

UQDS - IT- Reliability Analysis -Quench protection function

11/06/2024

Quench scenario

Is a single quench the most likely quench scenario? Yes

Asymmetric detection:Coil-coil comparison of neighboring coils (PA3 - PA2, PA4 - PA1, PB1 - PB4, PB2 - PB3)Magnet symmetric detection:Comparison of magnet halves: (PA3 + PA4) - (PA4 + PA1), (PB1 + PB4) - (PB2 + PB3)Full symmetric detection:Comparison of Coil voltages between Q1A and Q1B

Quench scenario

Reliability Block Diagram for a single quench in a magnet (e.g. Quench in Coil PA3) for current < 3 kA

Reliability Block Diagram for a single quench in a magnet (e.g. Quench in Coil PA3)

Reliability Block Diagram for a single quench in a magnet (e.g. Quench in Coil PA3)

Pessimistic scenario

Reliability Block Diagram for a single quench in a magnet (e.g. Quench in Coil PA3)

Pessimistic scenario

Why so pessimistic?

Quench in 2 coils

Scenario 1

- Asymmetric
- Magnet symmetric ((PA1+PA4) (PA2-PA3))
- Full Symmetric (PA3-PB3) & (PA2-PB2)

Scenario 2

- > Asymmetric
- ➢ Magnet symmetric ((PA1+PA4) − (PA2-PA3)) and …
- Full Symmetric

Scenario 3

- > Asymmetric
- ➤ Magnet symmetric ((PA1+PA4) (PA2-PA3)) and ...
- Full Symmetric (PA3-PB3) & (PA2-PB2)

Scenario 1

Scenario 2

Scenario 3

Full symmetric detection:

Comparison of Coil voltages between Q1A and Q1B

 \rightarrow Depending on the quench scenario certain redundancies could be bypassed.

Reliability Targets – Top Level FMECA (uQDS + PDSU)

situation	functions	description	failure modes	effects/consequence	recovery time	reliability target
quench	magnet protection +	For this the UQDSs must detect a quench	fail to detect	no magnet protection	months	1/1000 years
	beam dump request	in a magnet (or SC links and the BBs)		no dump via PDSU/PIC	? (beam dump via BLMS	
					fast enough?)	
		The UQDSs must send a signal to the	fail to transmit to PDSU	no magnet protection	months	1/1000 years
		PDSUs when a quench is detected.		no dump via PDSU		
	triggering of the	The PDSUs must trigger the CLIQs and/or	fail to trigger the	no magnet protection	months	1/1000 years
	CLIQs/HDSs	HDSs.	protection devices			
			insufficient re-/triggering	insufficient magnet protection	months	1/1000 years
			(not enough CLIQs and/or			
			HDS are triggered)			
	dedicated beam dump	The PDSUs have to trigger the beam dump	fail to transmit beam	no dump via PDSU-BIS connection	months	1/1000 years
	request transmission -	request on time	dump request			
	direct to BIS					

Reliability Targets

- For a downtime of months, a frequency of 1/100 years or lower is acceptable.
- Frequency 1/1000 years was chosen because of other system types (BIS, LBDS, BLMs, SMP, ...) that can cause the same downtime.

					Recovery time					months		
		[1m - 20m)	[20m - 1h)	[1h - 3h)	[3h - 6h)	[6h - 12h)	[12h - 24h)	[24h - 2d)	[2d - 1w)	[1w - 1M)	[1M - 1Y)	[1Y - 10Y)
	1/H	U	U	U	U	U	U	U	U	U	U	U
Frequency	1/Shift	U	U	U	U	U	U	U	U	U	U	U
	1/Day	A	U	U	U	U	U	U	U	U	U	U
	1/Week	A	А	A	A	U	U	U	U	U	U	U
	1/Month	A	А	A	A	A	А	U	U	U	U	U
	1/Year	A	А	A	A	А	А	А	А	U	U	U
	1/10Years	А	А	А	A	А	А	А	А	A	U	U
	1/100Years	A	А	A	A	A	А	А	А	А	Ą	U
	1/1000Years	< <u> </u>	A	A	A	A	A	A	A	A	A	A

Reliability Targets

- For a downtime of months, a frequency of 1/100 years or lower is acceptable.
- Frequency 1/1000 years was chosen because of other system types (BIS, LBDS, BLMs, SMP, ...) that can cause the same downtime.
- How many critical systems have a quench protection system with a UQDS?

						Re	covery tir	months				
		[1m - 20m)	[20m - 1h)	[1h - 3h)	[3h - 6h)	[6h - 12h)	[12h - 24h)	[24h - 2d)	[2d - 1w)	[1w - 1M)	[1M - 1Y)	[1Y - 10Y)
Frequency	1/H	U	U	U	U	U	U	U	U	U	U	U
	1/Shift	U	U	U	U	U	U	U	U	U	U	U
	1/Day	A	U	U	U	U	U	U	U	U	U.	U
	1/Week	A	A	A	A	U	U	U	U	U	ų	U
	1/Month	A	А	A	A	A	А	Ú	U	U	ų.	U
	1/Year	A	А	A	A	А	А	A	А	U	ų	U
	1/10Years	А	А	А	A	А	А	А	A	А	Ų	U
	1/100Years	A	А	А	A	A	А	А	А	А	Ą	U U
	1/1000Years	∢ A	Α	A	A	A	A	Α	A	A	A	A

Reliability Targets

- For a downtime of months, a frequency of 1/100 years or lower is acceptable.
- Frequency 1/1000 years was chosen because of other system types (BIS, LBDS, BLMs, SMP, ...) that can cause the same downtime.
- How many critical systems have a quench protection system with a UQDS?
 - 4 Inner Triplets
 - 533 circuits with a quench loop
 - 72 circuits with a UQDS and 126 UQDS units in total
 - 9436 Quench Detection Systems

Components and their failure rate/reliability

> Based on PCB design files, a first worst-case component based reliability estimate has been done:

		Inspection aft	er 1 operational year	Inspection after 3 operational years		
components	Inspection interval	FITs	R	FITs	R	
Tap + UQDS (without trigger out)		4221.39	0.9701	12664.17	0.9129	
Тар		13.83	0.9999	41.49	0.9997	
Channel		70.29	0.9995	210.87	0.9985	
PSU		874.70	0.9937	2624.10	0.9813	
FPGA (Digital Platform)		1675.00	0.9880	5025.00	0.9645	
Midplane		38.42	0.9997	115.26	0.9992	
trigger out (UQDS)		7.00	0.9999	21.00	0.9998	
FPGA/Digital Platform + Midplane						
(PDSU)		3296.16	0.9765	9888.48	0.9313	
Trigger Interface (PDSU)		7.00	0.9999	21.00	0.9998	
HDS		435.22	0.9969	1305.65	0.9906	
PS24V		54.36	0.9996	163.08	0.9988	
trigger		27.18	0.9998	81.54	0.9994	
thyristor		13.59	0.9999	40.77	0.9997	
charger		27.18	0.9998	81.54	0.9994	
capacitor		4.53	1.0000	13.59	0.9999	
Strip		326.16	0.9977	978.47	0.9930	
current breaker		163.08	0.9988	489.24	0.9965	
Sum		201.69	0.9985	1800.69	0.9957	
Failures in 1000 years		1.45		12.96		

What are the Inspection intervals for the different components?

Are there faults in the instrumentation that can only be detected with Electrical Quality Assurance (ELQA)?

When considering a continuous demand (if there is a failure of the system, there is always a quench).

1 operational year = 300 days 3 operational years = 1095 days

CERN

UQDS – Busbars

- Can the two UQDSs BB of one IT detect a quench in the Busbars in between the magnets and the return busbars? Yes
- Are there in total 4 voltage taps for each type of Busbar? Yes, but they are sometimes shared with the taps used for the magnet coils.

home.cern