Smartpixels with data
reduction at the source
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Concept behind smartpixels

Charged particle path perpendicularto sensor: Charged particle path at angle to sensor:
Regular charge cluster shape Smeared charge cluster shape

Use cluster shape to extract incident angle of particle traversing pixel sensors



Concept behind Smartpixels Yoo et al 2024 Mach. Learn.: Sci. Technol. 5 035047
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in sensor readout to distinguish low p; from
high p; charged particles
* Lorentz drift shifts cluster charge distribution

Fraction of cluster charge
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https://arxiv.org/abs/2310.02474

Why smartpixels?

* High-luminosity LHC is going to result in unprecedented data rates especially in

the tracking detectors

LHC: Pileup of 25 = HL-LHC: Pileup of 250

* By filtering on track momentum with
smartpixels we could reduce the data volume at
the source, lowering both rates and power
consumption

Only 5% of tracks
have p; > 2 GeV
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reconstructed by the CMS detector during
Run 2 data taking 2310.02474


https://arxiv.org/abs/2310.02474

Sm a rtpixe lS d eSign Yoo et al 2024 Mach. Learn.: Sci. Technol. 5 035047
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digital logic with ADC inputs and locally customized NN
for filtering based on p;

analog charge amplification and autozero comparators for ADC


https://arxiv.org/abs/2310.02474

Neural network for p; filter image: Benjamin Parpillor
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How well does it work?

Tested multiple network architectures and
quantization options

Canreduce data rate by 54.4% - 75.4%
Expected power consumption 300 pW/cm?
Expected latency 3.9ns

Simulation details:

Tracked data taken from CMS with p; up to ~5 GeV

Untracked data not included and includes CMS acceptances
PixelAV simulation of silicon sensor

Sensor placed at r=30mm in 3.8T magnetic field

Single 100pm thick layer of silicon with 12.5x50 pm? pixels
Overall sensor area 16x16 mm?

Bias voltage of -100 V

Model Sig. efficiency Bkg. rejection
Full precision 93.3 % 25.1 %
Quantized inputs 88.8 % 25.8 %
Quantized weights & inputs 87.3 % 28.2 %

fraction classified as = abs (0.2GeV)

Yoo et al 2024 Mach. Learn.: Sci. Technol. 5 035047

flat efficiency for track p; > 2 GeV
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https://arxiv.org/abs/2310.02474

Integration of hls4ml and Catapult Al
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hls4dml + Catapult Al workflow

 Collaboration between hls4dml community

and Siemens Catapult Al industry partner
* |nvolves customizing hls4ml back-ends to
meet Catapult Al specifications
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https://arxiv.org/abs/2406.14860

Chip tape-out and testing:

* Prototype 1.5mm? ASIC with momentum
f|lte I‘ing NN in 28nm CMOS haS been Floorplan with analog pixels with power and bias grid
tobricated* RS

* Tests of bare chip currently in progress

Next steps after testing protype:

* Build a bigger chip to bump bond to sensor
& test in a testbeam

*for characterizations of radiation hardness of 28nm, see G. Borghello, TWEPP 2023 9


https://indico.cern.ch/event/1255624/contributions/5443894/
https://arxiv.org/abs/2406.14860

Further developments

Regression of position, angles and associated uncertaintie:
of charged particle track with mixture density networks

Regression could further reduce data volume by
compressing pixel hits into salient physics quantities

Combination of regression + momentum filtering could be
used to include inner tracker in CMS L1 track trigger, with
standard pixel hits being read out in parallel given an L1
accept

Studies examining technical feasibility and physics
outcomes of integrating within CMS L1 track trigger for
Phase Il (~2035)

Applications in future colliders, e.g. rejecting beam-
induced-backgrounds at muon colliders

Pixel layers unused in CMS
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https://arxiv.org/abs/2312.11676
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https://arxiv.org/abs/2312.11676

What we want to see from the hls4ml community:

 Continued collaboration with Siemens + Catapult Al to keep architectures supported by
hls4ml also supported in Catapult Al backend

* hlsdml on ASICs opens up space for larger range of “Smart detectors” applications
e.g ML compressed readouts for high granularity or dual readout calorimeters

Bold indicates tested in Catapult Al Workflow so far, typically on a per-project basis

NN Layers Activation Functions Pooling/Padding/Reshaping
Conv1D, Conv2D ELU AveragePooling1D, AveragePooling2D
SeparableConv1D, SeparableConv2D LeakyRelLU MaxPooling1D, MaxPooling2D
BatchNormalization PRelLU UpSampling1D, UpSampling2D
Dense RelLU ZeroPadding1D, ZeroPadding2D
DepthwiseConv1D, DepthwiseConv2D Softmax Resize
PointwiseConv1D, PointwiseConv2D TernaryTanh Transpose
LSTM ThresholdedRelLU Merge
SimpleRNN Dot
TernaryDense Concatenate

Clone
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hls4dml for Spiking Neural Networks?

SNNs for smartpixels: https://arxiv.org/abs/2307.11242

x (13) 4.

\ \< hls4dml for analog circuit-based neural networks?

hlsdml for optical neural networks?

.. and many, many more.
12

See review in



https://arxiv.org/abs/2307.11242
https://www.frontiersin.org/journals/big-data/articles/10.3389/fdata.2022.787421/full

Thank you!
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Sensor geometry, charge clusters, and profiles
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https://fastmachinelearning.org/iccad2023/file/fastml4science_iccad_20231102.pdf

RD53 Collaboration, IEEE 10182033

RD53 Benchmarks

Talk by Flavio Loddo

| anas/ows

Chip size 20x21mm?2/21.6x18.6mm?
Pixel size 50x50 um?
Hit rate 3 GHz/cm?
Trigger rate 1 MHz/750kHz
Trigger latency 12.5 us
Min. threshold 600 e-
Radiation tolerance 500 Mrad @-15C

Power <1W/cm?

16
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Why smartpixels? L Skinnari

HL-LHC L1 track finding does not include hits from the inner tracker
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* Smartpixels could make L1 triggering with the inner tracker feasible.
* Better L1 tracking resolutions

Better L1 vertexing and pile-up rejection
pixel layers unused in CMS

L1 trigger upgrade

Better L1 b-tagging (e.g. for targeted HH->4b triggers)
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https://indico.cern.ch/event/981823/contributions/4328856/attachments/2254004/3824755/skinnari_TIPP2021.pdf
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