
VFE Burn-in Setup Software
Christian Bernier (Northeastern University)
June 13, 2024



• Context
• Services
• GUI features
• Documentation

Overview

2



• Many electronics follow a standard life 
cycle
• Running cards at 70ºC for 1 week 

simulates 1 year of normal operation 
(accelerated aging)
• Goals:
• Age VFE cards past the point of infant 

mortality before installation
• Age many cards at once, so we can keep 

up with production

Context

3



• 3 burn-in racks, each with
• 4 boxes

• 45 VFE cards
• Temperature sensors
• Fans

• 2 power supplies (2 boxes per PS)
• 1 control rack
• PLC safety system
• Control server running custom software

Hardware

4



• Each responsible for one aspect of the setup
• May manage drivers to interface with physical devices
• Can establish connections to other services
• Built using RPyC library

Services

5



• Services or clients (observers) can register to be notified by 
another service (observable)
• Eliminates the need for polling services
• Only those who need the data receive it

Observables/Observers

Before After
6



Service Relationships

• Almost all services are 
observable
• Services measure data 

regardless if it is used
• Device-specific tasks 

are delegated to drivers
• All services are 

multithreaded to 
optimize performance

7



• Observable for temperature data updates
• Uses driver to collect temperature data from EBKeithley devices
• Collects temperature data every 30 seconds
• If the device cannot connect:
• Broadcasts an empty event to observers
• Attempts to reconnect again in 5 seconds instead of 30 seconds

Temperature Service

8



• Observable for power data updates
• Uses driver to collect power data (voltage, current, interlock 

status) from TDK Lambda power supplies
• Collects power data every 30 seconds
• Just like the temperature service, if the device cannot connect:
• Broadcasts an empty event to observers
• Attempts to reconnect again in 5 seconds instead of 30 seconds

• Provides methods for turning power supplies on/off

Power Service

9



• Observable for fan speed updates
• Connects to the temperature service to receive temperature 

updates
• Stores a target temperature range to maintain
• Utilizes a “fan strategy” which defines how to respond to a new 

temperature reading

Fan Service

10



• When a temperature is received:
• Checks the current fan speed for each box
• Asks the strategy for a new fan speed, given the current temperature 

and fan speed of each box
• Records the new fan speed
• Sends new fan speed to fan drivers to update the devices accordingly

• Driver still needs to be implemented

Fan Service

11



• Provides interface for running automatic procedures on boxes
• Manages each program running on the setup, preventing 

multiple programs from running on the same box
• Observable for program status updates

Program Service

12



Programs

• Automatically controls power and temperature
• Defined by a dynamic schema including:
• Power on/off
• Wait
• Set target temperature
• Repeat

• Multiple programs can run simultaneously

13



• Interfaces with PLC safety system
• Observable for PLC status updates
• Box temperature readings (separate from EBKeithley devices)
• Box sensor statuses
• Power supply interlock statuses

• Partially implemented by Pedja (thanks!)

PLC Service

14



• Will record data from the setup in an SQL database
• Will observe all data-taking services, such as temperature, 

power, PLC, fan, etc.
• Not yet implemetned

Database Service

15



• Allows services to send push notifications to individuals
• Utilizes the CERN Notifications Service
• Users/groups can choose how often they are notified and by 

what means (email, SMS, etc.)

Alert Service

16



• Required for all other services to run
• Observes the temperature, power, and PLC services
• If it detects any anomaly (ex. temperature too high), will turn off 

all power supplies and alert users
• Polls temperature and power services to ensure they are still 

running properly

Supervisor Service

17



• Used to start services in the correct order (based on their 
dependencies)
• Runs each service in a separate process
• Monitors services to detect if they stop running
• If a service is found to be stopped:
• Kills the process
• Restarts that service
• Restarts all services which depend on that service

Orchestrator

18



Graphical User Interface (GUI)

• Goals:
• Provide necessary 

information at-a-glance
• Allow emergency actions
• Begin and monitor 

programs
• Connects to all services
• Built using PyQt 6 

library

19



Overview Tab

• Displays any active 
programs
• Active boxes
• Program name
• Progress bar/percent
• Stop/restart actions

• Ability to start new 
programs from a file

20



Rack Tabs

• Shows current 
temperature and 
power of each box
• Includes timestamps 

for when data was 
measured
• Provides overrides for 

turning power supplies 
on/off

21



Services Tab

• Displays whether 
services are 
connected to the GUI
• Can display device 

information
• Ability to reconnect, if 

a service is restarted 
after the GUI starts

22



Supervisor Tab

• Shows status of the 
supervisor service
• Displays whether 

temperature and power 
measurements are within 
a safe range
• Provides emergency 

options
• Turn off all power supplies
• Stop all running programs

23



PLC Tab

• Not yet connected to 
PLC service
• Will show PLC status
• Box temperatures
• Sensor statuses
• Interlock statuses

• Ability to acknowledge 
interlocks

24



• README
• Overview of project
• Explanation of each service

• Services diagram
• Relationships between services

• Code comments
• Implementation-specific details

• Code guide
• Detailed overview of code design decisions

• To-do list

Documentation

25



Services implemented
• Temperature
• Power
• Fan (needs driver)
• Program
• Supervisor
• Alert

Summary

Services to be implemented
• PLC (mostly complete)
• Database

26



GUI functionality
• View current rack status
• Begin/monitor programs
• See service/device issues
• Take emergency action via 

supervisor
• PLC data (needs to be 

connected once service is 
done)

Summary

GUI functionality to be added
• PLC emergency controls
• Visualize temperatures/fan 

speeds in box
• Historical database viewer

27



Questions?

Thank you!

28


