Experimental perspective on HHH

Dinko Ferenček

Ruđer Bošković Institute

Mini workshop on HHH

Wednesday, July 31, 2024 Ruđer Bošković Institute, Zagreb

Disclaimer

- Currently no public ATLAS or CMS results on HHH
 - Consequently, the slides will be a bit boring with a lot of text and few plots
- Being a member of CMS, my views and statements will inevitably be biased toward CMS
- Nevertheless, statements in this presentation are solely mine and not officially endorsed by CMS

Analysis landscape

- In CMS, HHH analyses divided into two categories:
 - Non-resonant
 - Resonant

each done within a different *Physics Analysis Group*

- *Resonant* analysis further divided into:
 - Resolved
 - Boosted (RBI group involved)
- Currently focusing on Run 2 data
- ATLAS might have something similar...

Final state landscape

• The **6b** final state, having the largest branching fraction, currently dominates the final state landscape

• Non-resonant analyses also include $4b2\gamma$ and $4b2\tau$ final states

Background estimation strategy

- HHH→6b final state is a good place to employ machine learning techniques to pair jets and classify events
 - See <u>Marko's talk</u> from last year's HHH workshop
- Dominant backgrounds for the 6b final state:
 - \circ QCD multijets \rightarrow estimated using data-driven techniques
 - ttbar production \rightarrow typically taken from MC simulation
- In general, prefer one background estimate for all signal hypotheses being tested even at the cost of losing some signal sensitivity (background systematics needs to be done once and for all)
 - More details in the backup about the background estimation strategy used in the *boosted resonant* analysis

Where is this relevant?

- It is relevant when comparing experimental limits with theory predictions
- Example of $X \rightarrow HY \rightarrow 4b$

Model comparison

Model comparison

TRSM

Model comparison

Concluding remarks

- Experimentalists like to produce model-independent limits
- Experimentalists like to compare their limits with theory
- However, need to be careful that such comparisons actually make sense

Concluding remarks

- Experimentalists like to produce model-independent limits
- Experimentalists like to compare their limits with theory
- However, need to be careful that such comparisons actually make sense

• Hope to have public results available for the next HHH workshop

Backup

Final state topologies (generator level)

Search strategy

Presence of two massive resonances X and Y in the final state
→ 2D bump hunt

m_{iii} and m_{ii} distributions

- Trijet mass m_{iii} straightforward
 - Invariant mass of the 3 Higgs candidates
 - Expect to see a peak at m_x
- Dijet mass m_{ii} less straightforward
 - 3 possible pairs. No general way to find the right combination
 - → Solution: take all 3 pairs (3 entries per event!)
 - \circ ~ Still expect to see a peak at $\rm m_{\rm y}$

m_{jj} distribution features

Background estimation method

- Fully hadronic final state → Dominant background from SM multijet production ("QCD") → Data-driven background estimation
- 2DAlphabet method
 - Generalized ABCD method (see <u>Matej's talk</u> from 2022 Higgs Pairs Workshop)

- 2 event **categories**: signal-depleted **fail** and signal-rich **pass** category
- **R**_{P/F} **transfer function** relates backgrounds in the two categories

A bit of 2DAlphabet algebra

- More specifically, a smooth R_{P/F} transfer function relates event yields of the data-driven background components in the pass (P) and fail (F) categories
- Event yields in the *i*-th bin are related as follows:

$$n_F^{\text{QCD}}(i) = n_F^{\text{data}}(i) - n_F^{\text{bkg, MC}}(i)$$

 $n_P^{\text{QCD}}(i) = n_F^{\text{QCD}}(i) \cdot R_{P/F}(i)$

Background component in the fail category taken from MC

Fully data-driven background estimation with this component set to 0

• R_{P/F} modelled as a simple low-order 2D polynomial, e.g.

$$R_{P/F}(x,y) = a + b \cdot x + c \cdot y$$