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Introduction

Renormalization - evergreen ... source of frustration and surprises
Surprises: anomalies ... measure ...
This talk: possibly another surprise ... related to measure

CC problem: most severe naturalness problem in physics
Several attempts towards its solution ...
Polyakov ... and later Jackiw ...Moscow zero ...
Coleman ... Wormholes
Taylor - Veneziano ... non-local terms : V log V
Many other attempts ...

Sometimes: SUSY invoked (SUGRA embedding)
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Consider the one-loop VDW Effective Action
* Euclidean action - Einstein-Hilbert truncation

Sgrav = 1
16πG

∫
d4x √g (−R + 2Λ)

* Cosmological framework: manifolds with typical length scale l � M−1
P

* Gauge-invariant one-loop effective action, Γ1l
grav = Sgrav + δS1l

grav
geometrical approach, Vilkovisky-DeWitt

* Strategy put forward by Fradkin and Tseytlin / Taylor and Veneziano
* Particular attention to the role played by the measure
* Background field method: gµν = ḡµν + hµν (ḡµν is the background)
* When ḡµν has spherical symmetry, one-loop VDW effective action

coincides with the standard one calculated with gauge-fixing term

Sgf = 1
32πGξ

∫
d4x
√

ḡ
[
∇µ
(

hµν −
1
2δ

µ
ν hσσ

)]
after taking the limit ξ → 0 at the end of the calculation



CC

One-loop VDW Effective Action continued

Let us calculate the 1-loop correction δS1l
grav

Take the spherical background ḡµν = g (a)
µν (a radius of the sphere)

Note: the coordinates x are the angles parametrizing the sphere
g (a)
µν dimension (length)2 and goes like a2

Classical Action (
∫

d4x
√

g (a) = 8π2
3 a4 , R(g (a)) = 12

a2 )

S(a)
grav =

πΛ
3G

a4 −
2π
G

a2

Add to Sgrav + Sgf the corresponding ghost action (vµ vector ghost fields)

Sghost =
1

32πG

∫
d4x
√

g (a) g (a)µν v∗µ
(
−∇ρ∇ρ −

3
a2

)
vν

Finally identify the 1-loop corrections to Λ
G and 1

G with the coefficients of
a4 and a2 in δS1l

grav
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One-loop VDW Effective Action continued

The VDW one-loop correction δS1l
grav to S(a)

grav given by

e−δS1l
grav = lim

ξ→0

∫ [
Du(h)Dv∗ρ Dvσ

]
e−δS(2)

where
δS(2) ≡ S2 + Sgf + Sghost

S2 quadratic term in the expansion of Sgrav[g (a)
µν + hµν ]

S2 ≡
1

32πG

∫
d4x
√

g (a)

[
1
2

h̃µν
(
−∇ρ∇ρ − 2Λ +

8
a2

)
hµν +

h2

a2 −∇
ρh̃ρµ∇σ h̃µσ

]

h ≡ g (a)
µν hµν , h̃µν ≡ hµν − 1

2 g (a)
µν h

indexes raised with g (a)µν ; covariant derivatives in terms of g (a)
µν
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Measure
[
Du(h)Dv ∗ρ Dvσ

]

[
Du(h)Dv∗ρ Dvσ

]
≡
∏

x

[
g (a) 00(x)

(
g (a)(x)

)−1 ( ∏
α≤ β

dhαβ(x)
)(∏

ρ

dv∗ρ (x)
)(∏

σ

dvσ(x)
)]

g (a) 00(x)
(
g (a)(x)

)−1 from integration over conjugate momenta1 (FV)

Observe: g (a)
µν can be written as g (a)

µν = a2g (1)
µν

g (1)
µν metric of a sphere of unitary radius, a = 1

=⇒ g (a) 00(x)
(
g (a)(x)

)−1 = a−10 g (1) 00(x)
(
g (1)(x)

)−1

with g (1) 00(x)
(
g (1)(x)

)−1 a-independent

1original expression in FV is g (a) 00(x)
(

g (a)(x)
)− 3

2 . Difference due to the fact

that here both v and v∗ are world vectors, in FV different choice.
√

g (a) Jacobian
due to the change between these two equivalent functional integration variables (Unz).
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Reabsorb G−1/2a−1 in hµν =⇒ ĥµν = (32πG)−1/2 a−1hµν
S2 + Sgf rewritten as

S2+Sgf =
∫

d4x
√

g (1)
[1

2
hµν
(
−∇ρ∇ρ − 2a2Λ + 8

)
ĥµν + ĥ 2 −

(
1−

1
ξ

)
∇ρhρµ∇σhµσ

]
with ĥ ≡ g (1)

µν ĥµν , hµν ≡ ĥµν − 1
2 g (1)
µν ĥ, indexes raised with g (1)µν ,

covariant derivatives in terms of g (1)
µν

Clearly ĥµν defined on a sphere of unitary radius

Redefine vµ → (32πG)
1
2 vµ (covariant derivatives in terms of g (1)

µν )

Sghost =
∫

d4x
√

g (1) g (1)µν v∗µ (−∇ρ∇ρ − 3) vν

Same as ĥµν : vµ defined on a sphere of unitary radius

=⇒ when written in terms of ĥµν and vµ, δS(2) = S2 + Sgf + Sghost

contains only dimensionless fluctuation operators ...
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... and then ...
[
Du(h)Dv∗ρ Dvσ

]
≡
∏

x

[
a−10g (1) 00(x)

(
g (1)(x)

)−1 ( ∏
α≤ β

dhαβ(x)
)(∏

ρ

dv∗ρ (x)
)(∏

σ

dvσ(x)
)]

From ĥµν = (32πG)−1/2 a−1hµν∏
α≤ β

dhαβ(x) = (32πG)5 a10
∏
α≤ β

dĥαβ(x)

=⇒[
Du(h)Dv∗ρ Dvσ

]
= N

∏
x

[( ∏
α≤ β

dĥαβ(x)
)(∏

ρ

dv∗ρ (x)
)(∏

σ

dvσ(x)
)]

with a-independent terms as
∏

x g (1) 00(x)
(
g (1)(x)

)−1 included in the
harmless constant N

Disappearance of a in the measure: crucial point
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Since ĥµν and vµ fields on a sphere of radius a = 1 =⇒
bases for symmetric tensors and vectors with eigenfunctions of the

Dimensionless Laplace-Beltrami operator −2(s)
a=1 ≡ −a2 2

(s)
a

−2(s)
a Laplace-Beltrami for sphere of radius a; s spins: s = 0, 1, 2

Dimensionless eigenvalues λ(s)
n and corresponding degeneracies D(s)

n

λ
(s)
n = n2 + 3n − s ; D(s)

n =
2s + 1

3

(
n +

3
2

)3
−

(2s + 1)3

12

(
n +

3
2

)
where n = s, s + 1, . . .

Expanding ĥµν , v∗ρ and vσ for δS1l
grav we have (backup slides)

δS1l
grav = −

1
2

log
det1[−2(1)

a=1 − 3] det2[−2(0)
a=1 − 6]

det0[−2(2)
a=1 − 2a2Λ + 8] det2[−2(0)

a=1 − 2a2Λ]
+

1
2

log(2a2Λ) + B

B inessential a-independent term. The index i in deti signals that the
product of eigenvalues starts from λ

(s)
s+i .
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δS1l
grav = −

1
2

log
det1[−2(1)

a=1 − 3] det2[−2(0)
a=1 − 6]

det0[−2(2)
a=1 − 2a2Λ + 8] det2[−2(0)

a=1 − 2a2Λ]
+

1
2

log(2a2Λ) + B

1
2 log(2a2Λ) (from the integration over one of the modes in which ĥµν is
decomposed (backup slides)) and B: irrelevant for our scopes
Truly important term: the first one in the right hand side
Peculiarity: written in terms of dimensionless determinants =⇒
No need to introduce any arbitrary mass scale (µ)

since the determinants are automatically dimensionless
In typical calculations of δS1l

grav, the arguments in deti are dimensionful
To take care of that an arbitrary mass scale µ is introduced
Note: although the calculation is performed for a sphere of generic radius
a, the Laplace-Beltrami operators are those for a sphere of unitary radius
Note: a only comes in the combination a2Λ
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Calculation of the fluctuation determinants

Two different strategies

First: direct calculation in terms of eigenvalues of Laplace-Beltrami ops.

Second: proper-time, as usually done

Anticipating: both calculations show that quartically and quadratically
divergent contributions to the vacuum energy usually present in the
literature are actually absent

=⇒ No need for supersymmetric embedding of the theory (SUGRA)
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Calculation in terms of the eigenvalues λ(s)
n

δS1l
grav =

1
2

N−2∑
n=2

[
D(2)

n log
(
λ

(2)
n − 2a2Λ + 8

)
+ D(0)

n log
(
λ

(0)
n − 2a2Λ

)
−D(1)

n log
(
λ

(1)
n − 3

)
− D(0)

n log
(
λ

(0)
n − 6

)]
+

1
2

log(2a2Λ) + B

UV cutoff introduced as a numerical numerical cut N on the number of eigenvalues
(N − 2 rather than N simplifies the expression)
Note: De Sitter solution for the classical action

adS =

√
3

Λcc

adS size of the universe =⇒ connection between N and physical cutoff scale
Λcut ∼ MP given by

Λcut ∼ MP =
N
adS

= N

√
Λcc

3

(*) numerical cut also introduced in Becker, Reuter, PRD 2020 ; Ferrero, Percacci, arXiv
but with different purposes, different results
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Calculation in terms of the λ(s)
n continued

N − 2: number of modes retained in the calculation of the determinants

Since the eigenvalues λ̃(s)
n of −2(s)

a go like λ̃(s)
n ≡ λ

(s)
n

a2 ∼ n2

a2 , the
requirement n ≤ N − 2 is not equivalent to require λ̃(s)

n ≤ Λ2
cut

This latter choice might seem natural, since it would amount to require
that the maximal eigenvalue λ̃(s)

max is λ̃(s)
max ∼ Λ2

cut

But this reasoning is misleading. Since the λ̃(s)
n go like a−2, such a choice

would introduce an unphysical a-dependence in the implementation of
the cutoff, i.e. on the background metric g (a)

µν

This simple observation is fundamental to obtain the correct result for
δS1l

grav, in particular to see that there are

No quartic and quadratic divergences in the vacuum energy
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Calculation in terms of the λ(s)
n continued

Remarkably, sum in S1l
grav obtained in closed form (backup slides)

Expanding for N � 1
δS1l

grav = −
(

Λ2
cc log N2

)
a4 + Λcc

(
−N2 + 8 log N2

)
a2

+
N4

24
(
−1 + 2 log N2

)
+

N2

36
(

203− 75 log N2
)
−

779
90

log N2 + B

+
1
2

log(2a2Λcc) + F(a2Λcc) +O
(

N−2
)

where F(a2Λ) contains only UV-finite terms (no dependence on N)

Using Λcut ∼ MP = N
adS

= N
√

Λcc
3

δS1l
grav = −

(
Λ2

cc log
3Λ2

cut

Λcc

)
a4 +

(
−3Λ2

cut + 8Λcc log
3Λ2

cut

Λcc

)
a2

+
3Λ4

cut

8Λ2
cc

(
−1 + 2 log

3Λ2
cut

Λcc

)
+

Λ2
cut

12Λcc

(
203− 75 log

3Λ2
cut

Λcc

)
−

779
90

log
3Λ2

cut

Λcc
+ B

+
1
2

log(2a2Λcc) + F(a2Λcc) +O
(

Λ−2
cut

)



CC

Calculation with proper-time
Being (−2(s)

a=1 − α) dimensionless =⇒ determinants regularized in terms
of a dimensionless proper-time τ (lower cut: number Npt � 1)

deti (−2(s)
a=1 − α) = e

−
∫ +∞

1/N2
pt

dτ
τ

K(s)
i (τ)

.

The kernel K(s)
i (τ) is

K(s)
i (τ) =

+∞∑
n=s+i

D(s)
n e−τ

(
λ

(s)
n −α

)
After integration over τ , the sum over n done with the EML sum formula

nf∑
n=ni

f (n) =
∫ nf

ni

dx f (x) +
f (nf ) + f (ni )

2
+

p∑
k=1

B2k
(2k)!

(
f (2k−1)(nf )− f (2k−1)(ni )

)
+ R2p

p is an integer, Bm are Bernoulli numbers, R2p is the rest given by

R2p =
∞∑

k=p+1

B2k
(2k)!

(
f (2k−1)(nf )− f (2k−1)(ni )

)
=

(−1)2p+1

(2p)!

∫ nf

ni

dx f (2p)(x)B2p(x − [x ])

Bn(x) are the Bernoulli polynomials, [x ] the integer part of x , and f (i)

the i-th derivative of f with respect to its argument
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Calculation with proper-time continued
Expanding for Npt � 1

δS1l
grav = −

(
Λ2

cc log N2
pt

)
a4 + Λcc

(
−N2

pt + 8 log N2
pt

)
a2

−
N4

pt

12
+

17
3

N2
pt −

1859
90

log N2
pt + B

+
1
2

log(2a2Λcc) + G(a2Λcc) +O
(

N−2
pt

)
G(a2Λ) contains UV-finite terms (no dependence on Npt). As before, the
connection between Npt and the dimensionful cutoff Λpt is given by

Λpt ≡
Npt

adS

=

√
Λcc

3
Npt =⇒

δS1l
grav = −

(
Λ2

cc log
3Λ2

pt

Λcc

)
a4 +

(
−3Λ2

pt + 8Λcc log
3Λ2

pt

Λcc

)
a2

−
3Λ4

pt

4Λ2
cc

+
17Λ2

pt

Λcc
−

1859
90

log
3Λ2

pt

Λcc
+ B

+
1
2

log(2a2Λcc) + G(a2Λcc) +O
(

Λ−2
pt

)
.

Note: the two methods give the same result



CC

Coefficients of a4 and a2 identify the one-loop corrections to Λcc
G and 1

G

Λ1l
cc

G1l =
Λcc

G

(
1−

3GΛcc

π
log

3L2

Λcc

)
+ finite

1
G1l =

1
G

[
1 +

G
2π

(
3L2 − 8Λcc log

3L2

Λcc

)]
+ finite

L is equivalently either Λcut or Λpt (∼ MP)
Unexpected result: only logarithmic corrections to ρ = Λcc

8πG

Moreover: Taking for G the natural value G ∼ M−2
P we see that

quantum corrections do not spoil the naturalness of this relation
No naturalness problem with the renormaliz. of the Newton constant

G ∼ G1l ∼ 1
M2

P
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Vacuum energy
Λ1l

cc

G1l =
Λcc

G

(
1−

3GΛcc

π
log

3L2

Λcc

)
Quantum correction to the vacuum energy ρ = Λcc

8πG goes like
log MP rather than M4

P

Usual result: ρ ∼ M4
P =⇒ bare value of ρ ∼ M4

P with a coefficient
that must be enormously fine-tuned for it to cancel (quite exactly) the
one-loop generated M4

P correction
Our result: loop corrections → only mild (log) correction to ρ =⇒
In pure gravity no naturalness problem arises: the bare cosmological
constant Λcc does not need to be ∼ M2

P . We may naturally have
Λcc � M2

P , and so
Λ1l

cc ∼ Λcc
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Incorrect identification of the cutoff
What is at the origin of our unexpected result?
Why usually quartic(∗) and quadratic divergences found?

Connect for a moment Npt and Λpt through

Λpt = Npt

a (rather than through Λpt = Npt

adS

)

which corresponds to the (incorrect) identification of Λpt with the
maximal eigenvalue λ̃(s)

max ... then for δS1l
grav we obtain

δS1l
grav = −

[
Λ2

cc log
(
Λ2

pt a2)] a4 + Λcc
[
−Λ2

pt a2 + 8 log
(
Λ2

pt a2)] a2

−
Λ4

pt

12 a4 + 17
3 Λ2

pt a2 − 1859
90 log

(
Λ2

pt a2)
(*) absence of quartic divergences also noted in Donoghue, PRD 2021
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Trivially rewritten as

δS1l
grav = −

[
Λ4

pt

12
+ ΛccΛ2

pt + Λ2
cc log

(
Λ2

pt a2
)]

a4 +
[17

3
Λ2

pt + 8Λcc log
(

Λ2
pt a2
)]

a2

−
1859

90
log
(

Λ2
pt a2
)
.

known result found with heat-kernel (Taylor, Veneziano ; Fradkin, Tseytlin)

What we have just seen is that implementing the cut in the fluctuation
determinants taking as physical cutoff the maximal eigenvalues λ̃(s)

max

introduces in δS1l
grav spurious, unphysical dependence on the metric g (a)

µν

The connection between Npt and Λpt must be realised through adS

adS is the size of the universe
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...
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Additional comments

1
2 log(2a2Λcc) and G(a2Λcc) are negligible O(1) contributions to δS1l

grav

The constant terms (proportional to a0) in principle could be interpreted
as corrections to

∫
d4x√g R2 rather then as constants to be discarded

... Due to the high symmetry of the background considered (sphere), it is
impossible to distinguish between constant terms and corrections to R2

... since our universe seems to be well described by the Einstein-Hilbert
action (with cosmological constant) even at large energy scales, we rather
expect these terms to be interpreted as inessential constants ...

This question should be further investigated ...
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Matter contribution
Consider the free theory of a real scalar field φ of mass m defined on the classical
gravitational background g (a)

µν (sphere of radius a)

S =
πΛ
3G

a4 −
2π
G

a2 +

∫
d4x
√

g (a)
[

1
2

g (a)µν
∂µφ∂νφ +

1
2

m2
φ

2
]

Write φ(x) = Φ + η(x), Φ constant background. Effective gravitational action Seff
grav

with quantum fluctuations of φ included

Seff
grav(a) =

πΛ
3G

a4 −
2π
G

a2 + δSgrav

with δSgrav given by

e−δSgrav =
∫ ∏

x

[(
g (a) 00(x)

) 1
2
(

g (a)(x)
) 1

4 dη(x)
]

e−
∫

d4x
√

g(a)[− 1
2 η2η+ 1

2 m2η2]

As before
(

g (a) 00(x)
) 1

2
(

g (a)(x)
) 1

4 from integration over conjugate momenta (Fradkin,

Vilkovisky). Now, since g (a)
µν = a2g (1)

µν =⇒(
g (a) 00(x)

) 1
2
(

g (a)(x)
) 1

4 = a
(

g (1) 00(x)
) 1

2
(

g (1)(x)
) 1

4 , no dimensionful parameter in

e−δSgrav = N
∫ ∏

x

[
d η̂(x)

]
e−
∫

d4x
√

g(1)
[
− 1

2 η̂
(
2

(0)
a=1

)
η̂ + 1

2 a2 m2 η̂ 2
]
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−2(0)
a=1 : Laplace-Beltrami operator for sphere of unitary radius

η̂ ≡ aη : dimensionless fluctuation field
N : inessential a-independent constant

Expanding η̂(x) in terms of the eigenfunctions2 φ
(i)
n (x) (i degeneracy

index and n = 0, 1, . . . ) of −2(0)
a=1: η̂ =

∑
n,i a(i)

n φ
(i)
n

e−δSgrav = N
∫ ∏

n,i

da(i)
n e
− 1

2

∑
n,i

[
a(i)

n

]2(
λ

(0)
n +a2m2

)
and then (C inessential a-independent constant)

Seff
grav =

πΛ
3G

a4 −
2π
G

a2 +
1
2

log
[

det
(
−2(0)

a=1 + a2m2
)]

+ C .

2The φ(i)
n are normalized as

∫
d4x
√

g (1) φ
(i)
n (x)φ(j)

m (x) = δijδnm.
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Calculate determinant with direct product of λ(0)
n up to n = N − 2 as

before, and expand for N � 1

Seff
grav =

π

3

(
Λ
G
−

m4

8π
log N2

)
a4 − 2π

[
1
G
−

m2

24π
(

N2 + 2 log N2
)]

a2

+
N4

48
(
−1 + 2 log N2

)
−

N2

72
(

13 + 3 log N2
)
−

29
180

log N2 + C

+H(a2m2) +O
(

N−2
)

Similarity with the result obtained in the pure gravity case : evident

Consider the vacuum energy term. Once again : if N correctly related to
Λcut ∼ MP through Λcut ∼ MP = N

adS
= N

√
Λcc
3 , ρ = Λcc

8πG receives only
mild logarithmically divergent correction

δ

(Λcc

G

)
= −

m4

8π
log

3Λ2
cut

Λcc
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... But ...

If again we perform the incorrect replacement of N as N = a Λcut,
again we generate spurious quartically and quadratically divergent terms.
For instance:

−N4

48 −→ −Λ4
cut

48 a4

Quartically divergent contribution to Λcc
G

N2

12 m2 a2 −→ Λ2
cut

12 m2 a4

Quadratically divergent contribution to Λcc
G
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Conclusions

The absence of quartic and quadratic divergences in
our result for the vacuum energy

even when the presence of matter is taken into account
possibly a progress towards the solution of the CC problem

Naturally
the question of how to dispose of the terms m4 log Λcut

needs to be further investigated
maybe along the lines put forward in the present work



ADDITIONAL SLIDES



Expansion of ĥµν, v ∗ρ and vσ
We indicate with hµν(i)

n (transverse-traceless), ξµ(i)
n (transverse) and φ(i)

n
the pure spin-2, spin-1 and spin-0 eigenfunctions of the Laplace-Beltrami
operator on the sphere of unitary radius that are normalized as

δ
ij
δnm =

∫
d4x
√

g (1) hµν(i)
n (x)hm(j)

µν (x) =

∫
d4x
√

g (1) ξ
µ(i)
n (x)ξm(j)

µ (x) =

∫
d4x
√

g (1) φ
(i)
n (x)φ(j)

m (x) ,

(1)

corresponding to the eigenvalues λ(2)
n , λ(1)

n and λ(0)
n respectively. The

modes {hµνn , vµνn , wµν
n , zµνn }, with

vµνn =
[

1
2

(
λ

(1)
n − 3

)]− 1
2
∇(µ

ξ
ν)
n , n = 2, . . . ,

wµνn =
[
λ

(0)
n

(
3
4
λ

(0)
n − 3

)]− 1
2
(
∇µ∇ν −

1
4

g (1)µν
2

)
φn , n = 2, . . . ,

zµνn =
1
2

g (1)µν
φn , n = 0, 1, 2, . . . , (2)

of which we do not write explicitly the degeneracy indexes form the
orthonormal basis for symmetric tensors.



Moreover, defining the longitudinal vector modes

lµn =
(
λ

(0)
n

)− 1
2 ∇µφn , n = 1, 2, . . . , (3)

the latter, together with the transverse modes ξµn , form the orthonormal
basis for vectors.
Expand the graviton field ĥ µν as [8]

ĥ µν =
∞∑
n=2

anhµνn +
∞∑
n=2

bnvµνn +
∞∑
n=2

cnwµνn +
∞∑
n=0

enzµνn (4)

ĥ ≡ g (1)
µν ĥ µν = 2

∞∑
n=0

enφn , (5)

and the ghost field vµ as

vµ =
∞∑
n=1

gn ξ
µ
n +

∞∑
n=1

fn lµn (6)

so that we have



64πG (S2 + Sgf) =
∞∑
n=2

a2
n

[
λ

(2)
n − 2a2Λ + 8

]
+
∞∑
n=2

b2
n

[
ξ
−1
(
λ

(1)
n − 3

)
− 2a2Λ + 6

]
+
∞∑
n=2

c2
n

[
ξ
−1
(

3
4
λ

(0)
n − 6

)
−
λ

(0)
n

2
− 2a2Λ + 6

]
+
∞∑
n=0

e2
n

[
−3 + ξ−1

2
λ

(0)
n + 2a2Λ

]
+
∞∑
n=2

2encn(ξ−1 − 1)
[
λ

(0)
n

(
3
4
λ

(0)
n − 3

)] 1
2

(7)

32πG Sghost =
∞∑
n=1

g∗n gn
(
λ

(1)
n − 3

)
+
∞∑
n=1

f ∗n fn
(
λ

(0)
n − 6

)
. (8)



Therefore, the functional measure in (??) can be written as (defined as)

Dĥµν Dv∗ρ Dvσ ≡
1

VSO(5)

∞∏
n=2

dan

∞∏
n=2

dbn

∞∏
n=2

dcn

∞∏
n=0

den

∞∏
n=2

dg∗n

∞∏
n=2

dgn

∞∏
n=1

df ∗n

∞∏
n=1

dfn ,

(9)

Notice that there is no integration over the zero modes g∗1 and g1 of
Sghost [16]. The corresponding ghost fields are proportional to the ten
Killing vectors ξµ1 . These zero eigenmodes correspond to residual gauge
invariances which are not eliminated by gauge fixing in the presence of an
SO(5) spherical symmetry. Overcounting has been compensated by
inserting the explicit group-volume factor VSO(5) in Eq. (9) (see,
e.g., [17]).



Sum over the eigenvalues in closed form

F (a2Λ) = 9Λa2 −
1
6

Λ
√

8Λa2 + 9logΓ
(

7
2
−

1
2

√
8Λa2 + 9

)
a2 − 5Λψ(−2)

(
1
2

(√
8a2Λ− 15 + 7

))
a2

− 5Λψ(−2)
(

7
2
−

1
2

√
8a2Λ− 15

)
a2 − Λψ(−2)

(
1
2

(√
8Λa2 + 9 + 7

))
a2

− Λψ(−2)
(

7
2
−

1
2

√
8Λa2 + 9

)
a2 +

1
6

ΛlogΓ
(

1
2

(√
8Λa2 + 9 + 7

))√
8Λa2 + 9a2

− 5 log(120) +
49 log(A)

3
− 2
√

11
3

logΓ
(

1
2

(√
33 + 7

))
−

5
6

(
a2Λ− 5

)√
8a2Λ− 15logΓ

(
7
2
−

1
2

√
8a2Λ− 15

)
−

1
6

√
8Λa2 + 9logΓ

(
7
2
−

1
2

√
8Λa2 + 9

)
+ 3ψ(−4)(1) + 3ψ(−4)(6) + ψ

(−4)
(

7
2
−
√

33
2

)
+ ψ

(−4)
(

1
2

(√
33 + 7

))
− 5ψ(−4)

(
1
2

(√
8a2Λ− 15 + 7

))
− 5ψ(−4)

(
7
2
−

1
2

√
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)
− ψ(−4)

(
1
2

(√
8Λa2 + 9 + 7

))
− ψ(−4)

(
7
2
−

1
2

√
8Λa2 + 9

)
+

15ψ(−3)(1)
2

−
15ψ(−3)(6)

2

−
1
2
√

33ψ(−3)
(

1
2

(√
33 + 7

))
−

5
2

√
8a2Λ− 15ψ(−3)

(
7
2
−

1
2

√
8a2Λ− 15

)



−
1
2

√
8Λa2 + 9ψ(−3)

(
7
2
−

1
2

√
8Λa2 + 9

)
+

33ψ(−2)(1)
4

+
33ψ(−2)(6)

4

+
49
12
ψ

(−2)
(

7
2
−
√

33
2

)
+
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12
ψ
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(

1
2

(√
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))
+
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12
ψ
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(

1
2

(√
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+
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12
ψ

(−2)
(
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2
−

1
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√
8a2Λ− 15

)
−
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(

1
2

(√
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(

7
2
−

1
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√
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+

1
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(
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2
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√

33
2

)√
33 + 2logΓ

(
7
2
−
√

33
2
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11
3

+
5
6

(
a2Λ− 5

)
logΓ
(

1
2

(√
8a2Λ− 15 + 7

))√
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+
5
2
ψ

(−3)
(

1
2

(√
8a2Λ− 15 + 7

))√
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1
6

logΓ
(

1
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(√
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))√
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+
1
2
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(

1
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(√
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))√
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4π2 −

2
3
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1080



g (a)
µν =


a2 0 0 0

0 a2 sin2 θ1 0 0

0 0 a2 sin2 θ1 sin2 θ2 0

0 0 0 a2 sin2 θ1 sin2 θ2 sin2 θ3


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