Associate production of light scalars at the LHC

Aman Desai^{1,2} based on the work with Tania Robens, Kristin Lohwasser, Mohamed Ouchemhou

> ¹Department of Physics The University of Adelaide

²ARC Center of Excellence Dark Matter Particle Physics

Jul 30, 2024

Overview

- Introduction
- Two Real Singlet Model and its Phenomenology
- 3 Benchmark Points
- 4 Collider Phenomenology Toolbox for this Study
- 6 Gluon Fusion Channel for the Benchmark Point 4
- 6 Associate Vector Production for the Benchmark Point 4
 - 7 Studying Associate Vector Production using BP 4
- 8 Simulation
 - Results for W^+h_2
 - Results for W^-h_2
 - Results for Zh₂
- Flavour Tagging at LHC

0 Summary

Introduction

- We are studying the production of "light" scalars in association with W or Z vector gauge bosons.
- All studies presented in this talk are within the Two Real Singlet Model (TRSM) [1].
- In this work "Light" scalar $\Rightarrow M_{\phi} < 125$ GeV.
- Available parameter space is found using ScannerS software.
- Light scalar decays to *b*-jet are considered.

Introduction

DISCLAIMER

All results in this presentation are preliminary.

All error that remain are mine.

Two Real Singlet Model (TRSM) 1908.08554

- Extends the Standard Model by introducing two real singlets (CP even).
- $\bullet\,$ The number of model parameters are reduced by introducing two discrete \mathbb{Z}_2 symmetries.
- The additional singlets do not have interactions with SM fermions/gauge bosons it is the mixing of additionals singlets with SM Higgs that leads to three physical scalar states that have interactions with SM particles.
- The model has nine parameters $M_{h_1}, M_{h_2}, M_{h_3}, \theta_{hS}, \theta_{SX}, \theta_{hX}, v_S, v_X, v_h$ where M represents mass, θ is the mixing angle and v is the vacuum expectation value.
- In the above, $M_h = 125$ GeV and $v_h = 246$ GeV are SM Higgs parameters and thus we have seven free input parameters.

Phenomenology with TRSM

• Consider the reaction:

$$pp \rightarrow h_i \rightarrow h_j h_k$$

- This reaction above is:
 - Asymmetric if $i, j, k \in [1, 2, 3]$ and $i \neq j \neq k$
 - Symmetric: if j = k.
- Cascade Decays: if kinematics allows, one can also have a process such as $h_3 \rightarrow h_1 h_2$ with $h_2 \rightarrow h_1 h_1$.
- In all cases, one can have SM final states.
- If either $v_S(v_X)$ is set to zero, then this can be a Dark Matter Candidate as then particle whose vacuum expectation is set to zero does not interact with SM particles as there is no mixing between $\phi_{h,X}(\phi_{h,S})$.

Benchmark Points

- Six benchmark scenarios are considered (as motivation)
- The following table lists a possible signature that can be probed in each benchmark scenario:

benchmark scenario	h_{125} candidate	target signature	possible successive decays
BP1	h_3	$h_{125} \rightarrow h_1 h_2$	$h_2 \rightarrow h_1 h_1$ if $M_2 > 2M_1$
BP2	h_2	$h_3 \rightarrow h_1 h_{125}$	-
BP3	h_1	$h_3 \rightarrow h_{125}h_2$	$h_2 \rightarrow h_{125} h_{125}$ if $M_2 > 250 \mathrm{GeV}$
BP4	h_3	$h_2 \rightarrow h_1 h_1$	-
BP5	h_2	$h_3 \rightarrow h_1 h_1$	-
BP6	h_1	$h_3 \rightarrow h_2 h_2$	$h_2 \rightarrow h_{125} h_{125}$ if $M_2 > 250 {\rm GeV}$

Benchmark Points

The table here gives parameter scans that are performed for each Benchmark point using the ScannerS software

Parameter	Benchmark scenario						
	BP1	BP2	BP3	BP4	BP5	BP6	
$M_1 [{ m GeV}]$	[1, 62]	[1, 124]	125.09	[1, 62]	[1, 124]	125.09	
M_2 [GeV]	[1, 124]	125.09	[126, 500]	[1, 124]	125.09	[126, 500]	
$M_3 [{\rm GeV}]$	125.09	[126, 500]	[255, 650]	125.09	[126, 500]	[255, 1000]	
θ_{hs}	1.435	1.352	-0.129	-1.284	-1.498	0.207	
θ_{hx}	-0.908	1.175	0.226	1.309	0.251	0.146	
θ_{sx}	-1.456	-0.407	-0.899	-1.519	0.271	0.782	
$v_s \; [\text{GeV}]$	630	120	140	990	50	220	
$v_x \; [\text{GeV}]$	700	890	100	310	720	150	
κ_1	0.083	0.084	0.966	0.073	0.070	0.968	
κ_2	0.007	0.976	0.094	0.223	-0.966	0.045	
κ_3	-0.997	-0.203	0.239	0.972	-0.250	0.246	

here the κ values are coupling scale factors.

Collider Phenomenology Toolbox

In our study we have used the following software tools:

- ScannerS [2] To carry out parameter scan and determine available parameters.
- twosinglet [3] To prepare MadGraph parameter card.
- MadGraph5_aMC@NLO [4] For cross-section calculation and event sample generation.
- LHAPDF [5] For accessing parton distribution functions.
- Pythia8 [6] parton shower.
- FastJet [7] Anti- k_T jet clustering algorithm with R = 0.4.
- MadAnalysis [8] for analysis.
- Python packages such as Numpy, Pandas, and Matplotlib were used for analysis.

ScannerS results for Benchmark Point 4 in ggF channel

• We consider the production of *h*₂ in gluon-gluon fusion channel:

$$\sigma(pp
ightarrow h_2
ightarrow h_1 h_1) = \ \kappa_2^2 \sigma(gg
ightarrow h_{SM})|_{M_{h_2}}.BR(h_2
ightarrow h_1 h_1)$$

Gluon Fusion Channel for the Benchmark Point 4

ScannerS results for BP 4 with HiggsBounds Exclusion in ggF channel

ScannerS results for Benchmark Point 4 in ggF channel

- For this BP 4, the maximum cross-section for this process is 49.19 pb for parameters not excluded by ScannerS.
- Masses at the maximum cross-section:

Scalar	Mass (GeV)
M_{h_1}	10.7
M_{h_2}	22.7
M_{h_3}	125.09

• $M_{h_1}, M_{h_2} < 10$ GeV is excluded

Some shortcomings of the ggF channel

- We are interested in low p_T *b*-jets.
- The above channel provides four *b*-jets and the hard process has compartively large cross-section.
- However, while the signal is large (\approx 49 pb), the multijet background at LHC is even larger.
- So instead of looking at this production channel, one could use the associate production for probing lighter scalars as typically done for $h_{125} \rightarrow aa$ where a is a light scalar.

ScannerS results for Benchmark Point 4 in VH channel

• We consider the production of a vector gauge boson (W or Z) boson in association with *h*₂

$$\sigma(pp
ightarrow Vh_2
ightarrow h_1h_1) = - \kappa_2^2 \sigma(pp
ightarrow Vh_{SM})|_{M_{h_2}}.BR(h_2
ightarrow h_1h_1)$$

• Here $V = Z/W^{\pm}$, and the cross-section values are summed over the three gauge boson contribution.

ScannerS results for Benchmark Point 4 in VH channel

• For this BP 4, the maximum cross-section for this process is 3.99 pb for parameters not excluded by ScannerS. This value is summed over Z and W^{\pm} bosons. Individually,

Process	Cross-Section (pb)
$pp ightarrow Zh_2, h_2 ightarrow h_1h_1 \ pp ightarrow W^\pm h_2, h_2 ightarrow h_1h_1$	1.276 2.719

• Masses at the maximum cross-section:

Scalar	Mass (GeV)
M_{h_1}	10.4
M_{h_2}	23.9
M_{h_3}	125.09

ScannerS results for BP 4 with HiggsBounds Exclusion in VH channel

- LEP results in the $e^+e^- \rightarrow Zh_2 \rightarrow (b\bar{b})Z$ are used for obtaining HiggsBounds Exclusion.
- See for example, table 14b hep-ex/0602042

Studying Associate Vector Production using BP 4

- We study the associate vector production using BP 4.
- We have selected points on the following basis:
 - 20 < m_{H1} < 120
 - $20 < m_{H2} < 120$
 - $10 < m_{H2} m_{H1} < 100$
- To allow for different kinematics, points are selected such that:
 - $m_{H2}\simeq 2m_{H1}$
 - $m_{H2} > 2m_{H1}$
 - $m_{H2}\simeq 3m_{H1}$
 - $m_{H2} > 4m_{H1}$

Studying Associate Vector Production using BP 4

- The phase choice is such that we get low p_T *b*-jets.
- To achieve that we have required that $M_{h_2} 2M_{h_1}$ is lower (but we also explore some other scenarios)
- We plot the cross-section as a function of $M_{h_2} 2M_{h_1}$:

Studying Associate Vector Production using BP 4

• All the cross-section for the above processes, computed using ScannerS are presented here:

M_{h_1}	M_{h_2}	$M_{h_2} - 2M_{h_1}$	$\sigma(Vh_2)$	$\sigma(Zh_2)$	$\sigma(Wh_2)$	$Br(h_2)$	$\Gamma_{h_1} \times 10^{-6} (\text{GeV})$	$\Gamma_{h_2} \times 10^{-3} \; (\mathrm{GeV})$
20.13	42.96	2.7	1.66	0.63	1.27	0.87	3.31	0.46
24.84	55.25	5.56	1.01	0.37	0.71	0.93	4.04	1.1
21.6	58.31	15.12	0.91	0.33	0.63	0.95	3.53	1.6
30.16	70.16	9.83	0.58	0.21	0.39	0.96	4.77	2.42
22.27	79.57	35.03	0.43	0.16	0.28	0.98	3.64	4.03
36.7	79.95	6.54	0.42	0.15	0.28	0.97	5.63	2.98
37.83	90.12	14.46	0.3	0.11	0.2	0.98	5.78	5.23
20.92	98.23	56.38	0.24	0.09	0.15	0.98	3.43	7.31
48.35	110.27	13.57	0.17	0.06	0.11	0.98	7.04	8.84
20.58	118.72	77.57	0.14	0.05	0.09	0.99	3.38	12.59
50.21	119.73	19.31	0.13	0.05	0.08	0.99	7.26	12.2

- All cross-section are in picobarn
- All masses are in GeV
- $\sigma(Vh_2)$ represents the cross-section for the process $pp \rightarrow Vh_2$,
- V represents Z/W^{\pm}
- $Br(h_2)$ represents $Br(h_2 \rightarrow h_1 h_1)$

Simulation

- We have used MadGraph5_aMC@NLO for simulating $pp \rightarrow Vh_2$ process.
- The following decay modes are considered:
 - $h_2 \rightarrow h_1 h_1$
 - $h_1
 ightarrow b ar{b}$
 - $W^+ \rightarrow \ell^+ \nu_\ell$
 - $W^- \rightarrow \ell^- \bar{\nu_\ell}$
 - $Z \to \ell^+ \ell^-$
- Beam Energy is set to 6500 GeV (13 TeV LHC Collider settings).
- LHAPDF : Parton Distribution function NNPDF23_nlo_as_0119 is used.
- All studies are carried out at Leading Order.
- Pythia8 is used for Parton Shower.
- FastJet is used for jet clustering.
- MadAnalysis is used to analyze the events and for preparing plots.

Results

All the cross-section results in the following are presented as follows:

 $cross \ section_{scale}^{scale} \ up \ uncertainty} \pm PDF \ uncertainty$

Results for W^+h_2

- We have considered the following process for studying W^+h_2 : $pp \rightarrow W^+h_2(\rightarrow h_1h_1) \rightarrow \ell^+ v_\ell b\bar{b}b\bar{b}.$
- Decay widths are computed by MadWidth
- Decays are generated when declaring process in MadGraph

$M_{h_1}~({\rm GeV})$	$M_{h_2}~({\rm GeV})$	$\sigma_{LO}~{\rm (pb)}$	Stat. Unc. (pb)	$\Gamma_{H1} \; ({\rm GeV})$	Γ_{H2} (GeV)	Γ_{H3} (GeV)
20.13	42.96	$0.09533^{+6.5\%}_{-7.49\%} \pm 1.27\%$	0.00021	3.458492e-06	4.942668e-04	6.203459e-03
24.84	55.25	$0.06013^{+5.76\%}_{-6.73\%} \pm 1.26\%$	0.00015	4.860789e-06	1.144740e-03	6.203994e-03
21.6	58.31	$0.05402^{+5.47\%}_{-6.42\%} \pm 1.25\%$	0.00012	3.905856e-06	1.650158e-03	6.203090e-03
30.16	70.16	$0.03494^{+4.85\%}_{-5.78\%} \pm 1.25\%$	7.8e-05	6.360984e-06	2.484487e-03	6.203420e-03
22.27	79.57	$0.02507^{+4.34\%}_{-5.24\%} \pm 1.25\%$	4.6e-05	4.106503e-06	4.109132e-03	6.201924e-03
36.7	79.95	$0.02483^{+4.36\%}_{-5.26\%} \pm 1.25\%$	4.6e-05	8.131270e-06	3.059512e-03	6.204291e-03
37.83	90.12	$0.01825^{+3.89\%}_{-4.76\%} \pm 1.25\%$	3.9e-05	8.431475e-06	5.321814e-03	6.203298e-03
20.92	98.23	$0.01396^{+3.54\%}_{-4.38\%} \pm 1.27\%$	3.5e-05	3.700180e-06	7.402584e-03	6.201635e-03
48.35	110.27	$0.01019^{+3.08\%}_{-3.89\%} \pm 1.26\%$	1.9e-05	1.117483e-05	8.944139e-03	6.201403e-03
20.58	118.72	$0.00798^{+2.75\%}_{-3.54\%} \pm 1.24\%$	2e-05	3.596532e-06	1.268511e-02	6.200514e-03
50.21	119.73	$0.00798^{+2.71\%}_{-3.49\%} \pm 1.26\%$	1.9e-05	1.165192e-05	1.229243e-02	6.200219e-03

Results for W^+h_2

Results for W^-h_2

- We have considered the following process for studying W^-h_2 : $pp \rightarrow W^-h_2(\rightarrow h_1h_1) \rightarrow \ell^- \bar{\nu}_\ell b\bar{b}b\bar{b}.$
- Decay widths are computed by MadWidth
- Decays are generated when declaring process in MadGraph

$M_{h_1}~({\rm GeV})$	$M_{h_2}~({\rm GeV})$	$\sigma_{LO}~{\rm (pb)}$	Stat. Unc. (pb)	$\Gamma_{H1}~({\rm GeV})$	Γ_{H2} (GeV)	Γ_{H3} (GeV)
20.13	42.96	$0.0664^{+6.86\%}_{-7.92\%} \pm 1.17\%$	0.00015	3.458492e-06	4.942668e-04	6.203459e-03
24.84	55.25	$0.04125^{+5.96\%}_{-6.99\%} \pm 1.18\%$	9e-05	4.860789e-06	1.144740e-03	6.203994e-03
21.6	58.31	$0.037^{+5.74\%}_{-6.76\%} \pm 1.18\%$	7.5e-05	3.905856e-06	1.650158e-03	6.203090e-03
30.16	70.16	$0.02359^{+5.03\%}_{-6.02\%} \pm 1.19\%$	5.3e-05	6.360984e-06	2.484487e-03	6.203420e-03
22.27	79.57	$0.01682^{+4.63\%}_{-5.59\%} \pm 1.33\%$	4.1e-05	4.106503e-06	4.109132e-03	6.201924e-03
36.7	79.95	$0.0166^{+4.62\%}_{-5.58\%} \pm 1.16\%$	3.9e-05	8.131270e-06	3.059512e-03	6.204291e-03
37.83	90.12	$0.01204^{+4.1\%}_{-5.03\%} \pm 1.19\%$	3.1e-05	8.431475e-06	5.321814e-03	6.203298e-03
20.92	98.23	$0.0092^{+3.71\%}_{-4.62\%} \pm 1.17\%$	2.5e-05	3.700180e-06	7.402584e-03	6.201635e-03
48.35	110.27	$0.0066^{+3.24\%}_{-4.11\%} \pm 1.2\%$	1.9e-05	1.117483e-05	8.944139e-03	6.201403e-03
20.58	118.72	$0.00512^{+2.95\%}_{-3.81\%} \pm 1.2\%$	1.2e-05	3.596532e-06	1.268511e-02	6.200514e-03
50.21	119.73	$0.00511^{+2.91\%}_{-3.76\%}\pm1.16\%$	1.2e-05	1.165192e-05	1.229243e-02	6.200219e-03

Results for W^-h_2

Results for Zh_2

- We have considered the following process for studying Zh_2 : $pp \rightarrow Zh_2(\rightarrow h_1h_1) \rightarrow \ell^+\ell^- b\bar{b}b\bar{b}.$
- Decay widths are computed by MadWidth
- Decays are generated when declaring process in MadGraph

$M_{h_1}~({\rm GeV})$	$M_{h_2}~({\rm GeV})$	$\sigma_{LO}~{\rm (pb)}$	Stat. Unc. (pb)	$\Gamma_{H1}~({\rm GeV})$	Γ_{H2} (GeV)	Γ_{H3} (GeV)
20.13	42.96	$0.02415^{+6.14\%}_{-7.14\%} \pm 1.11\%$	5.6e-05	3.458492e-06	4.942668e-04	6.203459e-03
24.84	55.25	$0.01541^{+5.33\%}_{-6.3\%} \pm 1.1\%$	2.8e-05	4.860789e-06	1.144740e-03	6.203994e-03
21.6	58.31	$0.01388^{+5.13\%}_{-6.1\%} \pm 1.11\%$	2.6e-05	3.905856e-06	1.650158e-03	6.203090e-03
30.16	70.16	$0.00909^{+4.56\%}_{-5.49\%} \pm 1.09\%$	1.7e-05	6.360984e-06	2.484487e-03	6.203420e-03
22.27	79.57	$0.00662^{+4.08\%}_{-4.98\%} \pm 1.09\%$	1.3e-05	4.106503e-06	4.109132e-03	6.201924e-03
36.7	79.95	$0.00654^{+4.07\%}_{-4.98\%} \pm 1.1\%$	1.3e-05	8.131270e-06	3.059512e-03	6.204291e-03
37.83	90.12	$0.00482^{+3.6\%}_{-4.47\%} \pm 1.09\%$	8.9e-06	8.431475e-06	5.321814e-03	6.203298e-03
20.92	98.23	$0.00373^{+3.33\%}_{-4.18\%} \pm 1.13\%$	6.9e-06	3.700180e-06	7.402584e-03	6.201635e-03
48.35	110.27	$0.00273^{+2.88\%}_{-3.7\%} \pm 1.09\%$	5.5e-06	1.117483e-05	8.944139e-03	6.201403e-03
20.58	118.72	$0.00213^{+2.54\%}_{-3.33\%} \pm 1.1\%$	3.9e-06	3.596532e-06	1.268511e-02	6.200514e-03
50.21	119.73	$0.00214^{+2.55\%}_{-3.34\%}\pm1.09\%$	4.1e-06	1.165192e-05	1.229243e-02	6.200219e-03

Results for Zh_2

Flavour Tagging

- Flavour Tagging plays a crucial role in identifying jets that orignate due to hadronization of a *b*-quark.
- LHC experiments use Machine Learning for jet tagging.
- The following diagram summarizes the various features used for jet tagging:

Figure Source

Performance of Flavour Tagging at LHC Experiments

- The performance of Deep Learning framework (also available are Graph Neural Network) used by ATLAS experiment as a function of jet p_T.
- This depends on jet p_T and as we see at low p_T the performance degrades.
- This is one of the challenges when probing low p_T jets at experiments.

Plot from [9]

Summary

- In this work we explored the associate production of light scalars with a Z or $W^\pm.$
- Prof. Kristin has some ideas regarding low p_T b-jets, and we are interested in probing this phase space with low p_T b-jets.
- Some initial analysis carried out using ScannerS and MadGraph based simulation is presented.

Further Work

The future work includes:

- Analyzing the final state particles with cuts and reconstructing events.
- Exploring the actual available phase space after applying cuts on jet p_T .
- Investigating other options to extend phase space (low pt btagging).
- Carry out some form of Recast to get the available phase space.

Summary

References I

- Tania Robens et al. "Two-real-scalar-singlet extension of the SM: LHC phenomenology and benchmark scenarios". In: *Eur. Phys. J. C* 80.2 (2020), p. 151. DOI: 10.1140/epjc/s10052-020-7655-x.
- [2] Margarete Mühlleitner et al. "ScannerS: parameter scans in extended scalar sectors". In: *Eur. Phys. J. C* 82.3 (2022), p. 198. DOI: 10.1140/epjc/s10052-022-10139-w.
- [3] Andreas Papaefstathiou et al. "Triple Higgs Boson Production at the Large Hadron Collider with Two Real Singlet Scalars". In: JHEP 05 (2021), p. 193. DOI: 10.1007/JHEP05(2021)193.
- [4] J. Alwall et al. "The automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulations". In: JHEP 07 (2014), p. 079. DOI: 10.1007/JHEP07(2014)079.
- [5] Andy Buckley et al. "LHAPDF6: parton density access in the LHC precision era". In: *Eur. Phys. J. C* 75 (2015), p. 132. DOI: 10.1140/epjc/s10052-015-3318-8.

References II

- [6] Christian Bierlich et al. "A comprehensive guide to the physics and usage of PYTHIA 8.3". In: SciPost Phys. Codeb. 2022 (2022), p. 8. DOI: 10.21468/SciPostPhysCodeb.8.
- [7] Matteo Cacciari et al. "FastJet User Manual". In: *Eur. Phys. J. C* 72 (2012), p. 1896. DOI: 10.1140/epjc/s10052-012-1896-2.
- [8] Eric Conte et al. "MadAnalysis 5, A User-Friendly Framework for Collider Phenomenology". In: Comput. Phys. Commun. 184 (2013), pp. 222–256.
 DOI: 10.1016/j.cpc.2012.09.009.
- [9] Georges Aad et al. "ATLAS flavour-tagging algorithms for the LHC Run 2 pp collision dataset". In: *Eur. Phys. J. C* 83.7 (2023), p. 681. DOI: 10.1140/epjc/s10052-023-11699-1.