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• Integrated Comms and AI Lab (RADICAL)
• Established 15 years ago
• ~20 researchers plus university program

• 5 different locations
• Highly active internship program

• Focus: Communications and AI
• Building systems, architectural exploration, 

algorithmic optimizations, benchmarking
• In collaboration with partners, customers, and 

universities
• ETH Zürich, Paderborn University, Imperial College, KIT, 

NTNU, Politecnico di Milano, NUS, University of Sydney

AMD Research and Advanced Development (RAD)
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Pervasive AI

Adapted from TED Talk: Andrew Ng “How AI could empower any business”
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Pervasive AI

Adapted from TED Talk: Andrew Ng “How AI could empower any business”

ImageNet
ChatGPT

Recommenders

Communications, medical, aerospace, IoT, sensor 
intelligence, ML for science…

Broad spectrum of applications
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Pervasive AI: Diverse Requirements for Inference

Power

Cost
Real estate

JitterSystem I/O
Requirements

Complex pre/post-
processing

Fault
tolerance

…
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small resource footprint 
low power (<10W)
low latency (msec)

High Frequency Trading
ultra-low latency (ns)
no runtime, stream direct to HW
no jitter

ML for Physical Sciences
ultra-low latency (ns)
ultra-high throughput
fault tolerance

ML in Communications
very high throughput (100M/s)
no run-time, stream direct to HW
low latency (sub-msec)
combine with signal processing efficient adaptive
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Specialization is essential

Specialization 
of the DNN

Specialization 
of Hardware 
Architecture

Flexible arithmetic
+ interconnect

Large internal bandwidth

Lower compute+memory cost

Custom training techniques

Efficient & Adaptive 
ML Inference

via Co-Design

Tightly integrated 
IO+compute
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• FPGAs: the chameleon amongst the semiconductors…
• Customize IO interfaces
• Customize functionality
• Customize compute architectures & memory subsystems to meet performance or efficiency targets

• Flexible, adaptive, mostly homogeneous hardware architecture
• Enable post-production customization at the architectural level

Field-Programmable Gate Arrays (FPGAs)
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• FPGAs: the chameleon amongst the semiconductors…
• Customize IO interfaces
• Customize functionality
• Customize compute architectures & memory subsystems to meet performance or efficiency targets

• Flexible, adaptive, mostly homogeneous hardware architecture
• Enable post-production customization at the architectural level

Field-Programmable Gate Arrays (FPGAs)

Sea of programmable Lookup Tables (LUTs) ~millions

Programmable Interconnect

DSPs: n-bit MAC

Embedded SRAM: high bandwidth

Programmable IO
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Specialized FPGA Inference via Co-Design

Custom Dataflow Quantization Sparsity Full co-
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• MPE: Matrix of Processing Engines
• Popular layer-by-layer compute
• Batching to achieve high compute efficiency
• Customized for ML in general
• Specialized processing engines

• Operators
• ALU types 

• tensor-, matrix- or vector-based

DNN

Matrix of 
Processing 

Engines

MPEDMA

On-chip
buffering

MAC, VLIW, 
Vector Processor

MPE: Customizing for ML Workloads in General
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• MPE: Matrix of Processing Engines
• Popular layer-by-layer compute
• Batching to achieve high compute efficiency
• Customized for ML in general
• Specialized processing engines

• Operators
• ALU types 

• tensor-, matrix- or vector-based

DNN

Matrix of 
Processing 

Engines

MPEDMA

On-chip
buffering

MAC, VLIW, 
Vector Processor

MPE: Customizing for ML Workloads in General

MPEs can cater for a broad range of 
applications with one highly optimized 

architecture
Works well for computer vision and natural 

language processing
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Running Example: Network Intrusion Detection System (NIDS)

Network processing system

Network 
interface

L1-L3

Network 
interface

L1-L3

Packet 
processing/

feature 
extraction

Packet filter
drop/pass

Evaluated with the 
UNSW-NB15 dataset [1]

Traffic 
Classification

Throughput
5G (20Gbps) 30Minfps

100Gbps 150Minfps
400Gbps 600Minfps

Minfps: Million inferences per second
Assuming 64B/packet
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NIDS Results

Topology / #layers / #OPs 
Datatype
Accuracy

Vitis AI
MLP / 3 / 92kOPs

8b & 8b

92.3%

Matrix of Processing 
Engines

Mapped on UltraScale+, 16nm FPGA, all within the same SLR.
*DSPs: 8b or 16b Multiply Accumulates
**BRAMs: 36kb, URAM: 288kbit embedded SRAM blocks

Inferences / secondIncreased specialization, high performance, and efficiency
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NIDS Results

Topology / #layers / #OPs 
Datatype
Accuracy

Vitis AI
MLP / 3 / 92kOPs

8b & 8b

92.3%

Matrix of Processing 
Engines

Performance
Throughput

Latency (compute only)
22 kinfps

26 us

Resources
Compute (kLUTs, DSPs*)
Memory (BRAM, URAM**)

Clock

122,1124

290, 92

300/600 MHz

Mapped on UltraScale+, 16nm FPGA, all within the same SLR.
*DSPs: 8b or 16b Multiply Accumulates
**BRAMs: 36kb, URAM: 288kbit embedded SRAM blocks

Inferences / secondIncreased specialization, high performance, and efficiency
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dogcat catdog

Streaming Dataflow - Specializing for a Topology

• Hardware architecture mimics the topology
• All weights need to be accessible in parallel, but limited 

activation buffering needed
• Customize everything to the specifics of the DNN
• Benefits

• Improved efficiency
• Low fixed latency

FPGA

DNN
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dog

Streaming Dataflow - Specializing for a Topology

• Hardware architecture mimics the topology
• All weights need to be accessible in parallel, but limited 

activation buffering needed
• Customize everything to the specifics of the DNN
• Benefits

• Improved efficiency
• Low fixed latency

FPGA

DNN

Dataflow can scale performance to meet the 
application requirements

allocated resource ~ 
compute requirement

per layer
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Scaling to Meet Performance & Resource Requirements



38 |

[Public]

Scaling to Meet Performance & Resource Requirements

Dataflow (fold 10)

RAM
RAM

LUTs,
DSP

LUTs, 
DSP

allocated resource ~ 
compute requirement

100k LUT
10M Rps
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Dataflow (fold 10)

RAM
RAM

LUTs,
DSP

LUTs, 
DSP

Dataflow (fold 1000)

RAM
RAM

LUTs,
DSP

allocated resource ~ 
compute requirement

Dataflow (fold 1)

RAM
RAM

LUTs,
DSP

LUTs, 
DSP

Scaling to fit into 
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Scaling to Meet Performance & Resource Requirements

Dataflow (fold 10)

RAM
RAM

LUTs,
DSP

LUTs, 
DSP

Dataflow (fold 1000)

RAM
RAM

LUTs,
DSP

allocated resource ~ 
compute requirement

Dataflow (fold 1)

RAM
RAM

LUTs,
DSP

LUTs, 
DSP

• Scale performance & resources to meet the application requirements
• If resources allow, we can fully unfold the NN to create a circuit that inferences at clock speed

• Enables extra optimizations for fine-granular quantization and sparsity

Scaling to fit into 
available resources

Scaling to maximize 
throughput

100k LUT
10M Rps

1k LUT
100K Rps

1M LUT
100M Rps
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Benefits of Quantization on FPGAs

On-chip weights
~64 M
~16 M
~8 M
~2 M

Precision
1b
4b
8b
32b

AMD UltraScale+ MPSoC ZU19EG (conservative estimates)

Approx. Peak GOPS 
64 000
16 000
4 000
300

compute memory
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Benefits of Quantization on FPGAs

On-chip weights
~64 M
~16 M
~8 M
~2 M

Precision
1b
4b
8b
32b

AMD UltraScale+ MPSoC ZU19EG (conservative estimates)

30x
Approx. Peak GOPS 
64 000
16 000
4 000
300

200x

Trillions of 
quantized

operations per 
second

Weights can 
stay entirely 

on-chip
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Granularity of Customizing Arithmetic

MPE

INT8 weights

INT8 activations
Weights Act.

Layer 1 INT8 INT8

Layer 2 INT8 INT8

Layer 3 INT8 INT8

…

INT8 weights
INT2

INT4

INT2 activations
INT3 activations

INT5 activations
Weights Act.

Layer 1 INT8 INT2

Layer 2 INT2 INT3

Layer 3 INT4 INT5

…

Dataflow

MPE
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Granularity of Customizing Arithmetic

Dataflow architectures can exploit custom arithmetic at a finer granularity
- even per-neuron and per-synapse custom arithmetic with full unfolding

MPE

INT8 weights

INT8 activations
Weights Act.

Layer 1 INT8 INT8

Layer 2 INT8 INT8

Layer 3 INT8 INT8

…

INT8 weights
INT2

INT4

INT2 activations
INT3 activations

INT5 activations
Weights Act.

Layer 1 INT8 INT2

Layer 2 INT2 INT3

Layer 3 INT4 INT5

…

Dataflow

MPE
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Sparsity

• DNNs are naturally sparse
• Zero- or near-zero weights, ReLU activations…
• Multiplications with zero can be skipped => 

reduces compute load

• Sparse topologies result in irregular compute & 
memory access patterns
• Hard to accelerate on vector- or matrix-based 

execution units
• Structured sparsity better, but limits benefits
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Sparsity

• DNNs are naturally sparse
• Zero- or near-zero weights, ReLU activations…
• Multiplications with zero can be skipped => 

reduces compute load

• Sparse topologies result in irregular compute & 
memory access patterns
• Hard to accelerate on vector- or matrix-based 

execution units
• Structured sparsity better, but limits benefits

Dense
Dataflow
on FPGA

Sparse 
Dataflow 
on FPGA

• Fully-unrolled streaming dataflow can also 
exploit unstructured sparsity
• Each neuron & synapse has its own hardware
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Different 
network 
topologies
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ER
R

O
R

COMPUTE COST

Error vs Compute Cost

Float 8-bit Reduced Precision

Design Trade-offs with Quantization + Sparsity

Floating point 
networks

8-bit networks

Sparse + 
quantized 
networks (<8b)
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ER
R

O
R

COMPUTE COST

Error vs Compute Cost

Float 8-bit Reduced Precision

Design Trade-offs with Quantization + Sparsity

Use quantization + sparsity which
• Provides required accuracy
• At minimal computational cost

Pareto frontier
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ER
R

O
R

COMPUTE COST

Error vs Compute Cost

Float 8-bit Reduced Precision

Design Trade-offs with Quantization + Sparsity

Use quantization + sparsity which
• Provides required accuracy
• At minimal computational cost

Pareto frontier FINN



65 |

[Public]

Framework: From DNN to FPGA Deployment

• Quantization-aware training for DNNs
• Library of common quantized layers
• Includes pre-trained examples

• Perform optimizations
• Assemble parameterized HLS/RTL modules
• Generate a DNN hardware IP

FINN Compiler
QNN-to-accelerator

Deployment
Verification, integration...  

Brevitas
Training in PyTorch

Algorithmic optimizations

QONNX • Quantized NN exchange format + toolkit

• Run RTL testbenches to simulate IP
• System-level integration in Vivado IPI
• Rapid prototyping with PYNQ

other quantizers
(QKeras, HAWQ)

FINN
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Post-Training Quantization

Brevitas: 
A PyTorch Library for Neural Network Quantization

FP32 INT

https://github.com/Xilinx/brevitas

https://github.com/Xilinx/brevitas
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Post-Training Quantization

Brevitas: 
A PyTorch Library for Neural Network Quantization

Quantization-Aware Training:
add quantization

resize layers
change hyperparameters

retrain
FP32 INT

https://github.com/Xilinx/brevitas

https://github.com/Xilinx/brevitas
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Post-Training Quantization

Brevitas: 
A PyTorch Library for Neural Network Quantization

Precision
Preset or
learned

Quantization-Aware Training:
add quantization

resize layers
change hyperparameters

retrain
FP32 INT

https://github.com/Xilinx/brevitas

https://github.com/Xilinx/brevitas


69 |

[Public]

Post-Training Quantization

Brevitas: 
A PyTorch Library for Neural Network Quantization

Precision
Preset or
learned

Scaling Factors
Granularities, 
strategies and 
constraints

Quantization-Aware Training:
add quantization

resize layers
change hyperparameters

retrain
FP32 INT

https://github.com/Xilinx/brevitas

https://github.com/Xilinx/brevitas
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Post-Training Quantization

Brevitas: 
A PyTorch Library for Neural Network Quantization

Precision
Preset or
learned

Scaling Factors
Granularities, 
strategies and 
constraints

Target Tensors
Weights, 
activations,
accumulators

Quantization-Aware Training:
add quantization

resize layers
change hyperparameters

retrain
FP32 INT

https://github.com/Xilinx/brevitas

https://github.com/Xilinx/brevitas
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Post-Training Quantization

Brevitas: 
A PyTorch Library for Neural Network Quantization

Precision
Preset or
learned

Scaling Factors
Granularities, 
strategies and 
constraints

Target Tensors
Weights, 
activations,
accumulators

Export to ONNX
To import into the 
FINN compiler + 
various backends

Quantization-Aware Training:
add quantization

resize layers
change hyperparameters

retrain
FP32 INT

https://github.com/Xilinx/brevitas

https://github.com/Xilinx/brevitas
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A Brevitas showcase: Accumulator-Aware Quantization (A2Q)

• Cost of accumulators can be dominant for few-bit quantization
• Can we constrain weights to bound the max accumulator size?

• Yes! Via Hölder’s inequality or zero-centered range analysis
• See A2Q [7] and A2Q+ [8] for details J

• A2Q and A2Q+ implementations are open-sourced as part of Brevitas
• >>> from brevitas.nn import QuantConv2d
• >>> from brevitas.quant import 

Int8AccumulatorAwareWeightQuant
• >>> conv = QuantConv2d(4, 4, 3, 

weight_quant=Int8AccumulatorAwareWeightQuant)

[3, 3]

[-384, 381]

[-128,
127]

[-128,
127]

[7, 7] [-1280, 
1270]

[-896,
889]

4-bit weights and activations using 8-bit residuals and visible layers
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QONNX: 
Flexible quantized NNs in ONNX + related tools

https://github.com/fastmachinelearning/qonnx

Brevitas QKeras HAWQ

QONNX

FINNhls4ml

• Custom ONNX ops to represent arbitrary-bit 
uniform quantization
• Standard ONNX only supports 8/16-bit

• ONNX-based common exchange format for QNNs
• Meeting point between quantization frameworks and 

backends
• Infrastructure for manipulating + verifying custom

ONNX graphs
• Including an own «model zoo» of quantized models
• Co-maintained by AMD RAD & FastML

model
zoo

https://github.com/fastmachinelearning/qonnx
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build.DataflowBuildConfig(
    # target performance and clock frequency
    target_fps          = 100 000 000,
    synth_clk_period_ns = 5.0,
    # target FPGA part number (e.g. for ZCU104)
    fpga_part           = "xczu7ev-ffvc1156-2-e",
    # ...
)

4 Network optimizations: constant folding, streamlining

4 Compute folding with respect to throughput and resource constraints

4 Operator mapping and synthesis (via HLS and RTL op library)

4 Assembly of pipelined dataflow IP with AXI stream interfaces

Quantized NN (QONNX)

Vivado IP

Compiler: 
From QONNX to hardware

FINN Compiler

Build configuration

https://github.com/Xilinx/finn

https://github.com/Xilinx/finn
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build.DataflowBuildConfig(
    # target performance and clock frequency
    target_fps          = 100 000 000,
    synth_clk_period_ns = 5.0,
    # target FPGA part number (e.g. for ZCU104)
    fpga_part           = "xczu7ev-ffvc1156-2-e",
    # ...
)

4 Network optimizations: constant folding, streamlining

4 Compute folding with respect to throughput and resource constraints

4 Operator mapping and synthesis (via HLS and RTL op library)

4 Assembly of pipelined dataflow IP with AXI stream interfaces

Quantized NN (QONNX)

Vivado IP

Compiler: 
From QONNX to hardware

FINN Compiler

Build configuration

https://github.com/Xilinx/finn

Many similarities and differences versus hls4ml
Ongoing collaboration around common frontend (QONNX), knowledge sharing and joint 

publications since 2020

https://github.com/Xilinx/finn
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NIDS Results

Topology / #layers / #OPs 
Datatype
Accuracy

Vitis AI
MLP / 3 / 92 kOPs

8b & 8b

92.3%

Matrix of Processing 
Engines

Performance
Throughput

Latency (compute only)
22 kinfps

26 us

Resources
Compute (kLUTs, DSPs*)
Memory (BRAM, URAM**)

Clock

122,1124

290, 92

300/600 MHz

Dataflow + Quantization 
+ Sparsity

Inferences / secondIncreased specialization, high performance, and efficiency

Mapped on UltraScale+, 16nm FPGA, all within the same SLR.
*DSPs: 8b or 16b Multiply Accumulates
**BRAMs: 36kb, URAM: 288kbit embedded SRAM blocks
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NIDS Results

Topology / #layers / #OPs 
Datatype
Accuracy

Vitis AI
MLP / 3 / 92 kOPs

8b & 8b

92.3%

MLP / 3 / 92 kOPs

2b & 2b

91.9% 

Matrix of Processing 
Engines

Performance
Throughput

Latency (compute only)
22 kinfps

26 us

Resources
Compute (kLUTs, DSPs*)
Memory (BRAM, URAM**)

Clock

122,1124

290, 92

300/600 MHz

Dataflow + Quantization 
+ Sparsity

Inferences / secondIncreased specialization, high performance, and efficiency

Mapped on UltraScale+, 16nm FPGA, all within the same SLR.
*DSPs: 8b or 16b Multiply Accumulates
**BRAMs: 36kb, URAM: 288kbit embedded SRAM blocks
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NIDS Results

Topology / #layers / #OPs 
Datatype
Accuracy

Vitis AI
MLP / 3 / 92 kOPs

8b & 8b

92.3%

MLP / 3 / 92 kOPs

2b & 2b

91.9% 

Matrix of Processing 
Engines

Performance
Throughput

Latency (compute only)
25.3 Minfps

160 ns

22 kinfps

26 us

Resources
Compute (kLUTs, DSPs*)
Memory (BRAM, URAM**)

Clock

122,1124

290, 92

300/600 MHz

Dataflow + Quantization 
+ Sparsity

Inferences / secondIncreased specialization, high performance, and efficiency

Mapped on UltraScale+, 16nm FPGA, all within the same SLR.
*DSPs: 8b or 16b Multiply Accumulates
**BRAMs: 36kb, URAM: 288kbit embedded SRAM blocks

Fold 8
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NIDS Results

Topology / #layers / #OPs 
Datatype
Accuracy

Vitis AI
MLP / 3 / 92 kOPs

8b & 8b

92.3%

MLP / 3 / 92 kOPs

2b & 2b

91.9% 

Matrix of Processing 
Engines

Performance
Throughput

Latency (compute only)
25.3 Minfps

160 ns

22 kinfps

26 us

Resources
Compute (kLUTs, DSPs*)
Memory (BRAM, URAM**)

Clock

122,1124

290, 92

300/600 MHz

44, 0

166, 0

203 MHz

Dataflow + Quantization 
+ Sparsity

Inferences / secondIncreased specialization, high performance, and efficiency

Mapped on UltraScale+, 16nm FPGA, all within the same SLR.
*DSPs: 8b or 16b Multiply Accumulates
**BRAMs: 36kb, URAM: 288kbit embedded SRAM blocks

Fold 8
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NIDS Results

Topology / #layers / #OPs 
Datatype
Accuracy

Vitis AI
MLP / 3 / 92 kOPs

8b & 8b

92.3%

MLP / 3 / 92 kOPs

2b & 2b

91.9% 

Matrix of Processing 
Engines

Performance
Throughput

Latency (compute only)
300 Minfps

18 ns

25.3 Minfps

160 ns

22 kinfps

26 us

Resources
Compute (kLUTs, DSPs*)
Memory (BRAM, URAM**)

Clock

122,1124

290, 92

300/600 MHz

44, 0

166, 0

203 MHz

10, 0

0, 0

300 MHz

Dataflow + Quantization 
+ Sparsity

Inferences / secondIncreased specialization, high performance, and efficiency

Mapped on UltraScale+, 16nm FPGA, all within the same SLR.
*DSPs: 8b or 16b Multiply Accumulates
**BRAMs: 36kb, URAM: 288kbit embedded SRAM blocks

Fold 8 Unfolded
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Specialized FPGA Inference via Co-Design

Custom Dataflow Quantization Sparsity Circuit co-
design
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Inferences / secondIncreased specialization, high performance, and efficiency

Buffer

MPE
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Specialized FPGA Inference via Co-Design

Custom Dataflow Quantization Sparsity Circuit co-
design
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Inferences / secondIncreased specialization, high performance, and efficiency

Buffer

MPE
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Bottom-Up: What maps to a 6:1 LUT?

?
PyTorch FPGA
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Quantized Neurons as Truth Tables

Total input: 6 bits
Total output: 1 bit

PyTorch FPGA
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Quantized Neurons as Truth Tables

Total dynamic input 𝑖𝑛_𝑏𝑖𝑡𝑠: 6 bits
Total output 𝑜𝑢𝑡_𝑏𝑖𝑡𝑠: 1 bit

Total input: 6 bits
Total output: 1 bit

PyTorch FPGA
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Quantized Neurons as Truth Tables

Total dynamic input 𝑖𝑛_𝑏𝑖𝑡𝑠: 6 bits
Total output 𝑜𝑢𝑡_𝑏𝑖𝑡𝑠: 1 bit

Total input: 6 bits
Total output: 1 bit

PyTorch FPGA

convert
(enumerate inputs)
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Quantized Neurons as Truth Tables

Total dynamic input 𝑖𝑛_𝑏𝑖𝑡𝑠: 6 bits
Total output 𝑜𝑢𝑡_𝑏𝑖𝑡𝑠: 1 bit

Total input: 6 bits
Total output: 1 bit

PyTorch FPGA

convert
(enumerate inputs)
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Quantized Neurons as Truth Tables

Neuron Equivalent (NEQ)

Total dynamic input 𝑖𝑛_𝑏𝑖𝑡𝑠: 6 bits
Total output 𝑜𝑢𝑡_𝑏𝑖𝑡𝑠: 1 bit

Total input: 6 bits
Total output: 1 bit

PyTorch FPGA

convert
(enumerate inputs)

Hardware Building Block (HBB)
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Quantized Neurons as Truth Tables

Neuron Equivalent (NEQ)

Total dynamic input 𝑖𝑛_𝑏𝑖𝑡𝑠: 6 bits
Total output 𝑜𝑢𝑡_𝑏𝑖𝑡𝑠: 1 bit

Total input: 6 bits
Total output: 1 bit

PyTorch FPGA

convert
(enumerate inputs)

Hardware cost: 1 x LUT6
Generalized cost: 𝑜𝑢𝑡_𝑏𝑖𝑡𝑠 ⋅ 2!"_$!%&

Hardware Building Block (HBB)
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LogicNets at a Glance

𝛴 QReLU
6 x 2-bit
inputs

float

weights

2-bit
output

Batch
Norm

PyTorch FPGA
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LogicNets at a Glance

𝛴 QReLU
6 x 2-bit
inputs

float

weights

2-bit
output

Batch
Norm

12:2 NEQ

12:2 NEQ

12:2 NEQ
...

PyTorch FPGA
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LogicNets at a Glance

𝛴 QReLU
6 x 2-bit
inputs

float

weights

2-bit
output

Batch
Norm

inputs 32 
neurons

32 
neurons

64
neurons

6 connections
per neuron

6 connections
per neuron

6 connections
per neuron

2 bits per element 2 bits per neuron 2 bits per neuron 2 bits per neuron

outputs

12:2 NEQ

12:2 NEQ

12:2 NEQ
...

PyTorch FPGA
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LogicNets at a Glance

𝛴 QReLU
6 x 2-bit
inputs

float

weights

2-bit
output

Batch
Norm

inputs 32 
neurons

32 
neurons

64
neurons

6 connections
per neuron

6 connections
per neuron

6 connections
per neuron

2 bits per element 2 bits per neuron 2 bits per neuron 2 bits per neuron

outputs

12:2 NEQ

12:2 NEQ

12:2 NEQ
...

PyTorch FPGA

LUT

LUT

LUT
LUTLUT
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LogicNets at a Glance

𝛴 QReLU
6 x 2-bit
inputs

float

weights

2-bit
output

Batch
Norm

inputs 32 
neurons

32 
neurons

64
neurons

6 connections
per neuron

6 connections
per neuron

6 connections
per neuron

2 bits per element 2 bits per neuron 2 bits per neuron 2 bits per neuron

outputs

12:2 NEQ

12:2 NEQ

12:2 NEQ
...

PyTorch FPGA

LUT

LUT

LUT
LUTLUT
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LogicNets at a Glance

𝛴 QReLU
6 x 2-bit
inputs

float

weights

2-bit
output

Batch
Norm

inputs 32 
neurons

32 
neurons

64
neurons

6 connections
per neuron

6 connections
per neuron

6 connections
per neuron

2 bits per element 2 bits per neuron 2 bits per neuron 2 bits per neuron

outputs

12:2 NEQ

12:2 NEQ

12:2 NEQ
...

PyTorch FPGA

LUT

LUT

LUT
LUTLUT
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NIDS Results

Topology / #layers / #OPs 
Datatype
Accuracy

Vitis AI
MLP / 3 / 92kOPs

8b & 8b

92.3%

Matrix of Processing 
Engines

Performance
Throughput

Latency (compute only)
22 kinfps

26 us

Resources
Compute (kLUTs, DSPs*)
Memory (BRAM, URAM**)

Clock

122,1124

290, 92

300/600 MHz

Dataflow + Quantization 
+ Sparsity

Co-Designed 
Sparse LUT Circuit

LogicNets
Circuit  / 4 / 15.4kOPs

32b & 2b

91.3%

471 Minfps

9 ns

16, 0

0, 0

471 MHz

Inferences / secondIncreased specialization, high performance, and efficiency

Mapped on UltraScale+, 16nm FPGA, all within the same SLR.
*DSPs: 8b or 16b Multiply Accumulates
**BRAMs: 36kb, URAM: 288kbit embedded SRAM blocks

MLP / 3 / 92 kOPs

2b & 2b

91.9% 

300 Minfps

18 ns

25.3 Minfps

160 ns

44, 0

166, 0

203 MHz

10, 0

0, 0

300 MHz

Fold 8 Unfolded
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Config. Acc.
[%] LUT Fmax

[MHz]
Latency

[ns]
High accuracy ≥73%

Duarte et al. 
[2] 75 88k 

+1k DSPs
200

50

FINN W8A8 75.5 581k 115

FINN W4A4 73.6 47k 85

NullaNet-L [3] 73.4 11.8k 436 -

Medium accuracy ≥71%

FINN W2A2 71.0 3k 200 75

NullaNet-M [3] 72.2 1.6k 841 -

Low accuracy <71%

NullaNet-S [3] 69.7 39 2,079 -

LogicNets for Science: Jet Substructure Classification [2]

Synthesized with Vivado 2019.2; Fmax equals inference rate
All designs are fully pipelined

Related Work LogicNets
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Config. Acc.
[%] LUT Fmax

[MHz]
Latency

[ns]
High accuracy ≥73%

Duarte et al. 
[2] 75 88k 

+1k DSPs
200

50

FINN W8A8 75.5 581k 115

FINN W4A4 73.6 47k 85

NullaNet-L [3] 73.4 11.8k 436 -

Medium accuracy ≥71%

FINN W2A2 71.0 3k 200 75

NullaNet-M [3] 72.2 1.6k 841 -

Low accuracy <71%

NullaNet-S [3] 69.7 39 2,079 -

LogicNets for Science: Jet Substructure Classification [2]

Synthesized with Vivado 2019.2; Fmax equals inference rate
All designs are fully pipelined

Config. Acc.
[%] LUT Fmax

[MHz]
Latency

[ns]
High accuracy ≥73%

M2.6 73.0 1.6k 666
(735) 6

Related Work LogicNets
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Config. Acc.
[%] LUT Fmax

[MHz]
Latency

[ns]
High accuracy ≥73%

Duarte et al. 
[2] 75 88k 

+1k DSPs
200

50

FINN W8A8 75.5 581k 115

FINN W4A4 73.6 47k 85

NullaNet-L [3] 73.4 11.8k 436 -

Medium accuracy ≥71%

FINN W2A2 71.0 3k 200 75

NullaNet-M [3] 72.2 1.6k 841 -

Low accuracy <71%

NullaNet-S [3] 69.7 39 2,079 -

LogicNets for Science: Jet Substructure Classification [2]

Synthesized with Vivado 2019.2; Fmax equals inference rate
All designs are fully pipelined

Config. Acc.
[%] LUT Fmax

[MHz]
Latency

[ns]
High accuracy ≥73%

M2.6 73.0 1.6k 666
(735) 6

Related Work LogicNets

Medium accuracy ≥71%

S2.8 72.1 315 666
(882) 3

S2.1 71.3 86 666
(1,350) 3
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Config. Acc.
[%] LUT Fmax

[MHz]
Latency

[ns]
High accuracy ≥73%

Duarte et al. 
[2] 75 88k 

+1k DSPs
200

50

FINN W8A8 75.5 581k 115

FINN W4A4 73.6 47k 85

NullaNet-L [3] 73.4 11.8k 436 -

Medium accuracy ≥71%

FINN W2A2 71.0 3k 200 75

NullaNet-M [3] 72.2 1.6k 841 -

Low accuracy <71%

NullaNet-S [3] 69.7 39 2,079 -

LogicNets for Science: Jet Substructure Classification [2]

Synthesized with Vivado 2019.2; Fmax equals inference rate
All designs are fully pipelined

Config. Acc.
[%] LUT Fmax

[MHz]
Latency

[ns]
High accuracy ≥73%

M2.6 73.0 1.6k 666
(735) 6

Related Work LogicNets

Medium accuracy ≥71%

S2.8 72.1 315 666
(882) 3

S2.1 71.3 86 666
(1,350) 3

Low accuracy <71%

S2.0 70.6 30 666
(1,876) 3

S 69.5 24 666
(1,984) 3
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LogicNets for Vision: MNIST

Config. Acc.
[%] LUT FMax

[MHz]
Latency

[ns] FPS

FINN [4]
LFC-max 98.4 83k

200

2,440 1.6M

FINN [4]
SFC-max 95.8 91k 310 12.4M

LUTNet [5] 97.9 58k
- 200M

Logic-shrunk [5] 97.8 55k

Config. Acc.
[%] LUT FMax

[MHz]
Latency

[ns] FPS

M 97.7 45k 517 38 517M

S 95.8 12k 458 9 458M

“FINN […] the fastest method for classifying MNIST at an accuracy of 98.4%,”
Petersen et al., NeurIPS’22 [6]

Related Work LogicNets

2
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Conclusion

• Co-design of NNs and FPGA HW can yield orders of magnitude more efficient inference
• Combination of streaming dataflow, quantization and sparsity
• Essential ingredients for the “long tail” of Pervasive AI

• Two key ingredients make NN/FPGA co-design technology accessible
• Open-source tools like Brevitas, FINN, hls4ml and LogicNets
• Ecosystem to build & share the technical expertise

• Fruitful AMD-FastML collaboration strengthens the ecosystem
• QONNX – active with Thea Aarestad, Sioni Summers ++
• MLPerf Tiny joint submission
• Multiple joint papers
• …more to come!

Custom Dataflow Quantization Sparsity Circuit co-
design

Internships available at AMD RADICAL Dublin!
Talk to me or e-mail your CV: yamanu@amd.com 

mailto:yamanu@amd.com
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