Indications for BSM from unification, vacuum stability and gravitational waves

Kamila Kowalska

National Centre for Nuclear Research (NCBJ) Warsaw, Poland

in collaboration with D. Kumar, D. Rizzo, E. M. Sessolo

JHEP 1912 (2019) 094 (arXiv: 1910.00847) and work in progress

Workshop on Standard Model and Beyond, Corfu 02.09.2024

The new old story

The new old story

The new old story

Our goal: classification of the BSM extensions with VL fermions and gauge unification

KK, D.Kumar, arXiv: 1910.00847 JHEP 12 (2019) 094

Analysis strategy

KK, D.Kumar, arXiv: 1910.00847

Some previous work:

T. G. Rizzo, Phys. Rev. D45 (1992) 3903-3905

B. Bhattacherjee, P. Byakti, A. Kushwaha, S. K. Vempati, JHEP 05 (2018) 090

Initial assumptions:

- NP = vector-like fermions (mass $<$ 10 TeV)
- unification scale in the range 10^{15} 10^{18} GeV
- SU(5)-like GUT gauge symmetry
- negligible Yukawa interaction **incremental condition** long-lived particles

Analysis strategy

KK, D.Kumar, arXiv: 1910.00847

Some previous work:

T. G. Rizzo, Phys. Rev. D45 (1992) 3903-3905

B. Bhattacherjee, P. Byakti, A. Kushwaha, S. K. Vempati, JHEP 05 (2018) 090

Initial assumptions:

- NP = vector-like fermions (mass $<$ 10 TeV)
- unification scale in the range 10^{15} 10^{18} GeV
- SU(5)-like GUT gauge symmetry
- negligible Yukawa interaction **inclusively articles**

24 distinct representations of SU(3)×SU(2)×U(1)

Analysis strategy

note: no unification with 1 VL rep. *JHEP 05 (2018) 90)* (see, ex. Bhattacherjee et al.

Summary of the results

Probing the PGU models

unification scale

 $(1,2,1/2)_{22} \oplus (6,1,1/3)_{4}$

- unification possible for a wide range of masses
- excluded or to be excluded by the proton decay measurements at SK/HK

$$
\tau_p^{\text{SK}} > 1.6 \times 10^{34} \text{ years}
$$

- Scenario R_{F_1} R_{F_2} N_1 N_2 SK $(\textbf{1}, \textbf{2}, \frac{1}{2})$ $\left({\bf 6}, {\bf 1}, \frac{1}{3}\right)$ $\overline{12}$ $\overline{F1}$ \hat{z} $(1, 2, \frac{1}{2})$ $(6,1,\frac{1}{3})$ $F2$ 20 $\overline{4}$ $(1, 2, \frac{1}{2})$ $(6,1,\frac{1}{2})$ $F3$ 22 $\overline{4}$ $\overline{F4}$ $(\bf{1}, \bf{2}, \frac{1}{2})$ $(8, 1, 0)$ $\hat{\sigma}$ \mathbf{t} F₅ $(1, 2, \frac{1}{2})$ $(8, 1, 0)$ $\overline{2}$ 12 $(1, 2, \frac{1}{2})$ F₆ $(8, 1, 0)$ 14 $\overline{2}$ $(3,1,-\frac{1}{2})$ $F7$ $(1, 3, 0)$ $\overline{2}$ 8 $(1, 3, 0)$ $(3,1,-\frac{1}{2})$ $F8$ 3 12 $-(1,3,0)$ --- \vdash HK $-F9 -(6,-1,-\frac{2}{2})$ - $-3 -2 F10$ $(1, 4, \frac{1}{2})$ $(6,1,-\frac{2}{3})$ $\overline{2}$ $\overline{4}$ $(3,1,-\frac{1}{2})$ $(3, 2, \frac{1}{6})$ $F11$ $\overline{2}$ $\overline{2}$ $(3,1,\frac{2}{3})$ $(3, 2, \frac{1}{6})$ $F12$ $\overline{4}$ $\overline{4}$ $(3,1,\frac{2}{2})$ $F13$ $(3, 2, \frac{1}{6})$ 6 6 **EXCLUDED**
- compressed / hierarchical spectrum

$$
\tau_p^{\rm HK} > 2 \times 10^{35} \text{ years}
$$

Probing the PGU models

unification scale

$$
\tau_p = \left(\frac{4\pi}{g_{\text{GUT}}^2}\right)^2 \left(\frac{M_{\text{GUT}}}{\text{GeV}}\right)^4 \times 2.0 \times 10^{-32}
$$

for $q_{GUT}=0.7$

 $M_{\text{GUT}} = 10^{15} \,\text{GeV} \to \tau_p = 1.3 \times 10^{31} \,\text{years}$ $M_{\text{GUT}} = 10^{16} \,\text{GeV} \to \tau_p = 1.3 \times 10^{35} \,\text{years}$

masses in TeV

model-independent upper bounds on VL mass

Vacuum stability

stability can be restored in BSM

ex. with VL fermions

Gopalakrishna, Velusamy, *PRD 99 (2019),* Arsenault *et al. PRD 107 (2023),* Hiller *et al. arXiv: 2401.08811, Adhikary et al. arXiv: 2406.16050… many more*

Vacuum stability in PGUs

no BSM Yukawa interactions

$$
16\pi^2 \beta(g_3) = g_3^3 \left(-7 + \frac{2}{3} N_F S_2(R_{F3}) d(R_{F2}) \right) \longrightarrow g_3
$$

\n
$$
16\pi^2 \beta(y_t) = y_t \left(\frac{9}{2} y_t^2 - 8g_3^2 - \frac{9}{4} g_2^2 - \frac{17}{12} g_Y^2 \right) \longrightarrow y_t
$$

\n
$$
16\pi^2 \beta(\lambda) = 24\lambda^2 + 12\lambda y_t^2 - 6y_t^4 + f(g_Y, g_2, \lambda) \longrightarrow \lambda
$$

vacuum gets stabilized

Vacuum stability in PGUs

with BSM Yukawa interactions

 $\lambda(\mathbf{Q})$

$$
16\pi^{2} \beta(g_{3}) = g_{3}^{3} \left(-7 + \frac{2}{3} N_{F} S_{2}(R_{F3}) d(R_{F2})\right) \rightarrow g_{3}
$$
\n
$$
16\pi^{2} \beta(y_{t}) = y_{t} \left(\frac{9}{2} y_{t}^{2} + A y_{BSM}^{2} - 8 g_{3}^{2} - \frac{9}{4} g_{2}^{2} - \frac{17}{12} g_{Y}^{2}\right) \rightarrow y_{t}
$$
\n
$$
16\pi^{2} \beta(\lambda) = 24\lambda^{2} + \frac{3}{8} g_{Y}^{4} + C \lambda y_{BSM}^{2} - 6 y_{t}^{4} - B y_{BSM}^{4} + f(g_{Y}, g_{2}, \lambda) \rightarrow \lambda
$$
\n
$$
16\pi^{2} \beta(\lambda) = 24\lambda^{2} + \frac{3}{8} g_{Y}^{4} + C \lambda y_{BSM}^{2} - 6 y_{t}^{4} - B y_{BSM}^{4} + f(g_{Y}, g_{2}, \lambda) \rightarrow \lambda
$$
\n
$$
16\pi^{2} \beta(\lambda) = 24\lambda^{2} + \frac{3}{8} g_{Y}^{4} + C \lambda y_{BSM}^{2} - 6 y_{t}^{4} - B y_{BSM}^{4} + f(g_{Y}, g_{2}, \lambda) \rightarrow \lambda
$$
\n
$$
16\pi^{2} \beta(\lambda) = 24\lambda^{2} + \frac{3}{8} g_{Y}^{4} + C \lambda y_{BSM}^{2} - 6 y_{t}^{4} - B y_{t}^{4} - 2 y_{t}^{3} - 2 y_{t}^{2} - 12 g_{Y}^{2} - 12 g
$$

Other scalars?

In SU(5): $\mathcal{L}_{\text{Yuk}} = Y_d \, \bar{\bf 5} \times {\bf 10} \times \bar{\bf 5_H} + Y_u \, {\bf 10} \times {\bf 10} \times {\bf 5_H}\,$ Higgs doublet color triplet

Scalars can emerge naturally in GUTs

see also M. Malinsky talk

● **SU(5)**

 $24, 75 \supset (1,1)_0$ \longrightarrow singlet S

● **SU(6) (and larger)**

$$
\mathcal{L}_{\rm Yuk} = Y_{15} \, \mathbf{15} \times \mathbf{15} \times \overbrace{\mathbf{15}}^{H_1} + Y_6 \, \mathbf{15} \times \overline{\mathbf{6}} \times \overline{\mathbf{6}}^{H_2} \longrightarrow \mathbf{2HDM}
$$

$$
SU(6) \rightarrow SU(5) \times U(1)_5
$$
\n
$$
6 = 1_{-5} + 5_1
$$
\nsinglet S + U(1)'

Other scalars?

In SU(5): $\mathcal{L}_{\text{Yuk}} = Y_d \, \bar{\bf 5} \times {\bf 10} \times \bar{\bf 5_H} + Y_u \, {\bf 10} \times {\bf 10} \times {\bf 5_H}\,$ Higgs doublet color triplet

Scalars can emerge naturally in GUTs

see also M. Malinsky talk

● **SU(5)**

 $24, 75 \supset (1,1)_0$ \longrightarrow singlet S

● **SU(6) (and larger)**

$$
\mathcal{L}_{\rm Yuk} = Y_{15} \, \mathbf{15} \times \mathbf{15} \times \widehat{\mathbf{15}^{H_1}} + Y_6 \, \mathbf{15} \times \overline{\mathbf{6}} \times \widehat{\mathbf{6}}^{H_2} \longrightarrow \mathbf{2HDM}
$$

$$
SU(6) \rightarrow SU(5) \times U(1)_5
$$
\n
$$
6 = 1_{-5} + 5_1
$$
\nsinglet S + U(1)'

Complementary signals with scalars?

Other scalars?

In SU(5): $\mathcal{L}_{\text{Yuk}} = Y_d \, \bar{\bf 5} \times {\bf 10} \times \bar{\bf 5_H} + Y_u \, {\bf 10} \times {\bf 10} \times {\bf 5_H}\,$ Higgs doublet color triplet

Scalars can emerge naturally in GUTs

see also M. Malinsky talk

● **SU(5)**

 $24, 75 \supset (1,1)_0$ \longrightarrow singlet S

● **SU(6) (and larger)**

$$
\mathcal{L}_{\rm Yuk} = Y_{15} \, \mathbf{15} \times \mathbf{15} \times \widehat{\mathbf{15}^{H_1}} + Y_6 \, \mathbf{15} \times \overline{\mathbf{6}} \times \widehat{\mathbf{6}}^{H_2} \longrightarrow \textbf{2HDM}
$$

$$
SU(6) \rightarrow SU(5) \times U(1)_5
$$
\n
$$
6 = 1_{-5} + 5_1
$$
\nsinglet S + U(1)'

Complementary signals with scalars?

First order phase transition... Gravitational waves...

Gravitational waves from FOPT

Gravitational waves from FOPT

Singlet scalar + U(1)^X

known example: clasically scale inv. $SM + U(1)_{B-L}$

$$
V(H, S) = \lambda_1 \left(H^{\dagger} H \right)^2 + \lambda_2 \left(S^{\dagger} S \right)^2 + \lambda_3 \left(H^{\dagger} H \right) \left(S^{\dagger} S \right)
$$

Ellis *et al. JCAP 06 (2019),* Jinno, Takimoto *PRD 95 (2017),* Okada, Seto *PRD 98 (2018),* Marzo *et al. EPJC 79 (2019),* Hasegawa *et al. PRD 99 (2019),* Haba, Yamada *PRD 101 (2020)…* many more

symmetry breaking through CW:

$$
V(\phi) = \frac{1}{4}\lambda_2(t)\phi^4 + \frac{1}{128\,\pi^2} \left[20\lambda_2^2(t) + 96\,g_X^4(t)\right]\phi^4\left(-\frac{25}{6} + \ln\frac{\phi^2}{\mu^2}\right)
$$

$$
Q_S = 2, \quad \phi = \sqrt{2}Re(S)
$$

strenght of the GW signal given by g_{x} **...**

 $4 \overline{m_{Z'}} = 10 \,\text{TeV}$

 $T_{\rm reh}$

 0.2

3

 0.1

 $log_{10}(T/GeV)$

Gravitational waves from FOPT

Singlet scalar + U(1)^X

known example: clasically scale inv. $SM + U(1)_{B-L}$

$$
V(H, S) = \lambda_1 (H^{\dagger} H)^2 + \lambda_2 (S^{\dagger} S)^2 + \lambda_3 (H^{\dagger} H) (S^{\dagger} S)
$$

symmetry breaking through CW:

C.Marzo, L.Marzola, V.Vaskonen, 1811.11169

0.3

 g_{B-L}

 0.4

(simplified model)

strenght of the GW signal given by g_{x} **...**

$$
V(\phi) = \frac{1}{4}\lambda_2(t)\phi^4 + \frac{1}{128\,\pi^2} \left[20\lambda_2^2(t) + 96\,g_X^4(t)\right]\phi^4\left(-\frac{25}{6} + \ln\frac{\phi^2}{\mu^2}\right)
$$

 T_{ν}

 0.5

Ellis *et al. JCAP 06 (2019),* Jinno, Takimoto *PRD 95 (2017),* Okada, Seto *PRD 98 (2018),* Marzo *et al. EPJC 79 (2019),* Hasegawa *et al. PRD 99 (2019),* Haba, Yamada *PRD 101 (2020)…* many more

 $Q_S = 2, \quad \phi = \sqrt{2}Re(S)$

pros: may be washed out by the Yukawas

- nucleation/percolation temp. below OCD
- FOPT stop conition not satisfied

→ upper bound on Yukawas

cons: may be difficult to get in a UV-complete model

- \cdot too small g_x predicted
- ex. QG driven asymptotic safety

A. Chikkaballi, KK. E. Sessolo *JHEP 11 (2023) 224*

Gravitational waves from FOPT

Singlet scalar + U(1)^X

known example: clasically scale inv. $SM + U(1)_{B-L}$

$$
V(H, S) = \lambda_1 (H^{\dagger} H)^2 + \lambda_2 (S^{\dagger} S)^2 + \lambda_3 (H^{\dagger} H) (S^{\dagger} S)
$$

symmetry breaking through CW:

$$
V(\phi) = \frac{1}{4}\lambda_2(t)\phi^4 + \frac{1}{128\,\pi^2} \left[20\lambda_2^2(t) + 96\,g_X^4(t)\right]\phi^4\left(-\frac{25}{6} + \ln\frac{\phi^2}{\mu^2}\right)
$$

Ellis *et al. JCAP 06 (2019),* Jinno, Takimoto *PRD 95 (2017),* Okada, Seto *PRD 98 (2018),* Marzo *et al. EPJC 79 (2019),* Hasegawa *et al. PRD 99 (2019),* Haba, Yamada *PRD 101 (2020)…* many more

$$
Q_S = 2, \quad \phi = \sqrt{2}Re(S)
$$

strenght of the GW signal given by g_{x} **...**

(simplified model) C.Marzo, L.Marzola, V.Vaskonen, 1811.11169 $4 \overline{m_{Z'}} = 10 \overline{\rm TeV}$ \mathbf{r} $T_{\rm reh}$ T_{ν} $log_{10}(T/GeV)$ 0.2 0.3 0.4 0.5 0.1 g_{B-L}

What about our GUT-inspired models?

PGU models with an extra U(1)

\sim y_{BSM} S F_{VL} F_{SM}

unification condition fixes g_X at every scale...

… too small for the FOPT to proceed

unlike the simplified model, no FOPT here

PGU models with an extra U(1)

\sim y_{BSM} S F_{VL} F_{SM}

unification condition fixes g_X at every scale...

… too small for the FOPT to proceed

… unless mass term is allowed

PGU models with an extra U(1)

\sim y_{BSM} S F_{VL} F_{SM}

unification condition fixes g_X at every scale...

… too small for the FOPT to proceed

… unless mass term is allowed

OTHER SCALARS

2HDM

P. Basler, M.Krause, M.Mühlleitner, J.Wittbrodt, A.Wlotzka*, JHEP 02 (2017) 121*

- Only a few models with VL fermions allow for precise gauge coupling unifcation.
- Upper bounds on VL masses from proton decay.
- Upper bounds on the BSM Yukawa couplings from the EW vacuum stability.
- Gravitational wave signal in scenarios with a singlet scalar and extra gauge $U(1)_x$ with mass only.
- Things to do: FOPTs and GWs in the scenarios with non-singlet scalar representations.

- almost exluded by running coupling
- to be probed by R-hadrons
- to be probed by the EWP tests
- to be probed by the HSCP searches