimeter,
the four layers of the hadronic end-cap (HEC) calorimeter, and the three modules of the forward (FCAL) calorimeter.

2.2.2 E↵ect on calorimeter noise

In ATLAS operations prior to 2011 the cell noise was dominated by electronic noise. The short bunch
crossing interval and higher instantaneous luminosity in 2011 and 2012 LHC running added additional
and dominant noise contributions from the cell-signal baseline fluctuations introduced by pile-up, as
discussed in Sect. 2.2.1. These fluctuations, even though not perfectly following a Gaussian distribution,2

can nevertheless be expressed as noise measured by the standard deviation of their distribution, taken from
2 Selected examples of the actual distributions taken from data are shown in the context of the topo-cluster formation discussed

in Sect. 3.1.1.
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An example of Higgs to invisible



A special shout out to the forward region

• There are a few groups working on ML in the forward region, but not enough (IMO)

23



If the JES uncertainties are reduced, what hits us next? 

Use the Monte Carlo/
Simulation to unfold

• Depends on the final state but unfolding is surprising a large uncertainty in 
many measurements

24



Unfolding - some basics

• Migration matrix 


• Fewer migrations is better


• Rule of thumb is bin size = 2x 
the detector resolution

25



Unfolding - some basics

• Additional corrections for


• Events in truth phase that are 
not at detector level (matching 
efficiency)


• Events at detector-level and 
also in truth the phase space


• Closer to 1.0 is better


• These matching effiencies can 
dominate the unfolding 
uncertainty

A poor choice of phase 
space definition can 

affect this

Poor choice of binning, 
poor detector resolutions 

can affect this

26



A poor MC/simulation model example

A toy example of a poor model To avoid model dependences on the 
measure, do an iterative approach

From master’s thesis of Mathias Backes

27



A word of caution

• We use iterative unfolding to reduce dependencies on the underlying model

Iterations largely improve the 
migration matrix

These are more susceptible to model dependencies and therefore 
the optimal phase space and measurement definition for the 

question at hand is critical 28



Unfolding uncertainties

• Reweight to test data/MC differences


• We worry about ‘hidden variables’, i.e. differences in MCs in observables that we are not 
measuring - test this by unfolding with a different MC, reweighted to say match the jet energy scale

29

Data-driven closure test: motivation, procedure, example
● In-situ (i.e. realistic) determination of the unfolding uncertainty related to the 

data/MC shape difference and to the regularization : 

   - reweight true MC by smooth function: improved data/recoMC agreement 

   - unfold the reweighted reconstructed MC

   - compare with reweighted true MC

Method introduced in arXiv:0907.3791, used in arXiv:1112.6297 etc.

arXiv:1711.02692

arXiv:1711.02692

   B. Malaescu                               IML Meeting - Introduction to Unfolding                                                21



An example of a challenge

• A measurement of the W pT using low mu data

30



W pT measurement

• At low pT, the unfolding 
uncertainties are large


• Is there a better way to do 
this? 

31



The future of data… 

• Are cross section measurements something of the past? 


• An example of machine learning unfolding

32



The future of data… 

• Several alternative approaches available

33

Link

SciPost Physics Submission

 Ic NN

1. Train c NN 2. Predict

MC Truth

MC Reco

Unfolded

3. Reweight

Measured

ExperimentSimulation

Detector
Level

Particle
Level

New MC Truth 

Figure 2: Illustration of the iterative cINN unfolding algorithm. In a first step the regular
training of the cINN on the current Monte Carlo Data is performed. As a second step
the cINN unfolds the experimentally measured distribution. In a third step the Monte
Carlo simulation is reweighted to match the unfolded distribution on Particle Level. This
procedure is iterated, always with a modified Monte Carlo Simulation.

2.2 Iterative Approach

While the cINN is able to learn a posterior distribution p(x|y), the learned expression will
depend on the prior p(x) encoded in the training data. To reduce any biases due to the
simulation used in the training, we propose an iterative cINN unfolding. The algorithm is
sketched in Fig. 2.

• The first two steps are identical to the standard cINN setup: we first train the cINN
on our simulated data and apply it then to our measured data, i.e. we sample z
in the latent space under the condition of a measured event y to obtain unfolded
distribution fu,i(x) starting with i = 0 for the first iteration.

• In a third step we train a classifier to learn the ratio between the phase space den-
sities of the unfolded distribution and the truth-level prior distribution. We then
reweight the simulation on particle-level to match the unfolded distribution fu,i(x).
Since each event of the simulation on particle-level is connected to one event of the
simulation on detector-level the event weights can be transferred from particle to
detector level.

• We then repeat all steps of training-unfolding-reweighting with the new reweighted
simulation until the algorithm has converged.

The e↵ect of this iterative procedure is that we include more and more information of the
measured data into our simulation and thereby improve our unfolding result.
On the technical side we find that it is computationally more e�cient, if the cINN of the
previous iteration is used as a new starting point. To train the cINN on the weighted

5

https://arxiv.org/pdf/2212.08674


Unfolding Z+jets in 24 dimensions

• A fully corrected samples, building other 
variables and applying other selection 
criteria is possible


• The unfolding uncertainties are still as a 
large as via traditional methods

34



New variables and selections

35



Some questions for you? 

• Can’t currently do inclusive phase spaces due to computational limitations


• This analysis used events with Z pT > 200 GeV


• Also exploring unfolding lower level information like all tracks. What use cases 
could this have?


• How can this kind of data be used for the theory community? 

36



Tapping into heavy flavour

• Results with heavy flavour are excellent data probes for many areas


• Higher-order QCD, test of 4- vs 5-flavour schemes, PDFs, intrinsic charm


• Have their own set of experiment challenges 

37

Camilla Vittori CERN Seminar 6

 PDFs 
✦ V + HF data probe proton PDFs at medium and high x-Bjorken and momentum transfer (Q2)
✦ Precise measurements allow to constrain PDF uncertainties
✦ Unique access to s-, c- and b-quark PDFs in proton

✦ W + c production sensitive to s-quark PDF in the proton
✦ It allows to study the s-quark asymmetry at the initial scale in PDF evolution
✦ At NNLO in QCD,  asymmetry appears as intrinsic property of the DGLAP evolution 
✦ Various PDF fits assume different hypotheses on the  asymmetry at the initial state:

• NNPDF:   coming from independent fit of  and  
• CT18:  at low scale
➡Precise measurements allow to test the  at the analysed Bjorken-x regions

s − s̄
s − s̄

s ≠ s̄ s s̄
s = s̄

s − s̄

Rc = σ(W+ + D−)
σ(W− + D+)



Some heavy flavour challenges

38

From Camilla Vittori and Miha Muskinja 

Ambiguity in the algorithm used to identify 
the jet-flavour 


The definition of the jet-flavour is not 
infrared and collinear (IRC) safe - direct 
comparison with theoretical predictions 
not possible



W+c via exclusive tagging

Camilla Vittori CERN Seminar 18

 Exclusive D-meson decay reconstruction 
✦ Identify events with c-quarks by reconstructing the charmed-hadron decays 

 and  

✦ Tracks from the Inner Detector are used 
✦ several SV-based requirements to distinguish signal from background

• Example: Ntracks, charge of tracks, flight-length Lxy , d0, etc

D+ → K−π+π+ D*+ → (K−π+)π+

✦ Candidates  are assigned based on the charge 
of the track

✦ : Ntracks = 3, 2 tracks with same charge assigned to  
and the other to 

✦ : Ntracks = 2, matching with prompt  from  decay

✦ Tracks from the  candidates are inputs to 
Kalman-Filter algorithm which fits tracks to SV

K/π

D+ π
K

D0 π D *+

D+(D0)
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Utilise that the W and the charm are of 
opposite charge



W+c via exclusive tagging

• Backgrounds rates are symmetric in same-charge/opposite-charge
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Figure 4: A demonstration of the OS–SS ,+⇡ (⇤) cross-section fit. Pre-fit <(⇡+) distributions for the ,
�+⇡+

?T (⇡+) bin 2: (a) OS, (c) SS, and (e) OS–SS. The corresponding post-fit distributions: (b) OS, (d) SS, and (f)
OS–SS. The “SM Tot.” line represents the sum of all signal and background samples. The corresponding pre-fit
uncertainty bands include MC statistical uncertainties only and the post-fit uncertainty bands include the total
uncertainty extracted from the fit. The gray histograms represent the charge-symmetric common floating component
and the three histograms associated with the signal samples are the truth bins of the ?T (⇡ (⇤) ) differential distribution.
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Figure 4: A demonstration of the OS–SS ,+⇡ (⇤) cross-section fit. Pre-fit <(⇡+) distributions for the ,
�+⇡+

?T (⇡+) bin 2: (a) OS, (c) SS, and (e) OS–SS. The corresponding post-fit distributions: (b) OS, (d) SS, and (f)
OS–SS. The “SM Tot.” line represents the sum of all signal and background samples. The corresponding pre-fit
uncertainty bands include MC statistical uncertainties only and the post-fit uncertainty bands include the total
uncertainty extracted from the fit. The gray histograms represent the charge-symmetric common floating component
and the three histograms associated with the signal samples are the truth bins of the ?T (⇡ (⇤) ) differential distribution.
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Figure 4: A demonstration of the OS–SS ,+⇡ (⇤) cross-section fit. Pre-fit <(⇡+) distributions for the ,
�+⇡+

?T (⇡+) bin 2: (a) OS, (c) SS, and (e) OS–SS. The corresponding post-fit distributions: (b) OS, (d) SS, and (f)
OS–SS. The “SM Tot.” line represents the sum of all signal and background samples. The corresponding pre-fit
uncertainty bands include MC statistical uncertainties only and the post-fit uncertainty bands include the total
uncertainty extracted from the fit. The gray histograms represent the charge-symmetric common floating component
and the three histograms associated with the signal samples are the truth bins of the ?T (⇡ (⇤) ) differential distribution.
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W+c and PDF sensitivity

• W + c production sensitive to s-quark 
PDF in the proton


• It allows to study the s-quark 
asymmetry at the initial scale in PDF 
evolution 

41

Camilla Vittori CERN Seminar 49

 ATLASpdf21 
Eur. Phys. J. C 82 (2022) 438

Rs = s + s̄
ū + d̄



W+c results

Camilla Vittori CERN Seminar 22

 Cross-section ratio results 
✦ Rc with experimental precision ~1%, 

comparable contribution from statistical and 
systematic uncertainties

✦ PDFs imposing symmetric strange-sea 
( ) have smaller uncertainties: i.e. 
CT18, AMBP16 and ATLASpdf21_T3

✦ predictions with  asymmetry at the 
initial scale largely dominated by PDF 
uncertainty

➡  asymmetry small in the Bjorken-x 
region probed by this measurement

s = s̄

s − s̄

s − s̄

Rc = σ(W+ + D−)/σ(W− + D+)

➡Uncertainty on Rc smaller than PDF uncertainties without  asymmetrys = s̄
Camilla Vittori CERN Seminar 21

 Inclusive cross-section results 
✦ Results in good agreement with predictions from different PDF sets 

✦ Experimental precision (~5% syst-dominated) is comparable to the PDF uncertainties (black) 
and smaller than total theoretical uncertainty (grey)

✦ High-precision measurements can constrain theoretical predictions

42

• Rc has an experimental precision of ~1% with compariable precision between 
statistical and systematic uncertainties



W+c results

• This is a very precise result


• Could be very power tests of PDFs


• Working now on ideas on how to 
measure the fragmentation functions

43



W+c results

• Few major constraints and pulls



A small aside… 

• A recent measurement of tW and fitting modelling uncertainties

45

Paper link

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/TOPQ-2018-07/


A small aside… 

• Our data is very precise


• As a result, we obviously see strong pulls 
and we don’t really trust the interpolation 
model

46



A small aside… 

• And we really get nervous when the 
experimental uncertainties pull


• An example from our mW result

47



Z plus heavy flavor production

Camilla Vittori CERN Seminar 33

 Z+jets background and Flavour Fit 
✦ Bin-by-bin scale factors allow to correct both 

normalisation and shape of Z+flavoured-jets 
contributions

✦ Fit performed in individual (optimised) 
bins of each measured observable

✦ Systematics:
• Detector-level systematics affect Z+jets templates - 

repeat flavour fit
• uncertainty on Z+jets background yields from 

comparison of two MCsCamilla Vittori CERN Seminar 35

 Uncertainties on the cross section measurements 
✦ x2 improved precision on Z + b-jets measurements with respect to previous ATLAS results
✦ Dominant uncertainty contributions from: 

flavour-tagging, jet energy scale and resolution and unfolding
✦ Statistical uncertainty on data <1%
Differential distributions: total unc. <5% in Z+≥1 b-jet, ~10-15% in Z+≥2 b-jets and Z+≥1 c-jet

48

• Very comphrensive result on Z+1b, Z+2b and Z+c production


• Fit is performed in individual, optimised bins for each measured observable



Some Z+heavy flavour results

• To make these plots more manageable, will 
just focus on the ratios

Camilla Vittori CERN Seminar 38

 Differential Z+≥1 b-jet cross-section results 

Fixed-order: at high pT NNLO calculations in worst agreement than NLO 
ME+PS. Large uncertainty on NNLO due to different jet flavour 
algorithms → importance of using IRC-safe jet-flavour algorithm in 
measurements

5FS: good description by both NLO ME+PS state-of-the-art MCs  
     (MGAMC+PY8 FXFX and SHERPA 2.2.11)

4FS: similar modelling of 5FS, but large underestimation of data - no log-
term resummation in PDF evolution!

Camilla Vittori CERN Seminar 38

 Differential Z+≥1 b-jet cross-section results 

Fixed-order: at high pT NNLO calculations in worst agreement than NLO 
ME+PS. Large uncertainty on NNLO due to different jet flavour 
algorithms → importance of using IRC-safe jet-flavour algorithm in 
measurements

5FS: good description by both NLO ME+PS state-of-the-art MCs  
     (MGAMC+PY8 FXFX and SHERPA 2.2.11)

4FS: similar modelling of 5FS, but large underestimation of data - no log-
term resummation in PDF evolution!
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Some Z+heavy flavour results
• Recall… 4FS: massive b-quarks


• b-quarks do not contribute to proton wave 
functions and do not enter in pQCD calculations 
and PDF evolution


• b-quarks can only be generated in the hard 
scattering by gluon splitting (g → bb) 


• suitable for kinematic region with energy scale Q ∼ 
mb2


• 5FS: massless b-quarks → b-quark density is allowed 
in the initial state via a b-quark PDF 


• suitable for kinematic region with Q >> mb2


• The ambiguity between the FSs is expected to reduce 
including higher oder pQCD corrections  

Camilla Vittori CERN Seminar 38

 Differential Z+≥1 b-jet cross-section results 

Fixed-order: at high pT NNLO calculations in worst agreement than NLO 
ME+PS. Large uncertainty on NNLO due to different jet flavour 
algorithms → importance of using IRC-safe jet-flavour algorithm in 
measurements

5FS: good description by both NLO ME+PS state-of-the-art MCs  
     (MGAMC+PY8 FXFX and SHERPA 2.2.11)

4FS: similar modelling of 5FS, but large underestimation of data - no log-
term resummation in PDF evolution!

50

Large uncertainty on the NNLO due 
to different jet flavour algorithms



Some Z+heavy flavour results

• Distributions like mbb are always a challenge
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Figure 10: Measured fiducial cross-section for / + � 2 1-jets production as a function of (a) �q11 and (b) <11. The
data are compared with the predictions from the 5FS multi-leg generators MG�MC+P�8 F�F� and S����� 2.2.11,
and with MG�MC+P�8 4FS (NLO). The error bars correspond to the statistical uncertainty, and the hatched bands to
the data statistical and systematic uncertainties added in quadrature. The shaded bands correspond to the statistical
and theoretical uncertainties of the predictions added in quadrature.

9.4 Differential cross-sections for ` + � 1 c-jet

Differential cross-section measurements for the / + � 1 2-jet process constitute an important probe of
pQCD and of the charm PDF. The results are presented in Figures 11–13. The differential / + 2-jets
cross-section measurements are compared with the predictions from the 5FS multi-leg generators S�����
2.2.11 and MG�MC+P�8 F�F�, with MG�MC+P�8 3FS (NLO) and MG�MC+P�8 4FS (NLO), and
with NLO and NNLO fixed-order predictions [3]. The latter are corrected for the effects related to the
hadronisation and MPI and to the different jet flavour classification algorithms as described in Section 9.2.
These comparisons are shown in Figures 11–12.

Besides, the measurements are compared to MG�MC+P�8 F�F� predictions with various PDFs, probing
the IC models as listed in Section 3.3. Comparisons to those predictions are shown in Figure 13.

Differential cross-sections as function of ?T of the / boson and the leading 2-jet are shown in Figure 11.
Both ?T spectra are described well by MG�MC+P�8 F�F� and S����� 2.2.11 in the soft part, while above
40–50 GeV (80–100 GeV) for / boson (2-jet) ?T the data cross-section is significantly underestimated by
these predictions. A better description of the data shape overall is provided by MG�MC+P�8 4FS (NLO),
however, it is generally near or beyond the lower edge of the data uncertainty band. The MG�MC+P�8
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Some Z+heavy flavour results

52

• Similar trends for IC models - the 
measurements has a small sensitivity
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Figure 13: Measured fiducial cross-section for / + � 1 2-jet production as a function of (a) leading 2-jet G� and
(b) R(?T (/)). The data are compared with the nominal MG�MC+P�8 F�F� predictions and with those using the
PDFs testing several IC models. The error bars correspond to the statistical uncertainty, and the hatched bands to the
data statistical and systematic uncertainties added in quadrature. The shaded bands correspond to the statistical and
theoretical uncertainties of the predictions added in quadrature.
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Figure 13: Measured fiducial cross-section for / + � 1 2-jet production as a function of (a) leading 2-jet G� and
(b) R(?T (/)). The data are compared with the nominal MG�MC+P�8 F�F� predictions and with those using the
PDFs testing several IC models. The error bars correspond to the statistical uncertainty, and the hatched bands to the
data statistical and systematic uncertainties added in quadrature. The shaded bands correspond to the statistical and
theoretical uncertainties of the predictions added in quadrature.
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My guesses for the future

• We will be breaking the jet energy uncertainty paradigm soon


• We have tons of data that is very constraining


• Many examples of how this has allowed us to make big steps in improvement 
to ‘traditional systematics dominanted’ results


• Machine learning allows us to rethink everything from calibration to cross 
sections


• Fitting everything has great power however the classic tails of caution still 
apply
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