Energy Aware Runtime for Sustainable Data Centers

Energy Efficient Data Centers

- High Energy & CO2 footprint
- IT Equipments & Cooling
- Improving Energy Efficiency
- Total Energy = IT Equipments Energy x PUE
 - Reducing the PUE Ο
 - Optimizing airflow
 - Advanced cooling
 - Optimizing IT Energy Ο
 - Hardware consolidation
 - EAR

EAR provides....

EAR Version 5

- Introduce Energy Optimization for GPUs running AI and HPC workloads
- Full Data Center monitoring: from Compute servers to Network and Storage
- Support **Workflows** on top of Jobs
- First Implementation of **European Power stack API** (Regale)

EAR successful installations

• EAS/EAR major installations

- LRZ Germany, (SuperMUC-NG since 2019 and SuperMUC-NG2)
 - Phase 1: Lenovo 6700 2 x Intel Xeon Platinum 8174 24C 3.1GHz
 - Phase 2: Lenovo 240 nodes with 2 x Intel Sapphire Rapid + 4 Intel Ponte Vecchio
- o SURF Netherland, Snellius
 - CPU partition: Lenovo 500 nodes AMD Rome and 786 nodes AMD GENOA
 - GPU partition: Lenovo 72 nodes 2x intel Icelake + 4 NVIDIA GPU A100
- o BSC Spain, (MN5) on both GPP and ACC partitions (2023/2024)
 - GPP partition: Lenovo 7200 nodes with Intel Sapphire Rapid
 - ACC partition: BullSequana XH3000, 1110 nodes with 2x Intel Sapphire Rapid+ 4 NVIDIA H100
- POC underway at EDF France (Cronos)
 - CRONOS BullSequana X, 1995 nodes with 2xXeon Platinum 8260 24C 2.4GHz

EAR provides....Monitoring

Monitoring

• Job Monitoring

- Powerful non-intrusive application monitoring
- 100% dynamic, no code modifications
- Runtime signatures:
 - Performance: Time, CPI, Memory Bandwidth (GB/sec), Gflops, IO MB/sec, MPI activity, GPU utilization, GPU Memory utilization, ...
 - Power metrics : Node, CPU, DRAM, GPU

Computational nodes Monitoring

- Extensible **monitoring** : Power, CPU frequency, temperature, etc
- Multiple sources of data: inband IPMI, GPU, RAPL...
- Intel, AMD, NVIDIA
- Extensible report : MariaDB, Postgres, Sysfs, Prometheus (wip),...
- Basic **alerts** for power and temperature

Data Center monitoring

- AC power for compute, storage and network
- Report to DB
- Possible integration with EAR powercap service

EAR provides (among others)....Runtime analysis and optimization

The optimization loop

EAR provides....Optimization

Optimization

Energy optimization for computational phases

CPU

activity

Memory

activity

GPU

activity

 If CPU activity: Select optimal CPU frequency according the policy and policy configuration

• Fine memory selection tuning using hardware hints

 NEW NVIDIA GPU power model: Project power for each GPU and GPU frequency using GPU FP activity and GPU memory activity

• If GPU activity: Select optimal GPU frequency to maximize Application Gflops/Watt

CPU Optimization: Minimize energy to solution >> EAS

Save energy by reducing CPU frequency (DVFS)

Execute one "iteration" at nominal frequency and compute runtime signature

Use energy models to predict power and time with frequencies def, def-1, def-2...

 \bigcirc

Compute energy and time penalty for each frequency

Select the CPU frequency minimizing energy within a performance penalty limit

Select memory/GPU frequency

NVIDIA GPU optimization with EAR

- Extended GPU metrics + GPU power model + GPU optimization policy
- GPU metrics
 - Based on DCGMI/NVML 0
 - Performance counters + activity ratios
 - More semantics than just utilization 0
- GPU power model
 - Floating Point activity characterize the utilization of FP and tensor instructions
 - DRAM activity characterize GPU memory utilization 0
- GPU optimization policy

 - GPU signature computed at runtime
 Power projections for all the GPU frequencies (per-GPU)
 - **Optimization metric** computed: 0
 - CPU+GPU GFlops/Node power (W)
 - **Optimization function**: Max 0

GPU energy savings on AI & HPC workloads

- Energy = Power x Time
- Evaluation computed in 2 x Icelake + 4 x NVIDIA A100 (Snellius cluster)

EAR provides....Powercap

EAR powercap summary

• EAR Node powercap manager enforces node power limit

- Extensible through plugins: CPU, GPU
- Dynamic intra-node power re-allocation based on application activity

• Cluster power manager distributes power to computational nodes

- Hierarchical architecture for large scale clusters
- Two algorithms offered: soft and hard powercap
- EAR runtime library informs the EAR node powercap manager of application activity and power requirements

Powercap (I): Initial distribution

Cluster power manager distributes power and node power manager enforces power

Powercap(II): Application feedback

Application (through EARlib) informs each node about its power needs

I need more power because I will be more efficient

Powercap(III): Dynamic power reallocation

EAR provides....Accounting

Data analysis with ear-system-analytics and ear-job- $\geq \epsilon_{AS}$ analytics Average daily power

EAR reports job metrics and system Telemetry through plugins

Multiple plugins can be loaded at the same time

250 200 wer = 170.49 kW Plugins included by default: DB, CSV files, Paraver traces, Prometheus (WIP), etc

400

(**x**)³⁵⁰

8 300

Energy consumption per user

ear-system-analytics

ear-job-analytics

Valuable system and Workload statistics can be computed using EAR data: power over the time, energy per user, job performance & power characteristics, etc.

Data visualization

Jobs data can be seen with tools such as Grafana

Job metrics: CPU frequency, CPI, Memory bandwith, Gflops, etc

Finished jobs												
ID	Application ↑	Policy	Node power	Avg CPU frequency	Avg Mem frequency	CPI	GBS	GFlops	Elapsed time	MPI %	IO (MBS)	DRAM
230761	bt.D.x.ear.ME	min_energy	489 W	2.18 GHz	2.18 GHz	0.47	156	125	6 min	2	0	47
230759	bt.D.x.ear.ME	min_energy	489 W	2.18 GHz	2.18 GHz	0.47	156	125	6 min	2	0	47
230751	bt.D.x.ear.ME	min_energy	489 W	2.18 GHz	2.18 GHz	0.47	156	125	6 min	2	0	48
230749	bt.D.x.ear.ME	min_energy	489 W	2.18 GHz	2.18 GHz	0.47	156	125	6 min	2	0	48
230742	bt.D.x.ear.ME	min_energy	489 W	2.18 GHz	2.18 GHz	0.47	156	125	6 min	2	0	47
230658	bt.D.x.ear.ME	min_energy	489 W	2.18 GHz	2.17 GHz	0.47	156	125	6 min	2	0	47
230654	bt.D.x.ear.ME	min_energy	490 W	2.18 GHz	2.18 GHz	0.47	156	125	6 min	2	0	47
230650	bt.D.x.ear.ME	min_energy	489 W	2.18 GHz	2.18 GHz	0.47	156	125	6 min	2	0	48
230598	bt.D.x.ear.ME	min_energy	488 W	2.18 GHz	2.17 GHz	0.47	156	125	6 min	2	0	48
220761	ht Div par MO	monitoring	528 W	2 73 647	1 85 CU7	0.54	160	125	6 min	2	0	лс

System metrics: Carbon footprint

Data visualization

Job metrics visualization based on CSV files. Graphs compare results with different policies

EAS

Energy savings estimation

Job metrics visualization using eas-system-analytics and eas-job-savings tool

EAR Data center monitoring

EAR

EDCMON

- New EAR service to monitor additional elements in the Data center apart from Compute Nodes
 - o Storage
 - o Network
 - o Management
- EDCMON is extensible based on plugins
 - Period for monitoring
 - List of PDUs
 - AC power
 - Report strategy: Log, Prometheus, etc

Workflows support: PyCOMPSs

HK

EAR + BSC PyCOMPSs integration

- EAR and PyCOMPSs are integrated to monitor and optimize individual tasks in workflows
- Extensions to support multiprocess python
- Extensions to support multiple applications (workers) runnin in same jobid/stepid context

European Power stack API (Regale)

European power Stack

- EAR team is an active partner in the design and development of the European initiative to create a power stack architecture and API
- Standardization effort done in the REGALE project
- EAR5.0 architecture is compliant with the proposed REGALE architecture
 - Implements the Node Manager API
- <u>https://regale-project.eu/</u>

https://www.eas4dc.com

EAR