F-TERM HYBRID INFLATION AND SUSY BREAKING

C. PALLIS SCHOOL OF TECHNOLOGY ARISTOTLE UNIVERSITY OF THESSALONIKI GREECE

Based on: G. LAZARIDES & C.P, Phys.Rev. D **108**, no. 9, 095055 (2023) [arXiv:2309.04848].

OUTLINE

- INTRODUCTION
- MODEL SET-UP
- SUPER- & GAUGE-
- SYMMETRY BREAKING
- INFLATION ANALYSIS
- SUSY-MASS SCALE
- CONCLUSIONS

Corfu2024 – Workshop on the Standard Model and Beyond

30 / 08 /2024

I. INTRODUCTION

A. Motivation

1. Attractive Features of *F-term hybrid inflation* (FHI)

G. Dvali, Q. Shafi, and R.K. Schaefer (1994); G. Lazarides,,R.K. Schaefer, and Q. Shafi (1997)

- It is based on a renormalizable superpotential uniquely determined by a gauge G & a global U(1) R symmetries;
- It does not require fine tuned parameters and transplanckian inflaton values;
- It can be naturally followed by a Grand Unified Theory (GUT) phase transition E.g we consider the following gauge groups:

$$\mathbb{G}_{B-L} := \mathbb{G}_{SM} \times U(1)_{B-L}$$
$$\mathbb{G}_{LR} := SU(3)_{C} \times SU(2)_{L} \times SU(2)_{R} \times U(1)_{B-L}$$
$$\mathbb{G}_{5_{X}} := SU(5) \times U(1)_{X}$$

with \mathbb{G}_{SM} the gauge group of *Standard Model* (**SM**).

- As regards topological defects, only Cosmic Strings are formated after FHI in the first case.
- 2. Possible Shortcomings
- The original version of FHI, which employs only radiative corrections (RCs) in the inflationary potential is considered as strongly disfavored by the *Planck* data due to the large scalar spectral index.

This conclusion can be **evaded**, if we take in to account soft *Supersymmetry* (**SUSY**)-breaking terms and *Supergravity* (**SUGRA**) **corrections** with appropriate magnitude.

V.N. Senoguz and Q. Shafi (2005); C. P. and Q. Shafi (2013)

II. MODEL SET-UP

A. Particle Content

Both corrections above are related to the adopted **SUSY breaking sector**.

We here present a consistent **combination** of FHI and SUSY breaking using as a junction mechanism of the (visible) *inflationary sector* (**IS**) and the *hidden sector* (**HS**) a mildly violated *R* **symmetry**.

• The implementation of FHI requires the introduction of three fields: the G singlet Inflaton S and two Higgs fields: $\overline{\Phi}$ and Φ (named also waterfall fields).

• To establish connection with SUSY breaking, we also employ the \mathbb{G} singlet superfield *Z* named **Goldstino**.

In the Table we can see the
 representations and the charges
 of the various fields under the gauge
 and the *R* symmetries.

SUPER-	Representations Under G			R	
FIELDS	\mathbb{G}_{B-L}	\mathbb{G}_{LR}	\mathbb{G}_{5_X}	CHARGE	
HIGGS SUPERFIELDS					
Φ	(1,1,0,2)	(1 , 1 , 2 , 1)	(10 , 1)	0	
$\bar{\Phi}$	(1,1 ,0,−2)	$(1,\!1,\!\bar{2},\!-1)$	$(\overline{10}, -1)$	0	
S	(1,1 ,0,0)	(1,1,1, 0)	1	2	
GOLDSTINO SUPERFIELDS					
Ζ	(1,1,0,0)	(1, 1, 1, 0)	1	2/v	

B. Superpotential

The superpotential of the model has the form $W = W_{ m I} + W_{ m H} + W_{ m GH} + W_{ m Y},$ Where

- $W_{\rm I} = \kappa S \left(\bar{\Phi} \Phi M^2 \right)$ is
 - is related to **IS with** κ and *M* real input parameters constrained by FHI;
- $W_{\rm H} = m m_{\rm P}^2 (Z/m_{\rm P})^{\nu}$ is devoted to the **HS**. Here *m* is a **mass scale** related to SUSY breaking.

Also v is an exponent which may, in principle, acquires **any real value**, if $W_{\rm H}$ is considered as

an **effective W** valid close to the non-zero <Z>. We take u > 0 with $\ 3/4 \ < \
u \ < \ 1$.

- $W_{\rm GH} = -\lambda m_{\rm P} (Z/m_{\rm P})^{\nu} \bar{\Phi} \Phi$ is an **unavoidable mixing term** of the two sectors which however plays an important role in the resolution of **DE problem**.
- $W_{\rm Y}$ contains the usual trilinear terms with Yukawa couplings (with Dirac neutrino masses)

 $W_{\mathbf{Y}} = h_{ijD}d_i^c Q_j H_d + h_{ijU}u_i^c Q_j H_u + h_{ijE}e_i^c L_j H_d + h_{ijV}v_i^c L_j H_u.$

Written in terms of the well-known Superfields of MSSM.
We select conveniently the R charges to avoid the presence in W of the bilinear (µ) term of the electroweak Higgs Superfields which takes the forms:

$$H_{\rm B} = \begin{cases} H_u H_d & \text{for } \mathbb{G} = \mathbb{G}_{B-L}, \\ I\!\!\!/^2 & \text{for } \mathbb{G} = \mathbb{G}_{\rm LR}, \\ \bar{\mathbf{5}}_h \mathbf{5}_h & \text{for } \mathbb{G} = \mathbb{G}_{5_{\rm X}}. \end{cases}$$

SUPER-	Representations Under ${\mathbb G}$			R
Fields	\mathbb{G}_{B-L}	\mathbb{G}_{LR}	\mathbb{G}_{5_X}	CHARGE
H_u	(1 , 2 ,1/2,0)			2
H_d	(1 , 2 , -1/2, 0)			2
I h		(1, 2, 2, 0)		2
5_h			(5,2)	2
$\bar{5}_h$			$(\bar{5}, -2)$	2

C. Kaelher Potential

- The Kaelher potential inclues the terms
- From which the last one is devoted to
 MSSM Matter and Higgs superfields.
- Canonical kinetic terms are also adopted for the fields involved in FHI, i.e.,

$$K = K_{\rm I} + K_{\rm H} + K_{\mu} + |Y_{\alpha}|^{2},$$

$$Y_{\alpha} = Q, L, d^{c}, u^{c}, e^{c}, N^{c}, H_{d} \text{ and } H_{u}$$

$$K_{\rm I} = |S|^{2} + |\Phi|^{2} + |\bar{\Phi}|^{2}$$

• For the **Goldstino** superfield we employ the following part of *K*

$$K_{\rm H} = N m_{\rm P}^2 \ln \left(1 + \frac{|Z|^2 - k^2 Z_{-}^4 / m_{\rm P}^2}{N m_{\rm P}^2} \right), \quad \text{With } Z_{\pm} = Z \pm Z^*.$$

and $k \sim 0.1$ violates mildly R symmetry assisting us to obtain mass for the R axion.

• In the absence of IS, $\langle V_{H}(|Z|) \rangle = 0$ without tuning may be achieved if we impose the condition

$$N = \frac{4\nu^2}{3 - 4\nu} \text{ with } \frac{3}{4} < \nu < \frac{3}{2} \text{ for } N < 0 \text{ and } \nu < \frac{3}{4} \text{ for } N > 0.$$

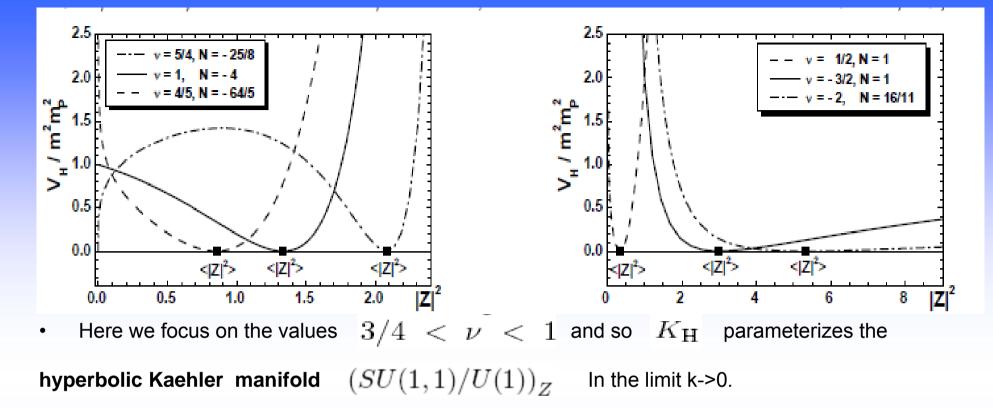
• Under this condition, the **HS SUGRA Potential**, $V_{\rm H}(|Z|)$, includes a trinomial which is **perfect square**

$$V_{\rm H} = \left(\frac{mm_{\rm P}}{4\nu}\right)^2 \left(1 + \frac{|Z|^2}{Nm_{\rm P}}\right)^N \left(\frac{|Z|}{m_{\rm P}}\right)^{2(\nu-1)} \left(3\frac{|Z|^2}{m_{\rm P}^2} - 4\nu^2\right)^2.$$

and therefore we obtain a technically natural Minkowski vacuum for $\langle Z \rangle = 2vm_p/3^{1/2}$.

• The shape of $V_{H}(|Z|)$, for some ``magic pairs'' of (v, N) is shown in the plots.

C.P (2018,2020)



• K_{μ} generates the μ term of MSSM adapting conveniently the **Giudice-Masiero** mechanism

$$K_{\mu} = \lambda_{\mu} \left(Z^{*2\nu} / m_{\rm P}^{2\nu} \right) H_{\rm B} + \text{ h.c.},$$

- The magnitudes of μ parameter and of the common soft SUSY-breaking mass \widetilde{m} are

$$|\mu| = \lambda_{\mu} \left(\frac{4\nu^2}{3}\right)^{\nu} (5-4\nu)m_{3/2} \text{ and } \widetilde{m} = m_{3/2} \simeq 2^{\nu} 3^{-\nu/2} |\nu|^{\nu} m \omega^{N/2}.$$

• The total *K* enjoys the **enhanced symmetry**

$$\prod U(1)_{Y^{\alpha}} \times U(1)_S \times (SU(1,1)/U(1))_Z$$

In the **moduli space**, which assists us to **exclude** possible mixing terms allowed by the *R* symmetry.

D. SUGRA Potential, V_{SUGRA}

With given W and K, we can derive V_{SUGRA} which includes contributions from **F and D terms**.

The part of V_{SUGRA} due to **F terms** is $V_{\rm F} = e^{K/m_{\rm P}^2} \left(K^{\alpha\bar{\beta}} D_{\alpha} W D_{\bar{\beta}} W^* - 3|W|^2/m_{\rm P}^2 \right)$

- Where the Kaelher covariant derivative is $D_lpha W = \partial_{X^lpha} W + W \partial_{X^lpha} K/m_{
m P}^2$

With $X^{lpha}=S,Z,\Phi,ar{\Phi}$

- The Kaehler metric $K_{\alpha\bar{\beta}} = \partial_{X^{\alpha}}\partial_{X^{\star\bar{\beta}}}K$ and its inverse is defined as $K^{\bar{\beta}\alpha}K_{\alpha\bar{\gamma}} = \delta^{\bar{\beta}}_{\bar{\gamma}}$

Since we have **no mixing** between the fields in *K*, we obtain a **diagonal metric** and the form of $V_{
m F}$ is

$$V_{\rm F} = e^{\frac{K}{m_{\rm P}^2}} \left(|v_S|^2 + |v_{\Phi}|^2 + |v_{\bar{\Phi}}|^2 + K_{ZZ^*}^{-1} |v_Z|^2 - 3|v_W|^2 \right),$$

where the contributions are obtained by **expanding** V_{F} .

G. Lazarides and C.Pallis (2023)

The part of V_{SUGRA} due to \mathbb{G} **D terms** with the matter superfields placed at zero is

$$V_{\rm D} = \frac{g^2}{2} \left(|\Phi|^2 - |\bar{\Phi}|^2 \right)^2$$

It vanishes along the **D-flat direction**

 $|ar{\Phi}| = |\Phi|$ which is used as inflationary trajectory

including the vacuum of the theory.

II. SUSY and \mathbb{G} BREAKING

•We can verify numerically that $V_{\rm F}$ is minimized at \mathbb{G} -- breaking vacuum $|\langle \Phi \rangle| = |\langle \bar{\Phi} \rangle| = M$ •If we parameterize the two remaining \mathbb{G} - singlet superfields according to the descriptions

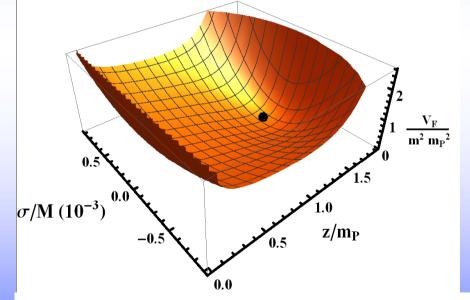
$$Z = (z + i\theta)/\sqrt{2}$$
 and $S = \sigma \ e^{i\theta_S/m_{\rm P}}/\sqrt{2}$

 $I \cap V$

We find that their vacuum expectation values (vevs) lie at the directions:

$$\langle z \rangle = 2\sqrt{2/3}|\nu|m_{\rm P}$$
 $\langle \sigma \rangle \simeq 0$

The resulting constant **potential energy density** is



	MODEL PARAMETERS				
G	$\kappa / 10^{-4}$	<i>M</i> /YeV	<i>m</i> /PeV	$\alpha_{\rm s}/{\rm TeV}$	
\mathbb{G}_{LR}	5	1.9	1.15	6.7	

$$\langle \theta \rangle = 0 \text{ and } \langle \theta_S / m_P \rangle = \pi$$
$$\langle V_F \rangle = \left(\frac{16\nu^4}{9}\right)^{\nu} \left(\frac{\lambda M^2 - mm_P}{\kappa m_P^2}\right)^2 \omega^N \times \left(\lambda (M^2 + m_P^2) - mm_P\right)^2,$$

With $\omega = e^{\langle K_{\rm H} \rangle / N \, m_{\rm P}^2} \simeq 2(3-2\nu)/3$, Tuning

0 --- 1 /0 /---)

$$\lambda \sim m/m_{\rm P} \simeq 10^{-12}$$

we can obtain a post-inflationary **de Sitter vacuum** which corresponds to the current **DE** energy density.

For $\mathbb{G} = \mathbb{G}_{LR}$, *v*=7/8 & *k*=0.1 in K we obtain

PARTICLE MASS SPECTRUM					
G	$m_{\rm I}/{ m ZeV}$	$m_z/{\rm PeV}$	m_{θ}/PeV	$m_{3/2}/\text{PeV}$	
\mathbb{G}_{LR}	2.4	2.9	1.8	2	

III. INFLATION ANALYSIS

In the global SUSY, FHI takes place for S>> M along a F- and D- flat direction of the SUSY potential

$$\bar{\Phi} = \Phi = 0$$
, where $V_{SUSY} (\Phi = 0) \equiv V_{I0} = \kappa^2 M^4$

A. Goldstino Stabilization

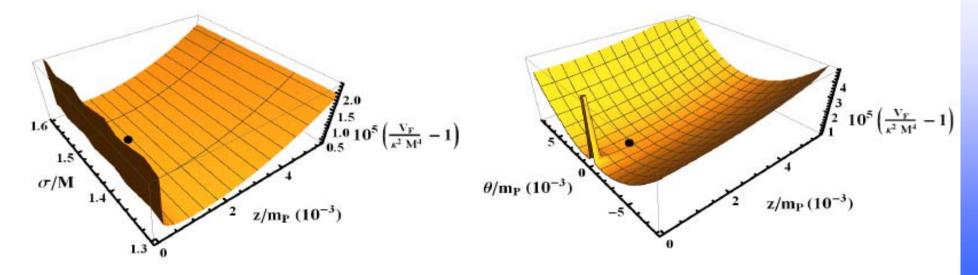
• In the present context, the expression of $V_{
m F}$ along the inflationary trajectory above is

$$V_{\rm F}(z) = e^{\frac{\kappa_{\rm H}}{m_{\rm P}^2}} \left(\kappa^2 M^4 + m^2 \frac{z^{2(\nu-1)} (8\nu^2 m_{\rm P}^2 - 3z^2)^2}{2^{5+\nu}\nu^2 m_{\rm P}^{2\nu}} \right)$$
 With the v-N condition imposed

• Minimizing it for v < 1 we find that $z \& \theta$ are well stabilized during FHI to the following values:

$$\langle \theta \rangle_{\rm I} = 0$$
 & $\langle z \rangle_{\rm I} \simeq \left(\sqrt{3} \times 2^{\nu/2 - 1} H_{\rm I} / m \nu \sqrt{1 - \nu} \right)^{1/(\nu - 2)} m_{\rm P}, \sim 10^{-3} \, {\rm m_P}$

• The stabilization of both modes -- R saxion (z) and axion (θ) -- is verified by the plots below



B. Inflationary Potential

The low but non-vanishing value $\langle z \rangle_{I}$ gives rise to soft SUSY-breaking terms and SUGRA corrections to the inflationary potential which may be cast in the form: $V_{I} \simeq V_{I0} \left(1 + C_{RC} + C_{SSB} + C_{SUGRA}\right)$, where the individual contributions are specified as follows:

• $C_{\rm SSB} = m_{\rm I3/2}^2 \sigma^2 / 2V_{\rm I0} - a_S \sigma / \sqrt{2V_{\rm I0}}$ is the contribution from the **soft SUSY-breaking** effects,

with a adpole parameter
$$\mathbf{a}_S = 2^{1-\nu/2} m \frac{\langle z \rangle_{\mathrm{I}}^{\nu}}{m_{\mathrm{P}}^{\nu}} \left(1 + \frac{\langle z \rangle_{\mathrm{I}}^2}{2Nm_{\mathrm{P}}^2} \right) \left(2 - \nu - \frac{3\langle z \rangle_{\mathrm{I}}^2}{8\nu m_{\mathrm{P}}^2} \right)$$

As we see, observations constrain $a_s \sim \text{TeV}$, and since $\langle z \rangle_1 / m_P \sim 10^{-3}$ we obtain m =m_{3/2}= $\tilde{m} \sim 1 \text{ PeV}$.

• $C_{\text{SUGRA}} = c_{2\nu} \frac{\sigma^2}{2m_{\text{P}}^2} + c_{4\nu} \frac{\sigma^4}{4m_{\text{P}}^4}$, is the pure SUGRA correction where the relevant coefficients are $c_{2\nu} = \langle z \rangle_{\text{I}}^2 / 2m_{\text{P}}^2$ and $c_{4\nu} = (1 + \langle z \rangle_{\text{I}}^2 / m_{\text{P}}^2)/2$. • $C_{\text{RC}} = \frac{N_{\text{G}}\kappa^2}{128\pi^2} \left(8\ln\frac{\kappa^2 M^2}{Q^2} + f_{\text{RC}}\left(\frac{\sigma}{M}\right) \right)$ with $N_{\text{G}} = \begin{cases} 1 & \text{for } \mathbb{G} = \mathbb{G}_{B-L}, \\ 2 & \text{for } \mathbb{G} = \mathbb{G}_{\text{LR}}, \\ 10 & \text{for } \mathbb{G} = \mathbb{G}_{5_{\text{X}}}. \end{cases}$

Is the contribution from 1-loop RCs includes the function

$$f_{\rm RC}(x) = 8x^2 \tanh^{-1} \left(2/x^2 \right) - 4(\ln 4 - x^4 \ln x) + (4 + x^4) \ln(x^4 - 4)$$

•For $x < 2^{1/2}$, one effective mass of the particle spectrum becomes **negative**, causing a destabilization of the waterfall fields from 0 and triggering, thereby, the **G** phase transition.

C. Inflationary Requirements

The number of e-foldings have to be enough to resolve the problems of the Standard Big Bang, i.e.,

$$N_{\mathbf{I}\star} = \int_{\sigma_{\mathbf{f}}}^{\sigma_{\star}} \frac{d\sigma}{m_{\mathbf{P}}^2} \frac{V_{\mathbf{I}}}{V_{\mathbf{I}}'} \simeq 19.4 + \frac{2}{3} \ln \frac{V_{\mathbf{I}0}^{1/4}}{1 \text{ GeV}} + \frac{1}{3} \ln \frac{T_{\mathbf{rh}}}{1 \text{ GeV}}$$

• The amplitude A_s of the **power spectrum** of the curvature perturbation generated by σ during FHI and is calculated at k_{*}=0.05/Mpc as a function of σ_* must be consistent with the data, i.e.,

$$\sqrt{A_{\rm s}} = \frac{1}{2\sqrt{3}\pi m_{\rm P}^3} \frac{V_{\rm I}^{3/2}(\sigma_\star)}{|V_{\rm I}'(\sigma_\star)|} \simeq 4.588 \times 10^{-5}$$

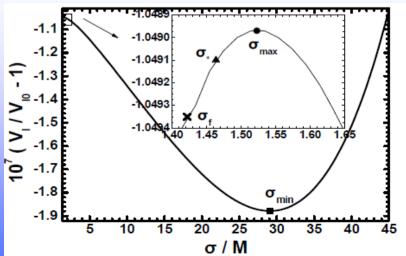
The scalar spectral index n_s , its running, α_s and the scalar-to-tensor ratio *r* must be n agreement with

Planck data, i. e., $n_s = 0.967 \pm 0.0074$ and $r \le 0.032$, With $|\alpha_s| << 0.01$.

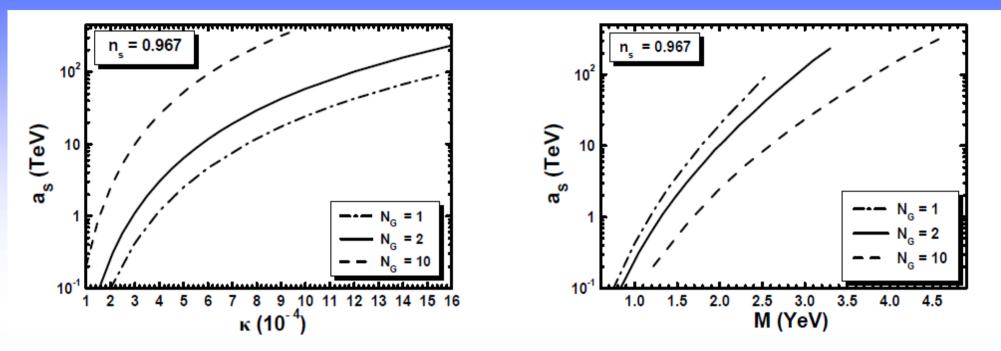
- To obtain these results for the latter quantities, we construct a **hilltop** inflationary path, i.e., $V_i(\sigma)$ develops
- A maximal value $\sigma_{max} = 1.52 M;$
- A minimal value $\sigma_{\min} = 29.1 M$;
- At the end of FHI we have $\sigma_c = 1.41421 M$.
- At the horizon crossing of *k*_{*}=0.05/Mpc

 $\sigma_{\rm c} < \sigma_{\star} = 1.4637 \ M < \sigma_{\rm max}$

• These arrangements signal **some tuning** in the initial conditions.



D. Results



- Imposing the constraints above, we determine the allowed contours in the κ - a_s and M- a_s plane for the central n_s value and various N_G (or \mathbb{G}).
- We observe that increasing N_G , M and \underline{a}_S increase with $M \sim 10^{15}$ GeV and $\underline{a}_S \sim 10$ TeV. Namely,

$$0.07 \lesssim M/\text{YeV} \lesssim 2.56$$
 and $0.1 \lesssim a_S/\text{TeV} \lesssim 100$ for $\mathbb{G} = \mathbb{G}_{B-L}$
 $0.82 \lesssim M/\text{YeV} \lesssim 3.7$ and $0.09 \lesssim a_S/\text{TeV} \lesssim 234$ for $\mathbb{G} = \mathbb{G}_{LR}$
 $1.22 \lesssim M/\text{YeV} \lesssim 4.77$ and $0.2 \lesssim a_S/\text{TeV} \lesssim 460$ for $\mathbb{G} = \mathbb{G}_{5x}$.

- We also obtain $|\alpha_s| \sim 10^{-4}$ and $r \sim 10^{-12}$ throughout our investigation.
- The required tuning in the initial conditions is estimated to be (0.5-20)% increasing with N_G.

E. Cosmic Strings (CSs)

- If $\mathbb{G} = \mathbb{G}_{B-L}$, *B-L* CSs are formatted for $\sigma < 2^{1/2} M$ due to the *B-L* phase transition.
- The **dimensionless tension** $G\mu_{cs}$ of the *B-L* CSs mainly depends on *M* via the relation

$$G\mu_{\rm cs} \simeq \frac{1}{2} \left(\frac{M}{m_{\rm P}}\right)^2 \epsilon_{\rm cs}(r_{\rm cs}) \text{ with } \epsilon_{\rm cs}(r_{\rm cs}) = \frac{2.4}{\ln(2/r_{\rm cs})} \text{ and } r_{\rm cs} = \kappa^2/8g^2 \le 10^{-2} \cdot 10^{-2}$$

- For the allowed *M* values from the FHI stage we find: $5.9 \lesssim G \mu_{\rm cs} / 10^{-9} \lesssim 83$
- If the CSs are **stable**, then these are:

1. Acceptable from *Planck* data which dictates $G\mu_{cs} \lesssim 2.4 \times 10^{-7}$ at 95% c.l.

This is related to the CS contribution to the observed anisotropies of the Cosmic Microwave Background.

2. Completely **excluded** by the recent PTA bound: $G\mu_{cs} \leq 2 \times 10^{-10}$ at 95% c.l.

• If the **CSs are metastable**, due to the embedding of \mathbb{G}_{B-L} into a larger group, whose breaking leads to magnetic monopoles (MM), we can explain the recent **NANOGrav 15 yr** data, which requires $G\mu_{cs}$ to be confined at the margin

$$10^{-8} \lesssim G\mu_{\rm cs} \lesssim 2 \times 10^{-7}$$
 for $8.2 \gtrsim \sqrt{r_{\rm ms}} \gtrsim 7.9$ for $M \gtrsim 9 \times 10^{14} {
m GeV}$

The **metastability factor** r_{ms} (i.e., the ratio of the MM mass squared to μ_{cs}) is used as a **free parameter**. It may give information for the **first step** of symmetry breaking E.g. $SO(10) \xrightarrow{\langle 45 \rangle}{MM} \mathbb{G}_{B-L} \xrightarrow{\langle 16 \rangle, \langle \overline{16} \rangle}{CS_s} \mathbb{G}_{SM}$

E. Post-Inflationary Evolution

Soon after FHI, *z* and IS enter into an **oscillatory phase** about their minima and eventually decay **reheating** the Universe. Since $\langle z \rangle \sim m_{\rm P}$ the energy densities of *z*, ρ_z , and the that of the Universe, ρ_t ,

$$\rho_{z{\rm I}}\sim m_z^2\langle z\rangle^2$$
 and $\rho_{\rm t}=3m_{\rm P}^2H^2\simeq 3m_{\rm P}^2m_z^2$

Are equal. Therefore, we expect that z will dominate and reheat the universe at a low temeperature

$$T_{\rm rh} = \left(72/5\pi^2 g_{\rm rh*}\right)^{1/4} \Gamma_{\delta z}^{1/2} m_{\rm P}^{1/2}, \quad \text{Where} \quad \Gamma_{\delta z} \sim \lambda_{\mu}^2 m_z^3/m_{\rm P}^2$$

the decay width $\Gamma_{\delta z}$ is dominated by the decay of z into *electroweak* higgs fields $H_u \& H_d$ via K_u .

To avoid any disturbance of the successful predictions of Big Bang Nucleosynthesis (BBN) we require

 $T_{\rm rh} \ge 4.1 \text{ MeV}$ for $B_{\rm h} = 1$ and $T_{\rm rh} \ge 2.1 \text{ MeV}$ for $B_{\rm h} = 10^{-3}$.

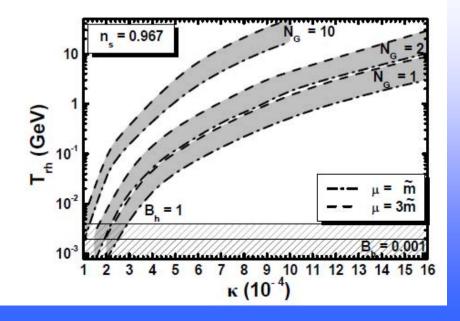
Where B_h is the hadronic branching ratio.

• For v=7/8 and varying μ in the range $(1-3)m_{3/2}$ we

find

$T_{\rm rh}^{\rm max} \simeq \begin{cases} 14 \,\,{\rm GeV} & {\rm for} \,\,\mathbb{G} = \mathbb{G}_{B-L}, \\ 33 \,\,{\rm GeV} & {\rm for} \,\,\mathbb{G} = \mathbb{G}_{\rm LR}, \\ 49 \,\,{\rm GeV} & {\rm for} \,\,\mathbb{G} = \mathbb{G}_{5_{\rm X}}. \end{cases}$

In order to avoid **non-thermal overproduction** of **LSPs**, we kinematically block the decay of *z* to \widetilde{G} by demanding $m_z < 2m_{3/2}$, i.e., $\nu > 3/4$ since $m_z \simeq \frac{3\omega}{2\nu} m_{3/2} \qquad \omega = 2(3 - 2\nu)/3$



IV. SUSY MASS SCALE

Allowing *v* and *µ* vary within their possible respective margins (0.75-1) and (1-3) \tilde{m} we obtain the gray shaded region in the plane $\kappa - \tilde{m}$ The lines are obtained for v=7/8 and various **G** Therefore the SUSY mass scale lies at $0.34 \leq \tilde{m}/\text{PeV} \leq 13.6$ for **G** = **G**_{*B*-*L*}, $0.21 \leq \tilde{m}/\text{PeV} \leq 32.9$ for **G** = **G**_{*L*R}, $0.58 \leq \tilde{m}/\text{PeV} \leq 46.8$ for **G** = **G**_{5x}. These are consistent with the Higgs boson mass

discovered in LHC within the high-scale SUSY.

V. CONCLUSIONS

- 1. Observationally acceptable FHI adjusting the tadpole parameter and the G breaking scale;
- 2. A prediction of the SUSY-mass scale which turns out to be of the order of PeV;
- 3. Generation of the μ term of MSSM with $|\mu| \sim m_{3/2}$;
- 4. An interpretation of the **DE problem** without extensive tuning.
- 5. Compatibility of T_{rh} with **BBN**;
- 6. An explaination of the **NANOGrav 15 years** data via the decay of metastable *B-L* CSs if $\mathbb{G} = \mathbb{G}_{B-L}$

