
Co-Design for Efficient &
Adaptive ML
CERN Seminar, 2024-06-26

Dr. Yaman Umuroğlu
Senior Member of Technical Staff
AMD Research & Advanced Development

2 |

[Public]

• Integrated Comms and AI Lab (RADICAL)
• Established 15 years ago
• ~20 researchers plus university program

• 5 different locations
• Highly active internship program

• Focus: Communications and AI
• Building systems, architectural exploration,

algorithmic optimizations, benchmarking
• In collaboration with partners, customers, and

universities
• ETH Zürich, Paderborn University, Imperial College, KIT,

NTNU, Politecnico di Milano, NUS, University of Sydney

AMD Research and Advanced Development (RAD)

3 |

[Public]

Pervasive AI

Adapted from TED Talk: Andrew Ng “How AI could empower any business”

ImageNet
ChatGPT

Recommenders

4 |

[Public]

Pervasive AI

Adapted from TED Talk: Andrew Ng “How AI could empower any business”

ImageNet
ChatGPT

Recommenders

Communications, medical, aerospace, IoT, sensor
intelligence, ML for science…

Broad spectrum of applications

5 |

[Public]

Pervasive AI: Diverse Requirements for Inference

Power

Cost
Real estate

JitterSystem I/O
Requirements

Complex pre/post-
processing

Fault
tolerance

…

6 |

[Public]

Pervasive AI: Diverse Requirements for Inference

Power

Cost
Real estate

JitterSystem I/O
Requirements

Complex pre/post-
processing

Fault
tolerance

…

IoT/Embedded
small resource footprint
low power (<10W)
low latency (msec)

7 |

[Public]

Pervasive AI: Diverse Requirements for Inference

Power

Cost
Real estate

JitterSystem I/O
Requirements

Complex pre/post-
processing

Fault
tolerance

…

IoT/Embedded
small resource footprint
low power (<10W)
low latency (msec)

High Frequency Trading
ultra-low latency (ns)
no runtime, stream direct to HW
no jitter

8 |

[Public]

Pervasive AI: Diverse Requirements for Inference

Power

Cost
Real estate

JitterSystem I/O
Requirements

Complex pre/post-
processing

Fault
tolerance

…

IoT/Embedded
small resource footprint
low power (<10W)
low latency (msec)

High Frequency Trading
ultra-low latency (ns)
no runtime, stream direct to HW
no jitter

ML in Communications
very high throughput (100M/s)
no run-time, stream direct to HW
low latency (sub-msec)
combine with signal processing

9 |

[Public]

Pervasive AI: Diverse Requirements for Inference

Power

Cost
Real estate

JitterSystem I/O
Requirements

Complex pre/post-
processing

Fault
tolerance

…

IoT/Embedded
small resource footprint
low power (<10W)
low latency (msec)

High Frequency Trading
ultra-low latency (ns)
no runtime, stream direct to HW
no jitter

ML for Physical Sciences
ultra-low latency (ns)
ultra-high throughput
fault tolerance

ML in Communications
very high throughput (100M/s)
no run-time, stream direct to HW
low latency (sub-msec)
combine with signal processing

10 |

[Public]

Pervasive AI: Diverse Requirements for Inference

Power

Cost
Real estate

JitterSystem I/O
Requirements

Complex pre/post-
processing

Fault
tolerance

…

IoT/Embedded
small resource footprint
low power (<10W)
low latency (msec)

High Frequency Trading
ultra-low latency (ns)
no runtime, stream direct to HW
no jitter

ML for Physical Sciences
ultra-low latency (ns)
ultra-high throughput
fault tolerance

ML in Communications
very high throughput (100M/s)
no run-time, stream direct to HW
low latency (sub-msec)
combine with signal processing efficient adaptive

11 |

[Public]

Specialization is essential

Efficient & Adaptive
ML Inference

via Co-Design

12 |

[Public]

Specialization is essential

Specialization
of the DNN

Lower compute+memory cost

Custom training techniques

Efficient & Adaptive
ML Inference

via Co-Design

13 |

[Public]

Specialization is essential

Specialization
of the DNN

Specialization
of Hardware
Architecture

Flexible arithmetic
+ interconnect

Large internal bandwidth

Lower compute+memory cost

Custom training techniques

Efficient & Adaptive
ML Inference

via Co-Design

Tightly integrated
IO+compute

14 |

[Public]

• FPGAs: the chameleon amongst the semiconductors…
• Customize IO interfaces
• Customize functionality
• Customize compute architectures & memory subsystems to meet performance or efficiency targets

• Flexible, adaptive, mostly homogeneous hardware architecture
• Enable post-production customization at the architectural level

Field-Programmable Gate Arrays (FPGAs)

15 |

[Public]

• FPGAs: the chameleon amongst the semiconductors…
• Customize IO interfaces
• Customize functionality
• Customize compute architectures & memory subsystems to meet performance or efficiency targets

• Flexible, adaptive, mostly homogeneous hardware architecture
• Enable post-production customization at the architectural level

Field-Programmable Gate Arrays (FPGAs)

Sea of programmable Lookup Tables (LUTs) ~millions

Programmable Interconnect

Programmable IO

16 |

[Public]

• FPGAs: the chameleon amongst the semiconductors…
• Customize IO interfaces
• Customize functionality
• Customize compute architectures & memory subsystems to meet performance or efficiency targets

• Flexible, adaptive, mostly homogeneous hardware architecture
• Enable post-production customization at the architectural level

Field-Programmable Gate Arrays (FPGAs)

Sea of programmable Lookup Tables (LUTs) ~millions

Programmable Interconnect

DSPs: n-bit MAC

Programmable IO

17 |

[Public]

• FPGAs: the chameleon amongst the semiconductors…
• Customize IO interfaces
• Customize functionality
• Customize compute architectures & memory subsystems to meet performance or efficiency targets

• Flexible, adaptive, mostly homogeneous hardware architecture
• Enable post-production customization at the architectural level

Field-Programmable Gate Arrays (FPGAs)

Sea of programmable Lookup Tables (LUTs) ~millions

Programmable Interconnect

DSPs: n-bit MAC

Embedded SRAM: high bandwidth

Programmable IO

18 |

[Public]

Specialized FPGA Inference via Co-Design

Custom Dataflow Quantization Sparsity Full co-
design

Cus
tom

ize
d f

or

ML i
n g

en
era

l

Cus
tom

ize
d f

or

sp
ec

ific
 to

po
log

ies

Cus
tom

ize
d i

n

da
tat

yp
es

Cus
tom

ize
d i

n

co
nn

ec
tiv

ity Ultim
ate

:

cu
sto

mize
 th

e D
NN

to
fit

the
 ha

rdw
are

Inferences / secondIncreased specialization, high performance, and efficiency

Buffer

MPE

19 |

[Public]

• MPE: Matrix of Processing Engines
• Popular layer-by-layer compute
• Batching to achieve high compute efficiency
• Customized for ML in general
• Specialized processing engines

• Operators
• ALU types

• tensor-, matrix- or vector-based

DNN

Matrix of
Processing

Engines

MPEDMA

On-chip
buffering

MAC, VLIW,
Vector Processor

MPE: Customizing for ML Workloads in General

20 |

[Public]

• MPE: Matrix of Processing Engines
• Popular layer-by-layer compute
• Batching to achieve high compute efficiency
• Customized for ML in general
• Specialized processing engines

• Operators
• ALU types

• tensor-, matrix- or vector-based

DNN

Matrix of
Processing

Engines

MPEDMA

On-chip
buffering

MAC, VLIW,
Vector Processor

MPE: Customizing for ML Workloads in General

21 |

[Public]

• MPE: Matrix of Processing Engines
• Popular layer-by-layer compute
• Batching to achieve high compute efficiency
• Customized for ML in general
• Specialized processing engines

• Operators
• ALU types

• tensor-, matrix- or vector-based

DNN

Matrix of
Processing

Engines

MPEDMA

On-chip
buffering

MAC, VLIW,
Vector Processor

MPE: Customizing for ML Workloads in General

22 |

[Public]

• MPE: Matrix of Processing Engines
• Popular layer-by-layer compute
• Batching to achieve high compute efficiency
• Customized for ML in general
• Specialized processing engines

• Operators
• ALU types

• tensor-, matrix- or vector-based

DNN

Matrix of
Processing

Engines

MPEDMA

On-chip
buffering

MAC, VLIW,
Vector Processor

MPE: Customizing for ML Workloads in General

23 |

[Public]

• MPE: Matrix of Processing Engines
• Popular layer-by-layer compute
• Batching to achieve high compute efficiency
• Customized for ML in general
• Specialized processing engines

• Operators
• ALU types

• tensor-, matrix- or vector-based

DNN

Matrix of
Processing

Engines

MPEDMA

On-chip
buffering

MAC, VLIW,
Vector Processor

MPE: Customizing for ML Workloads in General

24 |

[Public]

• MPE: Matrix of Processing Engines
• Popular layer-by-layer compute
• Batching to achieve high compute efficiency
• Customized for ML in general
• Specialized processing engines

• Operators
• ALU types

• tensor-, matrix- or vector-based

DNN

Matrix of
Processing

Engines

MPEDMA

On-chip
buffering

MAC, VLIW,
Vector Processor

MPE: Customizing for ML Workloads in General

MPEs can cater for a broad range of
applications with one highly optimized

architecture
Works well for computer vision and natural

language processing

25 |

[Public]

Running Example: Network Intrusion Detection System (NIDS)

Network processing system

Network
interface

L1-L3

Network
interface

L1-L3

Packet
processing/

feature
extraction

Packet filter
drop/pass

Evaluated with the
UNSW-NB15 dataset [1]

Traffic
Classification

Throughput
5G (20Gbps) 30Minfps

100Gbps 150Minfps
400Gbps 600Minfps

Minfps: Million inferences per second
Assuming 64B/packet

26 |

[Public]

NIDS Results

Topology / #layers / #OPs
Datatype
Accuracy

Vitis AI
MLP / 3 / 92kOPs

8b & 8b

92.3%

Matrix of Processing
Engines

Mapped on UltraScale+, 16nm FPGA, all within the same SLR.
*DSPs: 8b or 16b Multiply Accumulates
**BRAMs: 36kb, URAM: 288kbit embedded SRAM blocks

Inferences / secondIncreased specialization, high performance, and efficiency

27 |

[Public]

NIDS Results

Topology / #layers / #OPs
Datatype
Accuracy

Vitis AI
MLP / 3 / 92kOPs

8b & 8b

92.3%

Matrix of Processing
Engines

Performance
Throughput

Latency (compute only)
22 kinfps

26 us

Mapped on UltraScale+, 16nm FPGA, all within the same SLR.
*DSPs: 8b or 16b Multiply Accumulates
**BRAMs: 36kb, URAM: 288kbit embedded SRAM blocks

Inferences / secondIncreased specialization, high performance, and efficiency

28 |

[Public]

NIDS Results

Topology / #layers / #OPs
Datatype
Accuracy

Vitis AI
MLP / 3 / 92kOPs

8b & 8b

92.3%

Matrix of Processing
Engines

Performance
Throughput

Latency (compute only)
22 kinfps

26 us

Resources
Compute (kLUTs, DSPs*)
Memory (BRAM, URAM**)

Clock

122,1124

290, 92

300/600 MHz

Mapped on UltraScale+, 16nm FPGA, all within the same SLR.
*DSPs: 8b or 16b Multiply Accumulates
**BRAMs: 36kb, URAM: 288kbit embedded SRAM blocks

Inferences / secondIncreased specialization, high performance, and efficiency

29 |

[Public]

Specialized FPGA Inference via Co-Design

Custom Dataflow Quantization Sparsity Circuit co-
design

Cus
tom

ize
d f

or

ML i
n g

en
era

l

Cus
tom

ize
d f

or

sp
ec

ific
 to

po
log

ies

Cus
tom

ize
d i

n

da
tat

yp
es

Cus
tom

ize
d i

n

co
nn

ec
tiv

ity Ultim
ate

:

cu
sto

mize
 th

e D
NN

to
fit

the
 ha

rdw
are

Inferences / secondIncreased specialization, high performance, and efficiency

Buffer

MPE

30 |

[Public]

Specialized FPGA Inference via Co-Design

Custom Dataflow Quantization Sparsity Circuit co-
design

Cus
tom

ize
d f

or

ML i
n g

en
era

l

Cus
tom

ize
d f

or

sp
ec

ific
 to

po
log

ies

Cus
tom

ize
d i

n

da
tat

yp
es

Cus
tom

ize
d i

n

co
nn

ec
tiv

ity Ultim
ate

:

cu
sto

mize
 th

e D
NN

to
fit

the
 ha

rdw
are

Inferences / secondIncreased specialization, high performance, and efficiency

Buffer

MPE

31 |

[Public]

dogcat catdog

Streaming Dataflow - Specializing for a Topology

• Hardware architecture mimics the topology
• All weights need to be accessible in parallel, but limited

activation buffering needed
• Customize everything to the specifics of the DNN
• Benefits

• Improved efficiency
• Low fixed latency

FPGA

DNN

32 |

[Public]

dogcat catdog

Streaming Dataflow - Specializing for a Topology

• Hardware architecture mimics the topology
• All weights need to be accessible in parallel, but limited

activation buffering needed
• Customize everything to the specifics of the DNN
• Benefits

• Improved efficiency
• Low fixed latency

FPGA

DNN

33 |

[Public]

dogcat catdog

Streaming Dataflow - Specializing for a Topology

• Hardware architecture mimics the topology
• All weights need to be accessible in parallel, but limited

activation buffering needed
• Customize everything to the specifics of the DNN
• Benefits

• Improved efficiency
• Low fixed latency

FPGA

DNN
allocated resource ~
compute requirement

per layer

34 |

[Public]

dogcat catdog

Streaming Dataflow - Specializing for a Topology

• Hardware architecture mimics the topology
• All weights need to be accessible in parallel, but limited

activation buffering needed
• Customize everything to the specifics of the DNN
• Benefits

• Improved efficiency
• Low fixed latency

FPGA

DNN
allocated resource ~
compute requirement

per layer

35 |

[Public]

dog

Streaming Dataflow - Specializing for a Topology

• Hardware architecture mimics the topology
• All weights need to be accessible in parallel, but limited

activation buffering needed
• Customize everything to the specifics of the DNN
• Benefits

• Improved efficiency
• Low fixed latency

FPGA

DNN
allocated resource ~
compute requirement

per layer

36 |

[Public]

dog

Streaming Dataflow - Specializing for a Topology

• Hardware architecture mimics the topology
• All weights need to be accessible in parallel, but limited

activation buffering needed
• Customize everything to the specifics of the DNN
• Benefits

• Improved efficiency
• Low fixed latency

FPGA

DNN

Dataflow can scale performance to meet the
application requirements

allocated resource ~
compute requirement

per layer

37 |

[Public]

Scaling to Meet Performance & Resource Requirements

38 |

[Public]

Scaling to Meet Performance & Resource Requirements

Dataflow (fold 10)

RAM
RAM

LUTs,
DSP

LUTs,
DSP

allocated resource ~
compute requirement

100k LUT
10M Rps

39 |

[Public]

Scaling to Meet Performance & Resource Requirements

Dataflow (fold 10)

RAM
RAM

LUTs,
DSP

LUTs,
DSP

Dataflow (fold 1000)

RAM
RAM

LUTs,
DSP

allocated resource ~
compute requirement

Scaling to fit into
available resources

100k LUT
10M Rps

1k LUT
100K Rps

40 |

[Public]

Scaling to Meet Performance & Resource Requirements

Dataflow (fold 10)

RAM
RAM

LUTs,
DSP

LUTs,
DSP

Dataflow (fold 1000)

RAM
RAM

LUTs,
DSP

allocated resource ~
compute requirement

Dataflow (fold 1)

RAM
RAM

LUTs,
DSP

LUTs,
DSP

Scaling to fit into
available resources

Scaling to maximize
throughput

100k LUT
10M Rps

1k LUT
100K Rps

1M LUT
100M Rps

41 |

[Public]

Scaling to Meet Performance & Resource Requirements

Dataflow (fold 10)

RAM
RAM

LUTs,
DSP

LUTs,
DSP

Dataflow (fold 1000)

RAM
RAM

LUTs,
DSP

allocated resource ~
compute requirement

Dataflow (fold 1)

RAM
RAM

LUTs,
DSP

LUTs,
DSP

• Scale performance & resources to meet the application requirements
• If resources allow, we can fully unfold the NN to create a circuit that inferences at clock speed

• Enables extra optimizations for fine-granular quantization and sparsity

Scaling to fit into
available resources

Scaling to maximize
throughput

100k LUT
10M Rps

1k LUT
100K Rps

1M LUT
100M Rps

42 |

[Public]

Specialized FPGA Inference via Co-Design

Custom Dataflow Quantization Sparsity Circuit co-
design

Cus
tom

ize
d f

or

ML i
n g

en
era

l

Cus
tom

ize
d f

or

sp
ec

ific
 to

po
log

ies

Cus
tom

ize
d i

n

da
tat

yp
es

Cus
tom

ize
d i

n

co
nn

ec
tiv

ity Ultim
ate

:

Cus
tom

ize
 th

e D
NN

to
fit

the
 ha

rdw
are

Inferences / secondIncreased specialization, high performance, and efficiency

Buffer

MPE

43 |

[Public]

Specialized FPGA Inference via Co-Design

Custom Dataflow Quantization Sparsity Circuit co-
design

Cus
tom

ize
d f

or

ML i
n g

en
era

l

Cus
tom

ize
d f

or

sp
ec

ific
 to

po
log

ies

Cus
tom

ize
d i

n

da
tat

yp
es

Cus
tom

ize
d i

n

co
nn

ec
tiv

ity Ultim
ate

:

Cus
tom

ize
 th

e D
NN

to
fit

the
 ha

rdw
are

Inferences / secondIncreased specialization, high performance, and efficiency

Buffer

MPE

44 |

[Public]

Benefits of Quantization on FPGAs

On-chip weights
~64 M
~16 M
~8 M
~2 M

Precision
1b
4b
8b
32b

AMD UltraScale+ MPSoC ZU19EG (conservative estimates)

Approx. Peak GOPS
64 000
16 000
4 000
300

compute memory

45 |

[Public]

Benefits of Quantization on FPGAs

On-chip weights
~64 M
~16 M
~8 M
~2 M

Precision
1b
4b
8b
32b

AMD UltraScale+ MPSoC ZU19EG (conservative estimates)

Approx. Peak GOPS
64 000
16 000
4 000
300

memory

46 |

[Public]

Benefits of Quantization on FPGAs

On-chip weights
~64 M
~16 M
~8 M
~2 M

Precision
1b
4b
8b
32b

AMD UltraScale+ MPSoC ZU19EG (conservative estimates)

Approx. Peak GOPS
64 000
16 000
4 000
300

200x

memory

47 |

[Public]

Benefits of Quantization on FPGAs

On-chip weights
~64 M
~16 M
~8 M
~2 M

Precision
1b
4b
8b
32b

AMD UltraScale+ MPSoC ZU19EG (conservative estimates)

Approx. Peak GOPS
64 000
16 000
4 000
300

200x

Trillions of
quantized

operations per
second

memory

48 |

[Public]

Benefits of Quantization on FPGAs

On-chip weights
~64 M
~16 M
~8 M
~2 M

Precision
1b
4b
8b
32b

AMD UltraScale+ MPSoC ZU19EG (conservative estimates)

Approx. Peak GOPS
64 000
16 000
4 000
300

200x

Trillions of
quantized

operations per
second

49 |

[Public]

Benefits of Quantization on FPGAs

On-chip weights
~64 M
~16 M
~8 M
~2 M

Precision
1b
4b
8b
32b

AMD UltraScale+ MPSoC ZU19EG (conservative estimates)

30x
Approx. Peak GOPS
64 000
16 000
4 000
300

200x

Trillions of
quantized

operations per
second

50 |

[Public]

Benefits of Quantization on FPGAs

On-chip weights
~64 M
~16 M
~8 M
~2 M

Precision
1b
4b
8b
32b

AMD UltraScale+ MPSoC ZU19EG (conservative estimates)

30x
Approx. Peak GOPS
64 000
16 000
4 000
300

200x

Trillions of
quantized

operations per
second

Weights can
stay entirely

on-chip

51 |

[Public]

Granularity of Customizing Arithmetic

MPE

INT8 weights

INT8 activations
Weights Act.

Layer 1 INT8 INT8

Layer 2 INT8 INT8

Layer 3 INT8 INT8

…

INT8 weights
INT2

INT4

INT2 activations
INT3 activations

INT5 activations
Weights Act.

Layer 1 INT8 INT2

Layer 2 INT2 INT3

Layer 3 INT4 INT5

…

Dataflow

MPE

52 |

[Public]

Granularity of Customizing Arithmetic

Dataflow architectures can exploit custom arithmetic at a finer granularity
- even per-neuron and per-synapse custom arithmetic with full unfolding

MPE

INT8 weights

INT8 activations
Weights Act.

Layer 1 INT8 INT8

Layer 2 INT8 INT8

Layer 3 INT8 INT8

…

INT8 weights
INT2

INT4

INT2 activations
INT3 activations

INT5 activations
Weights Act.

Layer 1 INT8 INT2

Layer 2 INT2 INT3

Layer 3 INT4 INT5

…

Dataflow

MPE

53 |

[Public]

Specialized FPGA Inference via Co-Design

Custom Dataflow Quantization Sparsity Circuit co-
design

Cus
tom

ize
d f

or

ML i
n g

en
era

l

Cus
tom

ize
d f

or

sp
ec

ific
 to

po
log

ies

Cus
tom

ize
d i

n

da
tat

yp
es

Cus
tom

ize
d i

n

co
nn

ec
tiv

ity Ultim
ate

:

Cus
tom

ize
 th

e D
NN

to
fit

the
 ha

rdw
are

Inferences / secondIncreased specialization, high performance, and efficiency

Buffer

MPE

54 |

[Public]

Specialized FPGA Inference via Co-Design

Custom Dataflow Quantization Sparsity Circuit co-
design

Cus
tom

ize
d f

or

ML i
n g

en
era

l

Cus
tom

ize
d f

or

sp
ec

ific
 to

po
log

ies

Cus
tom

ize
d i

n

da
tat

yp
es

Cus
tom

ize
d i

n

co
nn

ec
tiv

ity Ultim
ate

:

Cus
tom

ize
 th

e D
NN

to
fit

the
 ha

rdw
are

Inferences / secondIncreased specialization, high performance, and efficiency

Buffer

MPE

55 |

[Public]

Sparsity

• DNNs are naturally sparse
• Zero- or near-zero weights, ReLU activations…
• Multiplications with zero can be skipped =>

reduces compute load

• Sparse topologies result in irregular compute &
memory access patterns
• Hard to accelerate on vector- or matrix-based

execution units
• Structured sparsity better, but limits benefits

56 |

[Public]

Sparsity

• DNNs are naturally sparse
• Zero- or near-zero weights, ReLU activations…
• Multiplications with zero can be skipped =>

reduces compute load

• Sparse topologies result in irregular compute &
memory access patterns
• Hard to accelerate on vector- or matrix-based

execution units
• Structured sparsity better, but limits benefits

Dense
Dataflow
on FPGA

Sparse
Dataflow
on FPGA

• Fully-unrolled streaming dataflow can also
exploit unstructured sparsity
• Each neuron & synapse has its own hardware

57 |

[Public]

ER
R

O
R

COMPUTE COST

Error vs Compute Cost

Float 8-bit Reduced Precision

Design Trade-offs with Quantization + Sparsity

58 |

[Public]

ER
R

O
R

COMPUTE COST

Error vs Compute Cost

Float 8-bit Reduced Precision

Design Trade-offs with Quantization + Sparsity
Different
network
topologies

59 |

[Public]

ER
R

O
R

COMPUTE COST

Error vs Compute Cost

Float 8-bit Reduced Precision

Design Trade-offs with Quantization + Sparsity

Floating point
networks

60 |

[Public]

ER
R

O
R

COMPUTE COST

Error vs Compute Cost

Float 8-bit Reduced Precision

Design Trade-offs with Quantization + Sparsity

Floating point
networks

8-bit networks

61 |

[Public]

ER
R

O
R

COMPUTE COST

Error vs Compute Cost

Float 8-bit Reduced Precision

Design Trade-offs with Quantization + Sparsity

Floating point
networks

8-bit networks

Sparse +
quantized
networks (<8b)

62 |

[Public]

ER
R

O
R

COMPUTE COST

Error vs Compute Cost

Float 8-bit Reduced Precision

Design Trade-offs with Quantization + Sparsity

Pareto frontier

63 |

[Public]

ER
R

O
R

COMPUTE COST

Error vs Compute Cost

Float 8-bit Reduced Precision

Design Trade-offs with Quantization + Sparsity

Use quantization + sparsity which
• Provides required accuracy
• At minimal computational cost

Pareto frontier

64 |

[Public]

ER
R

O
R

COMPUTE COST

Error vs Compute Cost

Float 8-bit Reduced Precision

Design Trade-offs with Quantization + Sparsity

Use quantization + sparsity which
• Provides required accuracy
• At minimal computational cost

Pareto frontier FINN

65 |

[Public]

Framework: From DNN to FPGA Deployment

• Quantization-aware training for DNNs
• Library of common quantized layers
• Includes pre-trained examples

• Perform optimizations
• Assemble parameterized HLS/RTL modules
• Generate a DNN hardware IP

FINN Compiler
QNN-to-accelerator

Deployment
Verification, integration...

Brevitas
Training in PyTorch

Algorithmic optimizations

QONNX • Quantized NN exchange format + toolkit

• Run RTL testbenches to simulate IP
• System-level integration in Vivado IPI
• Rapid prototyping with PYNQ

other quantizers
(QKeras, HAWQ)

FINN

66 |

[Public]

Post-Training Quantization

Brevitas:
A PyTorch Library for Neural Network Quantization

FP32 INT

https://github.com/Xilinx/brevitas

https://github.com/Xilinx/brevitas

67 |

[Public]

Post-Training Quantization

Brevitas:
A PyTorch Library for Neural Network Quantization

Quantization-Aware Training:
add quantization

resize layers
change hyperparameters

retrain
FP32 INT

https://github.com/Xilinx/brevitas

https://github.com/Xilinx/brevitas

68 |

[Public]

Post-Training Quantization

Brevitas:
A PyTorch Library for Neural Network Quantization

Precision
Preset or
learned

Quantization-Aware Training:
add quantization

resize layers
change hyperparameters

retrain
FP32 INT

https://github.com/Xilinx/brevitas

https://github.com/Xilinx/brevitas

69 |

[Public]

Post-Training Quantization

Brevitas:
A PyTorch Library for Neural Network Quantization

Precision
Preset or
learned

Scaling Factors
Granularities,
strategies and
constraints

Quantization-Aware Training:
add quantization

resize layers
change hyperparameters

retrain
FP32 INT

https://github.com/Xilinx/brevitas

https://github.com/Xilinx/brevitas

70 |

[Public]

Post-Training Quantization

Brevitas:
A PyTorch Library for Neural Network Quantization

Precision
Preset or
learned

Scaling Factors
Granularities,
strategies and
constraints

Target Tensors
Weights,
activations,
accumulators

Quantization-Aware Training:
add quantization

resize layers
change hyperparameters

retrain
FP32 INT

https://github.com/Xilinx/brevitas

https://github.com/Xilinx/brevitas

71 |

[Public]

Post-Training Quantization

Brevitas:
A PyTorch Library for Neural Network Quantization

Precision
Preset or
learned

Scaling Factors
Granularities,
strategies and
constraints

Target Tensors
Weights,
activations,
accumulators

Export to ONNX
To import into the
FINN compiler +
various backends

Quantization-Aware Training:
add quantization

resize layers
change hyperparameters

retrain
FP32 INT

https://github.com/Xilinx/brevitas

https://github.com/Xilinx/brevitas

72 |

[Public]

A Brevitas showcase: Accumulator-Aware Quantization (A2Q)

• Cost of accumulators can be dominant for few-bit quantization
• Can we constrain weights to bound the max accumulator size?

• Yes! Via Hölder’s inequality or zero-centered range analysis
• See A2Q [7] and A2Q+ [8] for details J

• A2Q and A2Q+ implementations are open-sourced as part of Brevitas
• >>> from brevitas.nn import QuantConv2d
• >>> from brevitas.quant import

Int8AccumulatorAwareWeightQuant
• >>> conv = QuantConv2d(4, 4, 3,

weight_quant=Int8AccumulatorAwareWeightQuant)

[3, 3]

[-384, 381]

[-128,
127]

[-128,
127]

[7, 7] [-1280,
1270]

[-896,
889]

4-bit weights and activations using 8-bit residuals and visible layers

73 |

[Public]

QONNX:
Flexible quantized NNs in ONNX + related tools

https://github.com/fastmachinelearning/qonnx

Brevitas QKeras HAWQ

QONNX

FINNhls4ml

• Custom ONNX ops to represent arbitrary-bit
uniform quantization
• Standard ONNX only supports 8/16-bit

• ONNX-based common exchange format for QNNs
• Meeting point between quantization frameworks and

backends
• Infrastructure for manipulating + verifying custom

ONNX graphs
• Including an own «model zoo» of quantized models
• Co-maintained by AMD RAD & FastML

model
zoo

https://github.com/fastmachinelearning/qonnx

74 |

[Public]

build.DataflowBuildConfig(
 # target performance and clock frequency
 target_fps = 100 000 000,
 synth_clk_period_ns = 5.0,
 # target FPGA part number (e.g. for ZCU104)
 fpga_part = "xczu7ev-ffvc1156-2-e",
 # ...
)

4 Network optimizations: constant folding, streamlining

4 Compute folding with respect to throughput and resource constraints

4 Operator mapping and synthesis (via HLS and RTL op library)

4 Assembly of pipelined dataflow IP with AXI stream interfaces

Quantized NN (QONNX)

Vivado IP

Compiler:
From QONNX to hardware

FINN Compiler

Build configuration

https://github.com/Xilinx/finn

https://github.com/Xilinx/finn

75 |

[Public]

build.DataflowBuildConfig(
 # target performance and clock frequency
 target_fps = 100 000 000,
 synth_clk_period_ns = 5.0,
 # target FPGA part number (e.g. for ZCU104)
 fpga_part = "xczu7ev-ffvc1156-2-e",
 # ...
)

4 Network optimizations: constant folding, streamlining

4 Compute folding with respect to throughput and resource constraints

4 Operator mapping and synthesis (via HLS and RTL op library)

4 Assembly of pipelined dataflow IP with AXI stream interfaces

Quantized NN (QONNX)

Vivado IP

Compiler:
From QONNX to hardware

FINN Compiler

Build configuration

https://github.com/Xilinx/finn

Many similarities and differences versus hls4ml
Ongoing collaboration around common frontend (QONNX), knowledge sharing and joint

publications since 2020

https://github.com/Xilinx/finn

76 |

[Public]

NIDS Results

Topology / #layers / #OPs
Datatype
Accuracy

Vitis AI
MLP / 3 / 92 kOPs

8b & 8b

92.3%

Matrix of Processing
Engines

Performance
Throughput

Latency (compute only)
22 kinfps

26 us

Resources
Compute (kLUTs, DSPs*)
Memory (BRAM, URAM**)

Clock

122,1124

290, 92

300/600 MHz

Dataflow + Quantization
+ Sparsity

Inferences / secondIncreased specialization, high performance, and efficiency

Mapped on UltraScale+, 16nm FPGA, all within the same SLR.
*DSPs: 8b or 16b Multiply Accumulates
**BRAMs: 36kb, URAM: 288kbit embedded SRAM blocks

77 |

[Public]

NIDS Results

Topology / #layers / #OPs
Datatype
Accuracy

Vitis AI
MLP / 3 / 92 kOPs

8b & 8b

92.3%

MLP / 3 / 92 kOPs

2b & 2b

91.9%

Matrix of Processing
Engines

Performance
Throughput

Latency (compute only)
22 kinfps

26 us

Resources
Compute (kLUTs, DSPs*)
Memory (BRAM, URAM**)

Clock

122,1124

290, 92

300/600 MHz

Dataflow + Quantization
+ Sparsity

Inferences / secondIncreased specialization, high performance, and efficiency

Mapped on UltraScale+, 16nm FPGA, all within the same SLR.
*DSPs: 8b or 16b Multiply Accumulates
**BRAMs: 36kb, URAM: 288kbit embedded SRAM blocks

78 |

[Public]

NIDS Results

Topology / #layers / #OPs
Datatype
Accuracy

Vitis AI
MLP / 3 / 92 kOPs

8b & 8b

92.3%

MLP / 3 / 92 kOPs

2b & 2b

91.9%

Matrix of Processing
Engines

Performance
Throughput

Latency (compute only)
25.3 Minfps

160 ns

22 kinfps

26 us

Resources
Compute (kLUTs, DSPs*)
Memory (BRAM, URAM**)

Clock

122,1124

290, 92

300/600 MHz

Dataflow + Quantization
+ Sparsity

Inferences / secondIncreased specialization, high performance, and efficiency

Mapped on UltraScale+, 16nm FPGA, all within the same SLR.
*DSPs: 8b or 16b Multiply Accumulates
**BRAMs: 36kb, URAM: 288kbit embedded SRAM blocks

Fold 8

79 |

[Public]

NIDS Results

Topology / #layers / #OPs
Datatype
Accuracy

Vitis AI
MLP / 3 / 92 kOPs

8b & 8b

92.3%

MLP / 3 / 92 kOPs

2b & 2b

91.9%

Matrix of Processing
Engines

Performance
Throughput

Latency (compute only)
25.3 Minfps

160 ns

22 kinfps

26 us

Resources
Compute (kLUTs, DSPs*)
Memory (BRAM, URAM**)

Clock

122,1124

290, 92

300/600 MHz

44, 0

166, 0

203 MHz

Dataflow + Quantization
+ Sparsity

Inferences / secondIncreased specialization, high performance, and efficiency

Mapped on UltraScale+, 16nm FPGA, all within the same SLR.
*DSPs: 8b or 16b Multiply Accumulates
**BRAMs: 36kb, URAM: 288kbit embedded SRAM blocks

Fold 8

80 |

[Public]

NIDS Results

Topology / #layers / #OPs
Datatype
Accuracy

Vitis AI
MLP / 3 / 92 kOPs

8b & 8b

92.3%

MLP / 3 / 92 kOPs

2b & 2b

91.9%

Matrix of Processing
Engines

Performance
Throughput

Latency (compute only)
300 Minfps

18 ns

25.3 Minfps

160 ns

22 kinfps

26 us

Resources
Compute (kLUTs, DSPs*)
Memory (BRAM, URAM**)

Clock

122,1124

290, 92

300/600 MHz

44, 0

166, 0

203 MHz

10, 0

0, 0

300 MHz

Dataflow + Quantization
+ Sparsity

Inferences / secondIncreased specialization, high performance, and efficiency

Mapped on UltraScale+, 16nm FPGA, all within the same SLR.
*DSPs: 8b or 16b Multiply Accumulates
**BRAMs: 36kb, URAM: 288kbit embedded SRAM blocks

Fold 8 Unfolded

81 |

[Public]

Specialized FPGA Inference via Co-Design

Custom Dataflow Quantization Sparsity Circuit co-
design

Cus
tom

ize
d f

or

ML i
n g

en
era

l

Cus
tom

ize
d f

or

sp
ec

ific
 to

po
log

ies

Cus
tom

ize
d i

n

da
tat

yp
es

Cus
tom

ize
d i

n

co
nn

ec
tiv

ity Ultim
ate

:

Cus
tom

ize
 th

e D
NN

to
fit

the
 ha

rdw
are

Inferences / secondIncreased specialization, high performance, and efficiency

Buffer

MPE

82 |

[Public]

Specialized FPGA Inference via Co-Design

Custom Dataflow Quantization Sparsity Circuit co-
design

Cus
tom

ize
d f

or

ML i
n g

en
era

l

Cus
tom

ize
d f

or

sp
ec

ific
 to

po
log

ies

Cus
tom

ize
d i

n

da
tat

yp
es

Cus
tom

ize
d i

n

co
nn

ec
tiv

ity Ultim
ate

:

Cus
tom

ize
 th

e D
NN

to
fit

the
 ha

rdw
are

Inferences / secondIncreased specialization, high performance, and efficiency

Buffer

MPE

83 |

[Public]

Bottom-Up: What maps to a 6:1 LUT?

?
PyTorch FPGA

84 |

[Public]

Quantized Neurons as Truth Tables

Total input: 6 bits
Total output: 1 bit

PyTorch FPGA

85 |

[Public]

Quantized Neurons as Truth Tables

Total dynamic input 𝑖𝑛_𝑏𝑖𝑡𝑠: 6 bits
Total output 𝑜𝑢𝑡_𝑏𝑖𝑡𝑠: 1 bit

Total input: 6 bits
Total output: 1 bit

PyTorch FPGA

86 |

[Public]

Quantized Neurons as Truth Tables

Total dynamic input 𝑖𝑛_𝑏𝑖𝑡𝑠: 6 bits
Total output 𝑜𝑢𝑡_𝑏𝑖𝑡𝑠: 1 bit

Total input: 6 bits
Total output: 1 bit

PyTorch FPGA

convert
(enumerate inputs)

87 |

[Public]

Quantized Neurons as Truth Tables

Total dynamic input 𝑖𝑛_𝑏𝑖𝑡𝑠: 6 bits
Total output 𝑜𝑢𝑡_𝑏𝑖𝑡𝑠: 1 bit

Total input: 6 bits
Total output: 1 bit

PyTorch FPGA

convert
(enumerate inputs)

88 |

[Public]

Quantized Neurons as Truth Tables

Neuron Equivalent (NEQ)

Total dynamic input 𝑖𝑛_𝑏𝑖𝑡𝑠: 6 bits
Total output 𝑜𝑢𝑡_𝑏𝑖𝑡𝑠: 1 bit

Total input: 6 bits
Total output: 1 bit

PyTorch FPGA

convert
(enumerate inputs)

Hardware Building Block (HBB)

89 |

[Public]

Quantized Neurons as Truth Tables

Neuron Equivalent (NEQ)

Total dynamic input 𝑖𝑛_𝑏𝑖𝑡𝑠: 6 bits
Total output 𝑜𝑢𝑡_𝑏𝑖𝑡𝑠: 1 bit

Total input: 6 bits
Total output: 1 bit

PyTorch FPGA

convert
(enumerate inputs)

Hardware cost: 1 x LUT6
Generalized cost: 𝑜𝑢𝑡_𝑏𝑖𝑡𝑠 ⋅ 2!"_$!%&

Hardware Building Block (HBB)

90 |

[Public]

LogicNets at a Glance

𝛴 QReLU
6 x 2-bit
inputs

float

weights

2-bit
output

Batch
Norm

PyTorch FPGA

91 |

[Public]

LogicNets at a Glance

𝛴 QReLU
6 x 2-bit
inputs

float

weights

2-bit
output

Batch
Norm

12:2 NEQ

12:2 NEQ

12:2 NEQ
...

PyTorch FPGA

92 |

[Public]

LogicNets at a Glance

𝛴 QReLU
6 x 2-bit
inputs

float

weights

2-bit
output

Batch
Norm

inputs 32
neurons

32
neurons

64
neurons

6 connections
per neuron

6 connections
per neuron

6 connections
per neuron

2 bits per element 2 bits per neuron 2 bits per neuron 2 bits per neuron

outputs

12:2 NEQ

12:2 NEQ

12:2 NEQ
...

PyTorch FPGA

93 |

[Public]

LogicNets at a Glance

𝛴 QReLU
6 x 2-bit
inputs

float

weights

2-bit
output

Batch
Norm

inputs 32
neurons

32
neurons

64
neurons

6 connections
per neuron

6 connections
per neuron

6 connections
per neuron

2 bits per element 2 bits per neuron 2 bits per neuron 2 bits per neuron

outputs

12:2 NEQ

12:2 NEQ

12:2 NEQ
...

PyTorch FPGA

LUT

LUT

LUT
LUTLUT

94 |

[Public]

LogicNets at a Glance

𝛴 QReLU
6 x 2-bit
inputs

float

weights

2-bit
output

Batch
Norm

inputs 32
neurons

32
neurons

64
neurons

6 connections
per neuron

6 connections
per neuron

6 connections
per neuron

2 bits per element 2 bits per neuron 2 bits per neuron 2 bits per neuron

outputs

12:2 NEQ

12:2 NEQ

12:2 NEQ
...

PyTorch FPGA

LUT

LUT

LUT
LUTLUT

95 |

[Public]

LogicNets at a Glance

𝛴 QReLU
6 x 2-bit
inputs

float

weights

2-bit
output

Batch
Norm

inputs 32
neurons

32
neurons

64
neurons

6 connections
per neuron

6 connections
per neuron

6 connections
per neuron

2 bits per element 2 bits per neuron 2 bits per neuron 2 bits per neuron

outputs

12:2 NEQ

12:2 NEQ

12:2 NEQ
...

PyTorch FPGA

LUT

LUT

LUT
LUTLUT

96 |

[Public]

NIDS Results

Topology / #layers / #OPs
Datatype
Accuracy

Vitis AI
MLP / 3 / 92kOPs

8b & 8b

92.3%

Matrix of Processing
Engines

Performance
Throughput

Latency (compute only)
22 kinfps

26 us

Resources
Compute (kLUTs, DSPs*)
Memory (BRAM, URAM**)

Clock

122,1124

290, 92

300/600 MHz

Dataflow + Quantization
+ Sparsity

Co-Designed
Sparse LUT Circuit

LogicNets
Circuit / 4 / 15.4kOPs

32b & 2b

91.3%

471 Minfps

9 ns

16, 0

0, 0

471 MHz

Inferences / secondIncreased specialization, high performance, and efficiency

Mapped on UltraScale+, 16nm FPGA, all within the same SLR.
*DSPs: 8b or 16b Multiply Accumulates
**BRAMs: 36kb, URAM: 288kbit embedded SRAM blocks

MLP / 3 / 92 kOPs

2b & 2b

91.9%

300 Minfps

18 ns

25.3 Minfps

160 ns

44, 0

166, 0

203 MHz

10, 0

0, 0

300 MHz

Fold 8 Unfolded

97 |

[Public]

Config. Acc.
[%] LUT Fmax

[MHz]
Latency

[ns]
High accuracy ≥73%

Duarte et al.
[2] 75 88k

+1k DSPs
200

50

FINN W8A8 75.5 581k 115

FINN W4A4 73.6 47k 85

NullaNet-L [3] 73.4 11.8k 436 -

Medium accuracy ≥71%

FINN W2A2 71.0 3k 200 75

NullaNet-M [3] 72.2 1.6k 841 -

Low accuracy <71%

NullaNet-S [3] 69.7 39 2,079 -

LogicNets for Science: Jet Substructure Classification [2]

Synthesized with Vivado 2019.2; Fmax equals inference rate
All designs are fully pipelined

Related Work LogicNets

98 |

[Public]

Config. Acc.
[%] LUT Fmax

[MHz]
Latency

[ns]
High accuracy ≥73%

Duarte et al.
[2] 75 88k

+1k DSPs
200

50

FINN W8A8 75.5 581k 115

FINN W4A4 73.6 47k 85

NullaNet-L [3] 73.4 11.8k 436 -

Medium accuracy ≥71%

FINN W2A2 71.0 3k 200 75

NullaNet-M [3] 72.2 1.6k 841 -

Low accuracy <71%

NullaNet-S [3] 69.7 39 2,079 -

LogicNets for Science: Jet Substructure Classification [2]

Synthesized with Vivado 2019.2; Fmax equals inference rate
All designs are fully pipelined

Config. Acc.
[%] LUT Fmax

[MHz]
Latency

[ns]
High accuracy ≥73%

M2.6 73.0 1.6k 666
(735) 6

Related Work LogicNets

99 |

[Public]

Config. Acc.
[%] LUT Fmax

[MHz]
Latency

[ns]
High accuracy ≥73%

Duarte et al.
[2] 75 88k

+1k DSPs
200

50

FINN W8A8 75.5 581k 115

FINN W4A4 73.6 47k 85

NullaNet-L [3] 73.4 11.8k 436 -

Medium accuracy ≥71%

FINN W2A2 71.0 3k 200 75

NullaNet-M [3] 72.2 1.6k 841 -

Low accuracy <71%

NullaNet-S [3] 69.7 39 2,079 -

LogicNets for Science: Jet Substructure Classification [2]

Synthesized with Vivado 2019.2; Fmax equals inference rate
All designs are fully pipelined

Config. Acc.
[%] LUT Fmax

[MHz]
Latency

[ns]
High accuracy ≥73%

M2.6 73.0 1.6k 666
(735) 6

Related Work LogicNets

Medium accuracy ≥71%

S2.8 72.1 315 666
(882) 3

S2.1 71.3 86 666
(1,350) 3

100 |

[Public]

Config. Acc.
[%] LUT Fmax

[MHz]
Latency

[ns]
High accuracy ≥73%

Duarte et al.
[2] 75 88k

+1k DSPs
200

50

FINN W8A8 75.5 581k 115

FINN W4A4 73.6 47k 85

NullaNet-L [3] 73.4 11.8k 436 -

Medium accuracy ≥71%

FINN W2A2 71.0 3k 200 75

NullaNet-M [3] 72.2 1.6k 841 -

Low accuracy <71%

NullaNet-S [3] 69.7 39 2,079 -

LogicNets for Science: Jet Substructure Classification [2]

Synthesized with Vivado 2019.2; Fmax equals inference rate
All designs are fully pipelined

Config. Acc.
[%] LUT Fmax

[MHz]
Latency

[ns]
High accuracy ≥73%

M2.6 73.0 1.6k 666
(735) 6

Related Work LogicNets

Medium accuracy ≥71%

S2.8 72.1 315 666
(882) 3

S2.1 71.3 86 666
(1,350) 3

Low accuracy <71%

S2.0 70.6 30 666
(1,876) 3

S 69.5 24 666
(1,984) 3

101 |

[Public]

LogicNets for Vision: MNIST

Config. Acc.
[%] LUT FMax

[MHz]
Latency

[ns] FPS

FINN [4]
LFC-max 98.4 83k

200

2,440 1.6M

FINN [4]
SFC-max 95.8 91k 310 12.4M

LUTNet [5] 97.9 58k
- 200M

Logic-shrunk [5] 97.8 55k

Config. Acc.
[%] LUT FMax

[MHz]
Latency

[ns] FPS

M 97.7 45k 517 38 517M

S 95.8 12k 458 9 458M

“FINN […] the fastest method for classifying MNIST at an accuracy of 98.4%,”
Petersen et al., NeurIPS’22 [6]

Related Work LogicNets

2

102 |

[Public]

Conclusion

• Co-design of NNs and FPGA HW can yield orders of magnitude more efficient inference
• Combination of streaming dataflow, quantization and sparsity
• Essential ingredients for the “long tail” of Pervasive AI

• Two key ingredients make NN/FPGA co-design technology accessible
• Open-source tools like Brevitas, FINN, hls4ml and LogicNets
• Ecosystem to build & share the technical expertise

• Fruitful AMD-FastML collaboration strengthens the ecosystem
• QONNX – active with Thea Aarestad, Sioni Summers ++
• MLPerf Tiny joint submission
• Multiple joint papers
• …more to come!

Custom Dataflow Quantization Sparsity Circuit co-
design

Internships available at AMD RADICAL Dublin!
Talk to me or e-mail your CV: yamanu@amd.com

mailto:yamanu@amd.com

103 |

[Public]

References

1. Moustafa, Nour, and Jill Slay. "UNSW-NB15: a comprehensive data set for network intrusion detection
systems (UNSW-NB15 network data set)." 2015 military communications and information systems
conference (MilCIS). IEEE, 2015.

2. Duarte et al., “Fast inference of deep neural networks in FPGAs for particle physics,” Journal of
Instrumentation, vol. 13, no. 07, 2018.

3. Nazemi et al. "NullaNet Tiny: Ultra-low-latency DNN inference through fixed-function combinational logic."
FCCM, 2021.

4. Wang et al. "Logic Shrinkage: Learned Connectivity Sparsification for LUT-Based Neural Networks." ACM
TRETS, 2023.

5. Umuroglu, Yaman, et al. ”FINN: A framework for fast, scalable binarized neural network inference."
FPGA. 2017.

6. Petersen et al. "Deep Differentiable Logic Gate Networks." NeurIPS, 2022.
7. Colbert et al. “A2Q: Accumulator-Aware Quantization with Guaranteed Overflow Avoidance”, ICCV, 2023.
8. Colbert et al. “A2Q+: Improving Accumulator-Aware Weight Quantization”, ICML, 2024 (to appear).

104 |

[Public]

COPYRIGHT AND DISCLAIMER

©2024 Advanced Micro Devices, Inc. All rights reserved.

AMD, the AMD Arrow logo, and combinations thereof are trademarks of Advanced Micro Devices, Inc. Other product names used in this publication are for
identification purposes only and may be trademarks of their respective companies.

The information presented in this document is for informational purposes only and may contain technical inaccuracies, omissions, and typographical errors.
The information contained herein is subject to change and may be rendered inaccurate releases, for many reasons, including but not limited to product and
roadmap changes, component and motherboard version changes, new model and/or product differences between differing manufacturers, software
changes, BIOS flashes, firmware upgrades, or the like. Any computer system has risks of security vulnerabilities that cannot be completely prevented or
mitigated. AMD assumes no obligation to update or otherwise correct or revise this information. However, AMD reserves the right to revise this information
and to make changes from time to time to the content hereof without obligation of AMD to notify any person of such revisions or changes.

THIS INFORMATION IS PROVIDED 'AS IS." AMD MAKES NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE CONTENTS HEREOF
AND ASSUMES NO RESPONSIBILITY FOR ANY INACCURACIES, ERRORS, OR OMISSIONS THAT MAY APPEAR IN THIS INFORMATION. AMD
SPECIFICALLY DISCLAIMS ANY IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, OR FITNESS FOR ANY PARTICULAR
PURPOSE. IN NO EVENT WILL AMD BE LIABLE TO ANY PERSON FOR ANY RELIANCE, DIRECT, INDIRECT, SPECIAL, OR OTHER
CONSEQUENTIAL DAMAGES ARISING FROM THE USE OF ANY INFORMATION CONTAINED HEREIN, EVEN IF AMD IS EXPRESSLY ADVISED OF
THE POSSIBILITY OF SUCH DAMAGES.

