Indications for BSM from unification, vacuum stability and gravitational waves

Kamila Kowalska

National Centre for Nuclear Research (NCBJ) Warsaw, Poland

in collaboration with D. Kumar, D. Rizzo, E. M. Sessolo

JHEP 1912 (2019) 094 (arXiv: 1910.00847) and work in progress

Workshop on Standard Model and Beyond, Corfu 02.09.2024

The new old story

The new old story

The new old story

Our goal: classification of the BSM extensions with VL fermions and gauge unification

KK, D.Kumar, arXiv: 1910.00847 JHEP 12 (2019) 094

Analysis strategy

KK, D.Kumar, arXiv: 1910.00847

Some previous work:

T. G. Rizzo, Phys. Rev. D45 (1992) 3903-3905

B. Bhattacherjee, P. Byakti, A. Kushwaha, S. K. Vempati, JHEP 05 (2018) 090

Initial assumptions:

- NP = vector-like fermions (mass < 10 TeV)
- unification scale in the range $10^{15} 10^{18}$ GeV
- *SU(5)*-like GUT gauge symmetry
- negligible Yukawa interaction

long-lived particles

Analysis strategy

KK, D.Kumar, arXiv: 1910.00847

Some previous work:

T. G. Rizzo, Phys. Rev. D45 (1992) 3903-3905

B. Bhattacherjee, P. Byakti, A. Kushwaha, S. K. Vempati, JHEP 05 (2018) 090

Initial assumptions:

- NP = vector-like fermions (mass < 10 TeV)
- unification scale in the range $10^{15} 10^{18}$ GeV
- *SU(5)*-like GUT gauge symmetry
- negligible Yukawa interaction
 long-lived particles

24 distinct representations of *SU*(3)×*SU*(2)×*U*(1)

color singlets :	$(1,1,1), (1,1,-2), (1,2,\frac{1}{2}), (1,2,-\frac{3}{2}), (1,3,0), (1,3,1),$	
	$\left(1,4,rac{1}{2} ight),\left(1,4,-rac{3}{2} ight),$	
color triplets :	$\left(3,1,-rac{1}{3} ight),\left(\mathbf{ar{3}},1,-rac{2}{3} ight),\left(\mathbf{ar{3}},1,rac{4}{3} ight),\left(\mathbf{ar{3}},1,-rac{5}{3} ight),\left(3,2,rac{1}{6} ight),\left(\mathbf{ar{3}},2,rac{5}{6} ight),$	0
	$\left({f ar 3},{f 2},-{7\over 6} ight), \left({f 3},{f 3},-{1\over 3} ight), \left({f ar 3},{f 3},-{2\over 3} ight),$	b
color sextets :	$\left(\mathbf{ar{6}},1,-rac{1}{3} ight),\left(6,1,-rac{2}{3} ight),\left(\mathbf{ar{6}},2,rac{1}{6} ight),\left(6,2,rac{5}{6} ight),$	
color octets :	$(8, 1, 0), (8, 1, 1), (8, 2, \frac{1}{2}).$	

our fundamental building blocks

Analysis strategy

note: no unification with 1 VL rep. (see, ex. Bhattacherjee et al. JHEP 05 (2018) 90)

Kamila Kowalska

Summary of the results

Scenario	R_{F_1}	R_{F_2}	N_1	N_2	
F1	$\left(1,2,rac{1}{2} ight)$	$\left({f 6},{f 1},rac{1}{3} ight)$	12	2	
F2	$\left({f 1},{f 2},{f 1}_2 ight)$	$\left({f 6},{f 1},rac{1}{3} ight)$	20	4	
F3	$\left({f 1},{f 2},{f 1}_2 ight)$	$\left({f 6},{f 1},rac{1}{3} ight)$	22	4	276 initial models
F4	$\left({f 1},{f 2},{f 1}_2 ight)$	(8 , 1 ,0)	8	1	1
F5	$\left({f 1},{f 2},{f 1}_2 ight)$	(8 , 1 ,0)	12	2	
F6	$\left({f 1},{f 2},{f 1}_2 ight)$	(8 , 1 ,0)	14	2	▼
F7	(1 , 3 ,0)	$\left({f 3},{f 1},-rac{1}{3} ight)$	2	8	7 PGU models
F8	(1 , 3 ,0)	$\left({f 3},{f 1},-rac{1}{3} ight)$	3	12	
F9	(1 , 3 ,0)	$\left({f 6},{f 1},-rac{2}{3} ight)$	3	2	
F10	$\left({f 1},{f 4},rac{1}{2} ight)$	$\left({f 6},{f 1},-rac{2}{3} ight)$	2	4	
F11	$\left(3,1,-rac{1}{3} ight)$	$\left({f 3},{f 2},rac{1}{6} ight)$	2	2	
F12	$\left(3,1,rac{2}{3} ight)$	$\left({f 3},{f 2},rac{1}{6} ight)$	4	4	
F13	$\left(3,1,rac{2}{3} ight)$	$\left({f 3},{f 2},{f 1\over 6} ight)$	6	6	

Probing the PGU models

unification scale

 $(1,2,1/2)_{22} \oplus (6,1,1/3)_4$

10F

- unification possible for a wide range of masses
- excluded or to be excluded by the proton decay measurements at SK/HK

$$\tau_p^{\mathrm{SK}} > 1.6 \times 10^{34} \text{ years}$$

Kamila Kowalska

F11 F12F13

Scenario

 $\mathbf{F1}$

F2

F3

F4

F5

F6

F7

F8

-F9-

F10

 R_{F_1}

 $(\mathbf{1}, \mathbf{2}, \frac{1}{2})$

 $(1, 2, \frac{1}{2})$

(1, 3, 0)

(1, 3, 0)

 $(1, 4, \frac{1}{2})$

 $(3, 1, -\frac{1}{3})$

 $(3, 1, \frac{2}{3})$

 $(3, 1, \frac{2}{2})$

-(-**1**,-**3**,0)---

 R_{F_2}

 $(6, 1, \frac{1}{3})$

 $(6, 1, \frac{1}{2})$

 $(6, 1, \frac{1}{2})$

(8, 1, 0)

(8, 1, 0)

(8, 1, 0)

 $(3, 1, -\frac{1}{2})$

 $(3, 1, -\frac{1}{2})$

-(-6,-1;--<u>2</u>)-

 $(6, 1, -\frac{2}{3})$

 $(3, 2, \frac{1}{6})$

 $(3, 2, \frac{1}{6})$

 $(3, 2, \frac{1}{6})$

EXCLUDED

 N_1

12

20

22

8

12

14

 $\mathbf{2}$

3

- -3- -

 $\mathbf{2}$

 $\mathbf{2}$

4

6

 N_2

4

4

1

 $\mathbf{2}$

 $\mathbf{2}$

8

12

-2-

 $\mathbf{4}$

 $\mathbf{2}$

4

6

SK

- HK

compressed / hierarchical spectrum

$$\tau_p^{\rm HK} > 2 \times 10^{35} \text{ years}$$

Probing the PGU models

unification scale

$$\tau_p = \left(\frac{4\pi}{g_{\rm GUT}^2}\right)^2 \left(\frac{M_{\rm GUT}}{\rm GeV}\right)^4 \times 2.0 \times 10^{-32}$$

for $g_{\text{GUT}}=0.7$ $M_{\text{GUT}}=10^{15} \text{ GeV} \rightarrow \tau_p = 1.3 \times 10^{31} \text{ years}$ $M_{\text{GUT}}=10^{16} \text{ GeV} \rightarrow \tau_p = 1.3 \times 10^{35} \text{ years}$

Model	M_1^{\max}	M_2^{\max}	
F1	Excluded		
F2	25	180	
F3	350	200	
F4	Excluded		
F5	10	50	
F6	500	50	
F7	20	100	
F8	$2 imes 10^5$	$5 imes 10^5$	
F9	Excluded HK		
F10	250	1000	
F11	600	200	
F12	$6 imes 10^4$	400	
F13	-	$2 imes 10^6$	

Proton decay

model-independent upper bounds on VL mass

Kamila Kowalska

National Centre for Nuclear Research, Warsaw

masses in TeV

Vacuum stability

stability can be restored in BSM

ex. with VL fermions

Gopalakrishna, Velusamy, PRD 99 (2019), Arsenault et al. PRD 107 (2023), Hiller et al. arXiv: 2401.08811, Adhikary et al. arXiv: 2406.16050... many more

Vacuum stability in PGUs

no BSM Yukawa interactions

$$16\pi^{2} \beta(g_{3}) = g_{3}^{3} \left(-7 + \frac{2}{3} N_{F} S_{2}(R_{F3}) d(R_{F2}) \right) \longrightarrow g_{3} \checkmark$$

$$16\pi^{2} \beta(y_{t}) = y_{t} \left(\frac{9}{2} y_{t}^{2} - 8g_{3}^{2} - \frac{9}{4} g_{2}^{2} - \frac{17}{12} g_{Y}^{2} \right) \longrightarrow y_{t} \checkmark$$

$$16\pi^{2} \beta(\lambda) = 24\lambda^{2} + 12\lambda y_{t}^{2} - 6y_{t}^{4} + f(g_{Y}, g_{2}, \lambda) \longrightarrow \lambda$$

vacuum gets stabilized

Vacuum stability in PGUs

with BSM Yukawa interactions

$$16\pi^{2} \beta(g_{3}) = g_{3}^{3} \left(-7 + \frac{2}{3} N_{F} S_{2}(R_{F3}) d(R_{F2}) \right) \longrightarrow g_{3} \checkmark$$

$$16\pi^{2} \beta(y_{t}) = y_{t} \left(\frac{9}{2} y_{t}^{2} + A y_{\text{BSM}}^{2} - 8g_{3}^{2} - \frac{9}{4} g_{2}^{2} - \frac{17}{12} g_{Y}^{2} \right) \longrightarrow y_{t} \longrightarrow$$

$$16\pi^{2} \beta(\lambda) = 24\lambda^{2} + \frac{3}{8} g_{Y}^{4} + C \lambda y_{\text{BSM}}^{2} - 6y_{t}^{4} - B y_{\text{BSM}}^{4} + f(g_{Y}, g_{2}, \lambda) \longrightarrow \lambda$$

vacuum gets destabilized

Upper bound on the BSM Yukawa couplings

~ 0.1 - 0.3

cf. also Adhikary et al. *arXiv: 2406.16050*

10

Other scalars?

In SU(5): $\mathcal{L}_{\text{Yuk}} = Y_d \, \overline{\mathbf{5}} \times \mathbf{10} \times \overline{\mathbf{5}}_{\mathbf{H}} + Y_u \, \mathbf{10} \times \mathbf{10} \times \mathbf{5}_{\mathbf{H}} \left\{ \begin{array}{l} \text{Higgs doublet} \\ \text{color triplet} \end{array} \right\}$

Scalars can emerge naturally in GUTs

see also M. Malinsky talk

• SU(5)

24, 75 \supset (1,1)₀ \longrightarrow singlet S

• SU(6) (and larger)

$$\mathcal{L}_{\text{Yuk}} = Y_{15} \, \mathbf{15} \times \mathbf{15} \times \mathbf{15}^{H_1} + Y_6 \, \mathbf{15} \times \mathbf{\overline{6}} \times \mathbf{\overline{6}}^{H_2} \longrightarrow \mathbf{2} \mathsf{HDM}$$

$$SU(6) \rightarrow SU(5) \times U(1)_5$$

6 = 1₋₅ + 5₁ ----> singlet S + U(1)'

Other scalars?

In SU(5): $\mathcal{L}_{\text{Yuk}} = Y_d \, \overline{\mathbf{5}} \times \mathbf{10} \times \overline{\mathbf{5}}_{\mathbf{H}} + Y_u \, \mathbf{10} \times \mathbf{10} \times \mathbf{5}_{\mathbf{H}} \left\{ \begin{array}{l} \text{Higgs doublet} \\ \text{color triplet} \end{array} \right\}$

Scalars can emerge naturally in GUTs

see also M. Malinsky talk

• SU(5)

24, 75 \supset (1,1)₀ \longrightarrow singlet S

• SU(6) (and larger)

$$\mathcal{L}_{\text{Yuk}} = Y_{15} \, \mathbf{15} \times \mathbf{15} \times \mathbf{15}^{H_1} + Y_6 \, \mathbf{15} \times \mathbf{\overline{6}} \times \mathbf{\overline{6}}^{H_2} \longrightarrow \mathbf{2} \mathsf{HDN}$$

$$SU(6) \rightarrow SU(5) \times U(1)_5$$

$$\mathbf{6} = \mathbf{1}_{-5} + \mathbf{5}_1 \qquad \longrightarrow \text{ singlet S + U(1)'}$$

Complementary signals with scalars?

Other scalars?

In SU(5): $\mathcal{L}_{\text{Yuk}} = Y_d \, \overline{\mathbf{5}} \times \mathbf{10} \times \overline{\mathbf{5}}_{\mathbf{H}} + Y_u \, \mathbf{10} \times \mathbf{10} \times \mathbf{5}_{\mathbf{H}} \left\{ \begin{array}{l} \text{Higgs doublet} \\ \text{color triplet} \end{array} \right\}$

Scalars can emerge naturally in GUTs

see also M. Malinsky talk

• SU(5)

 $\mathbf{24},\,\mathbf{75}\supset(\mathbf{1},\mathbf{1})_{\mathbf{0}}\qquad \Longrightarrow \ \text{singlet S}$

• SU(6) (and larger)

$$\mathcal{L}_{\text{Yuk}} = Y_{15} \, \mathbf{15} \times \mathbf{15} \times \mathbf{15}^{H_1} + Y_6 \, \mathbf{15} \times \mathbf{\overline{6}} \times \mathbf{\overline{6}}^{H_2} \longrightarrow \mathbf{2} \mathsf{HDM}$$

$$SU(6) \rightarrow SU(5) \times U(1)_5$$

6 = 1₋₅ + 5₁ ----> singlet S + U(1)'

Complementary signals with scalars?

First order phase transition... Gravitational waves...

Gravitational waves from FOPT

frequency

< \$\$ vev >

Gravitational waves from FOPT

Singlet scalar + U(1)_x

<u>known example</u>: clasically scale inv. SM + $U(1)_{B-L}$

$$V(H,S) = \lambda_1 \left(H^{\dagger} H \right)^2 + \lambda_2 \left(S^{\dagger} S \right)^2 + \lambda_3 \left(H^{\dagger} H \right) \left(S^{\dagger} S \right)$$

symmetry breaking through CW:

$$V(\phi) = \frac{1}{4}\lambda_2(t)\,\phi^4 + \frac{1}{128\,\pi^2} \left[20\lambda_2^2(t) + 96\,g_X^4(t)\right]\phi^4\left(-\frac{25}{6} + \ln\frac{\phi^2}{\mu^2}\right)$$

$$Q_S = 2, \quad \phi = \sqrt{2}Re(S)$$

strenght of the GW signal given by $g_{X\ldots}$

Kamila Kowalska

Kamila Kowalska

Gravitational waves from FOPT

Singlet scalar + U(1)_x

<u>known example</u>: clasically scale inv. SM + U(1)_{B-L}

$$V(H,S) = \lambda_1 \left(H^{\dagger} H \right)^2 + \lambda_2 \left(S^{\dagger} S \right)^2 + \lambda_3 \left(H^{\dagger} H \right) \left(S^{\dagger} S \right)$$

symmetry breaking through CW:

$$V(\phi) = \frac{1}{4}\lambda_2(t)\,\phi^4 + \frac{1}{128\,\pi^2} \left[20\lambda_2^2(t) + 96\,g_X^4(t)\right]\phi^4\left(-\frac{25}{6} + \ln\frac{\phi^2}{\mu^2}\right)$$

Ellis *et al. JCAP 06 (2019),* Jinno, Takimoto *PRD 95 (2017),* Okada, Seto *PRD 98 (2018),* Marzo *et al. EPJC 79 (2019),* Hasegawa *et al. PRD 99 (2019),* Haba, Yamada *PRD 101 (2020)...* many more

 $Q_S = 2, \quad \phi = \sqrt{2}Re(S)$

pros: may be washed out by the Yukawas

- nucleation/percolation temp. below QCD
- FOPT stop conition not satisfied

→ upper bound on Yukawas

cons: may be difficult to get in a UV-complete model

- too small g_X predicted
- ex. QG driven asymptotic safety

A. Chikkaballi, KK. E. Sessolo JHEP 11 (2023) 224

National Centre for Nuclear Research, Warsaw

strenght of the GW signal given by $g_{X...}$

Kamila Kowalska

Gravitational waves from FOPT

Singlet scalar + U(1)_x

<u>known example</u>: clasically scale inv. SM + U(1)_{B-L}

$$V(H,S) = \lambda_1 \left(H^{\dagger} H \right)^2 + \lambda_2 \left(S^{\dagger} S \right)^2 + \lambda_3 \left(H^{\dagger} H \right) \left(S^{\dagger} S \right)$$

symmetry breaking through CW:

$$V(\phi) = \frac{1}{4}\lambda_2(t)\,\phi^4 + \frac{1}{128\,\pi^2} \left[20\lambda_2^2(t) + 96\,g_X^4(t)\right]\phi^4\left(-\frac{25}{6} + \ln\frac{\phi^2}{\mu^2}\right)$$

$$Q_S = 2, \quad \phi = \sqrt{2}Re(S)$$

strenght of the GW signal given by $g_{X\, \mbox{\tiny m}}$

(simplified model)

What about our GUT-inspired models?

PGU models with an extra U(1)

$\sim y_{BSM}\,S\,F_{\rm VL}\,F_{\rm SM}$

unification condition fixes gx at every scale...

... too small for the FOPT to proceed

unlike the simplified model, no FOPT here

PGU models with an extra U(1)

$\sim y_{BSM} \, S \, F_{\rm VL} \, F_{\rm SM}$

unification condition fixes gx at every scale...

... too small for the FOPT to proceed

... unless mass term is allowed

PGU models with an extra U(1)

$\sim y_{BSM} \, S \, F_{\rm VL} \, F_{\rm SM}$

unification condition fixes gx at every scale...

... too small for the FOPT to proceed

... unless mass term is allowed

OTHER SCALARS 2HDM

P. Basler, M.Krause, M.Mühlleitner, J.Wittbrodt, A.Wlotzka, JHEP 02 (2017) 121

- Only a few models with VL fermions allow for precise gauge coupling unifcation.
- Upper bounds on VL masses from proton decay.
- Upper bounds on the BSM Yukawa couplings from the EW vacuum stability.
- Gravitational wave signal in scenarios with a singlet scalar and extra gauge $U(1)_X$ with mass only.
- Things to do: FOPTs and GWs in the scenarios with non-singlet scalar representations.

- almost exluded by running coupling
- to be probed by R-hadrons

- to be probed by the EWP tests
- to be probed by the HSCP searches