

Smartpixels with data reduction at the source

Jannicke Pearkes, University of Colorado On behalf of the **smartpixels collaboration** NGT workshop: hls4ml HEP Community Forum September 27th, 2024

smartpixels

Concept behind smartpixels

Charged particle path perpendicular to sensor: Regular charge cluster shape Charged particle path at angle to sensor: Smeared charge cluster shape

Use cluster shape to extract incident angle of particle traversing pixel sensors

Concept behind smartpixels Yoo et al 2024 Mach. Learn.: Sci. Technol. 5 035047

- Can use a locally customized neural network in sensor readout to distinguish low p_T from high p_T charged particles
- Lorentz drift shifts cluster charge distribution

Why smartpixels?

 High-luminosity LHC is going to result in unprecedented data rates especially in the tracking detectors

• By filtering on track momentum with smartpixels we could reduce the data volume at the source, lowering both rates and power consumption

reconstructed by the CMS detector during Run 2 data taking <u>2310.02474</u>

Smartpixels design

Yoo et al 2024 Mach. Learn.: Sci. Technol. 5 035047

analog charge amplification and autozero comparators for ADC

Neural network for p_T filter

Image: Benjamin Parpillon

16 x 16 matrix

How well does it work?

- Tested multiple network architectures and quantization options
- Can reduce data rate by 54.4% 75.4%
- Expected power consumption 300 µW/cm²
- Expected latency 3.9ns

Simulation details:

- Tracked data taken from CMS with p_T up to ~5 GeV
- Untracked data not included and includes CMS acceptances
- PixelAV simulation of silicon sensor
- Sensor placed at r=30mm in 3.8T magnetic field
- Single 100 μ m thick layer of silicon with 12.5x50 μ m² pixels
- Overall sensor area 16x16 mm²
- Bias voltage of -100 V

Model	Sig. efficiency	Bkg. rejection
Full precision	93.3~%	25.1~%
Quantized inputs	88.8 %	25.8~%
Quantized weights & inputs	87.3~%	28.2~%

Yoo et al 2024 Mach. Learn.: Sci. Technol. 5 035047

Integration of hls4ml and Catapult AI

Chip tape-out and testing:

- Prototype 1.5mm² ASIC with momentum filtering NN in 28nm CMOS has been fabricated*
- Tests of bare chip currently in progress

Next steps after testing protype:

Build a bigger chip to bump bond to sensor
 & test in a testbeam

https://arxiv.org/abs/2406.14860

Red = classifier algorithm

Floorplan with analog pixels with power and bias grid

Further developments

- Regression of position, angles and associated uncertainties of charged particle track with mixture density networks
- Regression could further reduce data volume by compressing pixel hits into salient physics quantities
- Combination of regression + momentum filtering could be used to include inner tracker in CMS L1 track trigger, with standard pixel hits being read out in parallel given an L1 accept
- Studies examining technical feasibility and physics outcomes of integrating within CMS L1 track trigger for Phase III (~2035)
- Applications in future colliders, e.g. rejecting beaminduced-backgrounds at muon colliders

-20

-10

True y [um]

10

20

Pixel layers unused in CMS L1 track trigger upgrade

predicted x [um]

- -5 - -5 -10

10

-50

Ω

True x [um]

50

What we want to see from the hls4ml community:

- Continued collaboration with Siemens + Catapult AI to keep architectures supported by hls4ml also supported in Catapult AI backend
- hls4ml on ASICs opens up space for larger range of "Smart detectors" applications e.g ML compressed readouts for high granularity or dual readout calorimeters

NN Layers	Activation Functions	Pooling/Padding/Reshaping
Conv1D, Conv2D	ELU	AveragePooling1D, AveragePooling2D
SeparableConv1D, SeparableConv2D	LeakyReLU	MaxPooling1D, MaxPooling2D
BatchNormalization	PReLU	UpSampling1D, UpSampling2D
Dense	ReLU	ZeroPadding1D, ZeroPadding2D
DepthwiseConv1D, DepthwiseConv2D	Softmax	Resize
PointwiseConv1D, PointwiseConv2D	TernaryTanh	Transpose
LSTM	ThresholdedReLU	Merge
SimpleRNN		Dot
TernaryDense		Concatenate
		Clone

"Can the hls4ml paradigm be applied across novel beyond CMOS microelectronics back-ends?"

0 ≥ pT > pT-cuto

2 nT > nT-cutof

Encoder: Charge

vaveform to spike train

A signal photonic marcon Mining and the signal photonic

Sensor charge

See review in Applications and Techniques for Fast Machine Learning in Science

Thank you!

smartpixels

References:

- On-Sensor Data Filtering using Neuromorphic Computing for High Energy Physics Experiments (Jul 2023) <u>https://arxiv.org/abs/2307.11242</u>
- Smart pixel sensors: towards on-sensor filtering of pixel clusters with deep learning (Oct 2023) <u>https://iopscience.iop.org/article/10.1088/2632-2153/ad6a00</u>
- Smartpixels: Towards on-sensor inference of charged particle track parameters and uncertainties (Dec 2023) <u>https://arxiv.org/abs/2312.11676</u>
- Smart Pixels: In-pixel AI for on-sensor data filtering (June 2024) https://arxiv.org/abs/2406.14860
- Siemens Catapult AI + hls4ml press release (May 2024) https://newsroom.sw.siemens.com/en-US/siemens-catapult-ai-nn/
- Jennet Dickinson, LCWS 2023 (May 2023) https://indico.slac.stanford.edu/event/7467/contributions/5966/
- Gisueppe Di Guglielmo, FastML @ ICCAD (Nov 2023)
 https://fastmachinelearning.org/iccad2023/file/fastml4science_iccad_20231102.pdf
- Gisueppe Di Guglielmo, Siemens User2User (April 2024) <u>https://docs.google.com/presentation/d/104VMajkHL81xM0IaN0ZJ3sUANdr0aeQfKN0Amvl</u> <u>nbkE/edit#slide=id.g2c55b12b4ca_0_96</u>
- Anthony Badea ICHEP 2024 https://indico.cern.ch/event/1291157/contributions/5888438/

Sensor geometry, charge clusters, and profiles

https://fastmachinelearning.org/iccad2023/file/fastml4science_iccad_20231102.pdf

RD53 Benchmarks

Talk by Flavio Loddo

	ATLAS/CMS
Chip size	20x21mm ² /21.6x18.6mm ²
Pixel size	50x50 μm²
Hit rate	3 GHz/cm ²
Trigger rate	1 MHz/750kHz
Trigger latency	12.5 us
Min. threshold	600 e-
Radiation tolerance	500 Mrad @-15C
Power	< 1W/cm ²

Why smartpixels?

HL-LHC L1 track finding does not include hits from the inner tracker

- Smartpixels could make L1 triggering with the inner tracker feasible.
- Better L1 tracking resolutions
- Better L1 vertexing and pile-up rejection
- Better L1 b-tagging (e.g. for targeted HH->4b triggers)

pixel layers unused in CMS L1 trigger upgrade