Recently network R&D work in IHEP

Shan Zeng

on behalf of IHEP network group Funded by NSFC (No. 12175258)

zengshan@ihep.ac.cn 2024/12/12

About our team

WLCG Networking WG Regular Meeting

2

Background

- IHEP endorsed as a new WLCG Tier-1 site (June,2024), WAN bandwidth was upgraded from 40Gbps to 100Gbps
 - LHCOPN@IHEP
 - 20Gbps bandwidth guaranteed
 - 3 links redundancy
 - ~ 200ms latency
 - LHCONE@IHEP
 - 100Gbps bandwidth shared

LHC PN

WLCG Networking WG Regular Meeting

Background: network challenges

- Network is a critical part of WLCG's infrastructure, becomes more and more important to assure the site availability and reliability
- Many network challenges from daily network operation
 - Issue debugging is difficult and time-consuming
 - How to thoroughly and vividly demonstrate various network measurement results to the application
 - How to promptly detect and resolve the network issues
 - How to make full use of the limited and expensive dedicated links

What we are currently doing?

NPM: Network Performance Manager

- Mirroring key application related network traffic, stored it and analyze it
- Coordinated monitoring of the network and application tiers
- Network session analysis: based on tshark
- Return the network and application performance KPIs to debugging issues
- Detect the network anomalies and return the anomaly type and time occurred

Network QoS assurance done by a self-defined SDN controller

- Background: many applications shared a limited dedicated link, while certain key application (JUNO Raw data movement: HiDTS) needs bandwidth assurance
- To make full use of the limited dedicated link, we dynamically predict the needed bandwidth based on the data volume which needs to be transferred

Some performance KPIs defined in NPM

Ideas of the NPM

- Analyze each TCP session packet by packet through tshark
- Define the significant application through five-tuple information
- Calculate the performance KPIs and stored them in the data warehouse
- **Create the KPI baseline of the connection between client and servers**
- Based on ML method to detect anomalies

NPM work progress

NPM work is really huge and time-consuming

- Architecture has been designed
- Network traffic packet has been captured and stored
- Data warehouse has been created and established
- Calculate algorithm of the network performance KPIs have been designed
- The unsupervised model based on LSTM-AE for anomaly detection has been deployed

Network QoS assurance work progress

- SDN Controller has been developed
- Joint-test with the border switch has been finished and successfully
- The program to create the QoS tunnel for JUNO automatically and dynamically has been developed and tested
- The whole system will be online in the next few weeks

Future plan

Develop the real-time processing and backtracking module to get the performance KPIs

- Based on data set of the performance KPIs, train the anomaly detection model
 - NPM work is just started and all collaborations are welcomed

Thanks for your attentions

Questions, Comments, Suggestions?