Dissecting Triple Higgs Boson Production in New Physics Models

[with Gilberto Tetlalmatzi-Xolocotzi]

@ Ruđer Bošković Institute Zagreb, Croatia [July 31st 2024]

Andreas Papaefstathiou Kennesaw State University, GA, USA

Triple Higgs Boson Production — "hhhh"

UNDER **CONSTRUCTION**

Warning: Work in progress!

The Plan:

The Plan:

1 SM hhh Production **2** → Enhanced (Double-Res.) hhh **3** → A "Simplified" Approach

SM hhh Production

• **J** factor of $\mathcal{O}(10^{-3})$ each time you "draw" an extra Higgs boson @ pp colliders.

$\sigma(h) \sim 50 \text{ pb}$

<u>SM</u>, 14 TeV

• **J** factor of $\mathcal{O}(10^{-3})$ each time you "draw" an extra Higgs boson @ pp colliders.

 $\sigma(h) \sim 50 \text{ pb}$ × Ø(1

<u>SM, 14 TeV</u>

$\sigma(hh) \sim 40 \text{ fb}$

• **J** factor of $\mathcal{O}(10^{-3})$ each time you "draw" an extra Higgs boson @ pp colliders.

 $\sigma(h) \sim 50 \text{ pb}$

SM, 14 TeV

• Cranking up the pp energy could help!

~ ×60 increase in cross section 14 TeV \rightarrow 100 TeV.

• Cranking up the pp energy could help!

~ ×60 increase in cross section 14 TeV \rightarrow 100 TeV.

• Cranking up the pp energy could help!

~ ×60 increase in cross section 14 TeV \rightarrow 100 TeV.

THE SECRET iNGREDIENT IS ALWAYS LOVE

THE SECRET iNGREDIENT IS ALWAYS LEVE NEW PHYSICS

Explicit, UV-Complete models,

Simplified models

Effective Field Theories

Anomalous Couplings

[e.g. AP, Tetlalmatzi-Xolocotzi, arXiv:2312.13562]

NEW PHYSICS

Effective Field Theories

Anomalous Couplings

[e.g. AP, Tetlalmatzi-Xolocotzi, arXiv:2312.13562]

NEW PHYSICS

Significant enhancement in hhh possible through double-resonant scalar

[Robens, Stefaniak, Wittbrodt,

2 → Enhanced (Double-Res.) hhh

Double-Resonant Triple Higgs Boson Production

- Significant enhancement possible in models with at least two additional scalars h_2 and h_3 , with h_1 the SM-like Higgs boson.
- that satisfy: $m_2 > 2m_1$ and $m_3 > m_2 + m_1$.

• This occurs through a double-resonant process $gg \rightarrow h_3 \rightarrow h_2h_1 \rightarrow h_1h_1h_1$:

First proposed in: [Robens, Stefaniak, Wittbrodt, arXiv:1908.08554]

Double-Resonant Triple Higgs Boson Production

- First proposed in [Robens, Stefaniak, Wittbrodt, arXiv:1908.08554].
- And shown to be **observable at the LHC** in $h_1h_1h_1 \rightarrow (b\overline{b})(b\overline{b})(b\overline{b})$ in [**AP**, SM + Two Real Singlets).
- I will discuss the TRSM again later.

Robens, Tetlalmatzi-Xolocotzi, arXiv:2101.00037] for the case of the TRSM (=

General Features of Double-Resonant hhh

- For now let's just assume we have a model which satisfies the condition for the existence of the double-resonant process:
 - at least two additional scalars h_2 and h_3 , with h_1 the SM-like Higgs boson.
 - that satisfy: $m_2 > 2m_1$ and $m_3 > m_2 + m_1$,
- Generally speaking, we also require non-zero couplings:
 - $h_3 h_2 h_1 : \longrightarrow \lambda_{123}$
 - $h_2 h_1 h_1 : \longrightarrow \lambda_{112}$

Narrow Widths through Constraints

- For the analysis presented here to work, we also need **narrow widths**:
 - $\Gamma_2 \ll m_2$ and $\Gamma_3 \ll m_3$.
 - couplings through mixing: e.g. as in the TRSM, since:

$$\Gamma_i = \kappa_i^2 \Gamma^{\text{SM}}(m_i) + \sum_{\substack{j,k \neq i}} \Gamma_{h_i \to h_j h_{k'}}$$

[TBC!].

• Should be satisfied if couplings of new scalars are inherited from Higgs

• Since the κ_i are constrained by experiment to be small (through Higgs boson) signal strength measurements), this limits how large the widths can be

3 → A "Simplified" Approach

Simplifying Double-Resonant hhh

- these are satisfied by parts of TRSM parameter space!
- Narrow-width approximation (at cross section level):

• Let's make the preceding assumptions for double-resonant **hhh**. Keep in mind:

Simplifying Double-Resonant hhh • Narrow-width approximation: $\frac{\mathrm{d}q_i^2}{(q_i^2 - m_i^2)^2 + m_i^2\Gamma_i^2} \to \frac{\pi}{m_i} \delta(q_i^2 - m_i^2)$

- Factorize cross section as:

Simplifying Double-Resonant hhh

• Factorize cross section as:

 \equiv "unity cross section"

- Generally: κ_3 , λ_{123} , λ_{112} , Γ_2 , Γ_3 and m_2 and m_3 will be correlated,
- above would remain valid in the narrow-width approximation.

• but: they can be calculated given the Lagrangian parameters. The factorization

Fitting the "Unity" Cross Section $\hat{\sigma}_{u}(m_{1}, m_{2})$	900 - 850 - 800 -	
 For "typical" values: 	- 750	
$\Gamma_{2,3} \simeq 1 \mathrm{GeV}$	700 - S	
$\kappa_3 \sim \mathcal{O}(1)$	<u>Ф</u> 650 -	
$\lambda_{123} \sim \lambda_{112} \sim \lambda_{111,SM} \sim 30 \text{ GeV}$	E 600 -	
• we get $\sigma/\sigma_{\rm SM} \sim \mathcal{O}(20)$ for	550 -	
$\hat{\sigma}_u \sim 10^{-9} \text{ pb},$	500 -	
 which corresponds to: 	450 -	
$m_2 \lesssim 400 \text{ GeV}, m_3 \lesssim 750 \text{ GeV}, $	400 -	300

KENNESAW STATE U N I V E R S I T Y

- 0.00

	900 -	
Fitting the "I Inity" Cross	850 -	
Section $\hat{\sigma}_u(m_1, m_2)$	800 -	-
• For "typical" values:	750 -	
$\Gamma_{2,3} \simeq 1 \text{ GeV}$	700 ·	
$\kappa_3 \sim \mathcal{O}(1)$, 650 · _	
$\lambda_{123} \sim \lambda_{112} \sim \lambda_{111,SM} \sim 30 \text{ GeV}^{2}$	600 -	
• we get $\sigma/\sigma_{\rm SM} \sim \mathcal{O}(20)$ for	550 -	
$\hat{\sigma}_u \sim 10^{-9} \text{ pb},$	500 -	-
 which corresponds to: 	450 ·	
$m_2 \lesssim 400 \text{ GeV},$ $m_3 \lesssim 750 \text{ GeV},$	400 -	300 3

KENNESAW STATE U N I V E R S I T Y

- 0.00

Fitting the "Unity" Cross Section $\hat{\sigma}_u(m_1, m_2)$

At the LHC, we can only ever hope to observe:

> $m_2 \lesssim 400 \text{ GeV},$ $m_3 \lesssim 750 \text{ GeV}.$

within *any* model that can generate the double-resonant process!

0.00

SM + Two Real Singlet Scalars [= TRSM]

- Consider adding two real singlet scalar fields $S, X \rightarrow$ the **TRSM**.
- And: impose discrete \mathscr{Z}_2 symmetries: $\mathscr{Z}_2^S : S \to -S, X \to X$

 \Rightarrow TRSM scalar potential:

$$\mathcal{V}(\phi, S, X) = \bullet |\phi|^2 + \Box |\phi|$$
$$+ \Box S^2 X^2$$
$$+ \Box |\phi|^2 S^2 + \Box |\phi|^2 + \Box |\phi|^2$$

 $\mathscr{Z}_{2}^{X}: X \to -X, S \to S$

 $- |\phi|^2 X^2$

SM + <u>Two Real Singlet Scalars</u> [= TRSM]

- Go through **EWSB**: expand fields about VEVs,
- rotate to mass eigenstates: $\begin{pmatrix} h_1 \\ h_2 \\ h_2 \end{pmatrix} = R$
- \Rightarrow Get three scalar bosons: h_1 , h_2 , h_3 ,
- \Rightarrow Model satisfies conditions for **double-resonant hhh**!

$$\begin{array}{c} \left(\phi_h \\ \phi_h \\ \phi_S \\ \phi_X \end{array} \right),$$

\Rightarrow Seven independent parameters: m_2 , m_3 , θ_{12} , θ_{13} , θ_{23} , θ_{23}

+ Due to constraints, widths of physical scalars are generically small [TBC!].

Double-Resonant Contribution to total hhh in TRSM

Viable points with $\sigma > 10 \times \sigma_{SM}(gg \rightarrow hhh)@13.6$ TeV

[Karkout, AP, Postma, Tetlalmatzi-Xolocotzi, van de Vis, du Pree, arXiv:2404.12425]

• Updated TRSM scan with additional TH+EXP constraints.

• Enhancements $\mathcal{O}(100) \times SM!$

How much of the total cross section comes from...?

Points with Enhanced hhh in the TRSM

Benchmark	points	for	enhanced	triple	Higgs
-----------	--------	-----	----------	--------	-------

Name	M_2	M_3	v_2	v_3	θ_{12}	θ_{13}	θ_{23}	$rac{\sigma}{\sigma_{SM}}$	R.F.	$ ho^2 \; [imes 10^6]$
BM0	259.0	495.0	215.8	180.8	6.191	0.163	5.691	306.025	0.955	0.025
BM1	270.6	444.7	122.4	847.2	0.268	0.030	0.522	302.361	0.929	3.574
BM2	268.6	452.7	137.8	784.8	0.263	0.023	0.645	275.616	0.954	3.509
BM3	272.6	480.7	928.3	143.7	3.098	2.9	2.375	267.245	0.948	3.703
BM4	269.0	409.8	138.0	599.4	0.244	0.004	0.773	266.439	0.976	4.031
BM5	269.1	486.9	227.5	307.9	0.074	6.149	2.631	157.583	0.956	2.264
BM6	259.2	577.0	289.0	275.6	0.137	6.148	2.324	145.470	0.781	5.289
BM7	283.7	575.0	259.4	330.4	0.137	6.152	2.299	122.546	0.779	2.885
BM8	264.3	469.3	207.3	359.5	0.285	6.277	0.692	119.121	0.999	1.721
BM9	266.5	461.9	653.1	229.0	2.889	3.046	1.015	112.794	0.863	1.381
BM10	259.2	399.7	444.5	217.0	2.917	3.046	1.047	103.717	0.973	1.936

production from ref. [111]

Selected for large cross sections ┿ Satisfying EXP+TH constraints

[Karkout, AP, Postma, Tetlalmatzi-Xolocotzi, van de Vis, du Pree, arXiv:2404.12425]

B	Benchmark points for enhanced triple Higgs production from ref. [111]												
Name	M_2	M_3	v_2	v_3	θ_{12}	θ_{13}	θ_{23}	$rac{\sigma}{\sigma_{SM}}$	R.F.	$ ho^2 \; [imes 10^6]$			
BM0	259.0	495.0	215.8	180.8	6.191	0.163	5.691	306.025	0.955	0.025			
BM1	270.6	444.7	122.4	847.2	0.268	0.030	0.522	302.361	0.929	3.574			
BM2	268.6	452.7	137.8	784.8	0.263	0.023	0.645	275.616	0.954	3.509			
BM3	272.6	480.7	928.3	143.7	3.098	2.9	2.375	267.245	0.948	3.703			
BM4	269.0	409.8	138.0	599.4	0.244	0.004	0.773	266.439	0.976	4.031			
BM5	269.1	486.9	227.5	307.9	0.074	6.149	2.631	157.583	0.956	2.264			
BM6	259.2	577.0	289.0	275.6	0.137	6.148	2.324	145.470	0.781	5.289			
BM7	283.7	575.0	259.4	330.4	0.137	6.152	2.299	122.546	0.779	2.885			
BM8	264.3	469.3	207.3	359.5	0.285	6.277	0.692	119.121	0.999	1.721			
BM9	266.5	461.9	653.1	229.0	2.889	3.046	1.015	112.794	0.863	1.381			
BM10	259.2	399.7	444.5	217.0	2.917	3.046	1.047	103.717	0.973	1.936			

Seven free parameters

Benchmark	points	for	enhanced	triple	Higgs
-----------	--------	-----	----------	--------	-------

B	Benchmark points for enhanced triple Higgs production from ref. [111]												
Name	M_2	M_3	v_2	v_3	θ_{12}	θ_{13}	θ_{23}	$rac{\sigma}{\sigma_{SM}}$	R.F.	$\rho^2 \; [imes 10^6]$			
BM0	259.0	495.0	215.8	180.8	6.191	0.163	5.691	306.025	0.955	0.025			
BM1	270.6	444.7	122.4	847.2	0.268	0.030	0.522	302.361	0.929	3.574			
BM2	268.6	452.7	137.8	784.8	0.263	0.023	0.645	275.616	0.954	3.509			
BM3	272.6	480.7	928.3	143.7	3.098	2.9	2.375	267.245	0.948	3.703			
BM4	269.0	409.8	138.0	599.4	0.244	0.004	0.773	266.439	0.976	4.031			
BM5	269.1	486.9	227.5	307.9	0.074	6.149	2.631	157.583	0.956	2.264			
BM6	259.2	577.0	289.0	275.6	0.137	6.148	2.324	145.470	0.781	5.289			
BM7	283.7	575.0	259.4	330.4	0.137	6.152	2.299	122.546	0.779	2.885			
BM8	264.3	469.3	207.3	359.5	0.285	6.277	0.692	119.121	0.999	1.721			
BM9	266.5	461.9	653.1	229.0	2.889	3.046	1.015	112.794	0.863	1.381			
BM10	259.2	399.7	444.5	217.0	2.917	3.046	1.047	103.717	0.973	1.936			

Enhancement over SM @ **13.6 TeV**

в	Benchmark points for enhanced triple Higgs production from ref. [111]													
Ċ	M_2	M_3	v_2	v_3	$ heta_{12}$	θ_{13}	θ_{23}	$rac{\sigma}{\sigma_{SM}}$	R.F.	$ ho^2 \; [imes 10^6]$				
	259.0	495.0	215.8	180.8	6.191	0.163	5.691	306.025	0.955	0.025				
	270.6	444.7	122.4	847.2	0.268	0.030	0.522	302.361	0.929	3.574				
	268.6	452.7	137.8	784.8	0.263	0.023	0.645	275.616	0.954	3.509				
	272.6	480.7	928.3	143.7	3.098	2.9	2.375	267.245	0.948	3.703				
	269.0	409.8	138.0	599.4	0.244	0.004	0.773	266.439	0.976	4.031				
	269.1	486.9	227.5	307.9	0.074	6.149	2.631	157.583	0.956	2.264				
	259.2	577.0	289.0	275.6	0.137	6.148	2.324	145.470	0.781	5.289				
	283.7	575.0	259.4	330.4	0.137	6.152	2.299	122.546	0.779	2.885				
	264.3	469.3	207.3	359.5	0.285	6.277	0.692	119.121	0.999	1.721				
	266.5	461.9	653.1	229.0	2.889	3.046	1.015	112.794	0.863	1.381				
)	259.2	399.7	444.5	217.0	2.917	3.046	1.047	103.717	0.973	1.936				

Benchmark points for enhanced triple Higgs production from ref. [111]												
Name	M_2	M_3	v_2	v_3	θ_{12}	θ_{13}	θ_{23}	$rac{\sigma}{\sigma_{SM}}$	R.F.	$ ho^2 \; [imes 10^6]$		
BM0	259.0	495.0	215.8	180.8	6.191	0.163	5.691	306.025	0.955	0.025		
BM1	270.6	444.7	122.4	847.2	0.268	0.030	0.522	302.361	0.929	3.574		
BM2	268.6	452.7	137.8	784.8	0.263	0.023	0.645	275.616	0.954	3.509		
BM3	272.6	480.7	928.3	143.7	3.098	2.9	2.375	267.245	0.948	3.703		
BM4	269.0	409.8	138.0	599.4	0.244	0.004	0.773	266.439	0.976	4.031		
BM5	269.1	486.9	227.5	307.9	0.074	6.149	2.631	157.583	0.956	2.264		
BM6	259.2	577.0	289.0	275.6	0.137	6.148	2.324	145.470	0.781	5.289		
BM7	283.7	575.0	259.4	330.4	0.137	6.152	2.299	122.546	0.779	2.885		
BM8	264.3	469.3	207.3	359.5	0.285	6.277	0.692	119.121	0.999	1.721		
BM9	266.5	461.9	653.1	229.0	2.889	3.046	1.015	112.794	0.863	1.381		
BM10	259.2	399.7	444.5	217.0	2.917	3.046	1.047	103.717	0.973	1.936		

Resonant **Fraction:**

How much of the total cross section comes from...?

В	Benchmark points for enhanced triple Higgs production from ref. [111]													
2	M_2	M_3	v_2	v_3	$ heta_{12}$	$ heta_{13}$	θ_{23}	$rac{\sigma}{\sigma_{SM}}$	R.F.	$ ho^2 \; [imes 10^6]$				
	259.0	495.0	215.8	180.8	6.191	0.163	5.691	306.025	0.955	0.025				
	270.6	444.7	122.4	847.2	0.268	0.030	0.522	302.361	0.929	3.574				
	268.6	452.7	137.8	784.8	0.263	0.023	0.645	275.616	0.954	3.509				
	272.6	480.7	928.3	143.7	3.098	2.9	2.375	267.245	0.948	3.703				
	269.0	409.8	138.0	599.4	0.244	0.004	0.773	266.439	0.976	4.031				
	269.1	486.9	227.5	307.9	0.074	6.149	2.631	157.583	0.956	2.264				
	259.2	577.0	289.0	275.6	0.137	6.148	2.324	145.470	0.781	5.289				
	283.7	575.0	259.4	330.4	0.137	6.152	2.299	122.546	0.779	2.885				
	264.3	469.3	207.3	359.5	0.285	6.277	0.692	119.121	0.999	1.721				
	266.5	461.9	653.1	229.0	2.889	3.046	1.015	112.794	0.863	1.381				
)	259.2	399.7	444.5	217.0	2.917	3.046	1.047	103.717	0.973	1.936				

Benchmark points for enhanced triple Higgs production from ref. [111]												
Name	M_2	M_3	v_2	v_3	$ heta_{12}$	θ_{13}	θ_{23}	$rac{\sigma}{\sigma_{SM}}$	R.F.	$\rho^2~[\times 10^6]$		
BM0	259.0	495.0	215.8	180.8	6.191	0.163	5.691	306.025	0.955	0.025		
BM1	270.6	444.7	122.4	847.2	0.268	0.030	0.522	302.361	0.929	3.574		
BM2	268.6	452.7	137.8	784.8	0.263	0.023	0.645	275.616	0.954	3.509		
BM3	272.6	480.7	928.3	143.7	3.098	2.9	2.375	267.245	0.948	3.703		
BM4	269.0	409.8	138.0	599.4	0.244	0.004	0.773	266.439	0.976	4.031		
BM5	269.1	486.9	227.5	307.9	0.074	6.149	2.631	157.583	0.956	2.264		
BM6	259.2	577.0	289.0	275.6	0.137	6.148	2.324	145.470	0.781	5.289		
BM7	283.7	575.0	259.4	330.4	0.137	6.152	2.299	122.546	0.779	2.885		
BM8	264.3	469.3	207.3	359.5	0.285	6.277	0.692	119.121	0.999	1.721		
BM9	266.5	461.9	653.1	229.0	2.889	3.046	1.015	112.794	0.863	1.381		
BM10	259.2	399.7	444.5	217.0	2.917	3.046	1.047	103.717	0.973	1.936		

Rescaling Parameter,

Calculate cross section@13.6 **TeV using:**

 $\sigma = \hat{\sigma}_u(m_2, m_3) \times \rho^2$

How good is the narrow-width approximation?

 $gg \rightarrow h_3 \rightarrow h_2 h_1 \rightarrow h_1 h_1 h_1$ versus $gg \rightarrow h_1 h_1 h_1$ [using MG5_aMC@NLO]

How good is the narrow-width approximation?

 $gg \rightarrow h_3 \rightarrow h_2h_1 \rightarrow h_1h_1h_1$ versus $gg \rightarrow h_1h_1h_1$ [using MG5_aMC@NLO]

Next Steps!

Perform analysis on (m_2, m_3) -plane to find optimal set of cuts over whole plane.

Find limits on rescaling parameters on ρ^2 over (m_2, m_3) -plane.

These should be modelindependent for the doubleresonant process discussed here. Andreas Papaefstathiou

Summary & Outlook

- Triple Higgs boson production can be enhanced in models with additional scalars!
- Particularly in models with two scalars with masses that can generate a double-resonant contribution to hhh.
- If the width is narrow enough, a factorized cross section approach can be used to impose limits on a rescaling parameter in a model-independent way.

Summary & Outlook

- Triple Higgs boson production can be enhanced in models with additional scalars!
- Particularly in models with two scalars with masses that can generate a double-resonant contribution to hhh.
- If the width is narrow enough, a factorized cross section approach can be used to impose limits on a rescaling parameter in a model-independent way.

Thanks

Questions?

Appendices

TRSM hhh \rightarrow 6b analysis details

Introduce two observables: $\chi^{2,(4)} = \sum \left(M_{qr} - M_1 \right)^2$

invariant mass of the pairing *qr*.

 $qr \in I$ $\chi^{2,(6)} = \sum \left(M_{qr} - M_1 \right)^2$ $qr \in J$

 \rightarrow constructed from different pairings of 4 and 6 b-tagged jets, M_{ar} is the

TRSM hhh -> 6b analysis details

Label	(M_2, M_3)	$< P_{T,b}$	$\chi^{2,(4)} <$	$\chi^{2,(6)} <$	$m_{4b}^{\mathrm{inv}} <$	$m_{6b}^{\mathrm{inv}} <$
	[GeV]	$[\mathrm{GeV}]$	$[\mathrm{GeV}^2]$	$[\mathrm{GeV}^2]$	[GeV]	[GeV]
\mathbf{A}	(255, 504)	34.0	10	20	_	525
Β	(263, 455)	34.0	10	20	450	470
\mathbf{C}	(287, 502)	34.0	10	50	454	525
D	(290, 454)	27.25	25	20	369	475
${f E}$	(320, 503)	27.25	10	20	403	525
\mathbf{F}	(264, 504)	34.0	10	40	454	525
\mathbf{G}	(280, 455)	26.5	25	20	335	475
\mathbf{H}	(300, 475)	26.5	15	20	352	500
Ι	(310, 500)	26.5	15	20	386	525
\mathbf{J}	(280, 500)	34.0	10	40	454	525

Table 3. The optimised selection cuts for each of the benchmark points within **BP3** shown in table 2. The cuts not shown above are common for all points, as follows: $|\eta|_b < 2.35$, $\Delta m_{\min, \text{med, max}} < [15, 14, 20] \text{ GeV}, p_T(h_1^i) > [50, 50, 0] \text{ GeV}, \Delta R(h_1^i, h_1^j) < 3.5$ and $\Delta R_{bb}(h_1) < 3.5$. For some of the points a m_{4b}^{inv} cut is not given, as this was found to not have an impact when combined with the m_{6b}^{inv} cut.

TRSM hhh → 6b analysis details (Signal vs Bkg)

Label	(M_2, M_3)	$\varepsilon_{\mathrm{Sig.}}$	$S _{300 fb^{-1}}$	$arepsilon_{ m Bkg.}$	$\mathbf{B}\big _{300 \mathrm{fb}^{-1}}$	$\mathrm{sig} _{\mathrm{300 fb}^{-1}}$	$sig _{3000 fb^{-1}}$
	[GeV]					(syst.)	(syst.)
Α	(255, 504)	0.025	14.12	8.50×10^{-4}	19.16	2.92(2.63)	9.23~(5.07)
Β	(263, 455)	0.019	17.03	3.60×10^{-5}	8.12	4.78(4.50)	15.10(10.14)
\mathbf{C}	(287, 502)	0.030	20.71	9.13×10^{-5}	20.60	4.01 (3.56)	12.68(6.67)
D	(290, 454)	0.044	37.32	1.96×10^{-4}	44.19	$5.02 \ (4.03)$	15.86(6.25)
${f E}$	(320, 503)	0.051	31.74	2.73×10^{-4}	61.55	3.76(2.87)	11.88(4.18)
\mathbf{F}	(264, 504)	0.028	18.18	9.13×10^{-5}	20.60	$3.56\ (3.18)$	11.27 (5.98)
\mathbf{G}	(280, 455)	0.044	38.70	1.96×10^{-4}	44.19	5.18(4.16)	$16.39\ (6.45)$
\mathbf{H}	(300, 475)	0.054	41.27	2.95×10^{-4}	66.46	4.64(3.47)	14.68(4.94)
Ι	(310, 500)	0.063	41.43	3.97×10^{-4}	89.59	4.09(2.88)	12.94 (3.87)
\mathbf{J}	(280, 500)	0.029	20.67	9.14×10^{-5}	20.60	4.00(3.56)	$12.65 \ (6.66)$

Table 4. The resulting selection efficiencies, $\varepsilon_{\text{Sig.}}$ and $\varepsilon_{\text{Bkg.}}$, number of events, *S* and *B* for the signal and background, respectively, and statistical significances for the sets of cuts presented in table 3. A *b*-tagging efficiency of 0.7 has been assumed. The number of signal and background events are provided at an integrated luminosity of 300 fb⁻¹. Results for 3000 fb⁻¹ are obtained via simple extrapolation. The significance is given at both values of the integrated luminosity excluding (including) systematic errors in the background according to Eq. (5.1) (or Eq. (5.2) with $\sigma_b = 0.1 \times B$).

TRSM BP3 Definition

Parameter

M_1
M_2
M_3
$A_{1,\alpha}$

U	h	S
\mathbf{O}		

θ ,	S_{\cdot}	X
------------	-------------	---

 v_S

 v_X

 κ_1

 κ_2

 κ_3

Value
$125.09 \mathrm{GeV}$
[125, 500] GeV
[255, 650] GeV
-0.129
0.226
-0.899
$140 \mathrm{GeV}$
$100 \mathrm{GeV}$
0.966
0.094
0.239

TRSM BP3 Benchmark Point Info

Label	(M_2,M_3)	Γ_2	Γ_3	$BR_{2 \rightarrow 11}$	$BR_{3 \rightarrow 11}$	$BR_{3 \rightarrow 12}$
		[GeV]	[GeV]	$[\mathrm{GeV}]$		
Α	(255, 504)	0.086	11	0.55	0.16	0.49
В	(263, 455)	0.12	7.6	0.64	0.17	0.47
\mathbf{C}	(287, 502)	0.21	11	0.70	0.16	0.47
\mathbf{D}	(290, 454)	0.22	7.0	0.70	0.19	0.42
${f E}$	(320, 503)	0.32	10	0.71	0.18	0.45
\mathbf{F}	(264, 504)	0.13	11	0.64	0.16	0.48
\mathbf{G}	(280, 455)	0.18	7.4	0.69	0.18	0.44
\mathbf{H}	(300, 475)	0.25	8.4	0.70	0.18	0.43
Ι	(310, 500)	0.29	10	0.71	0.17	0.45
J	(280, 500)	0.18	10.6	0.69	0.16	0.47

Table 5. The total widths and new scalar branching ratios for the parameter points considered in the analysis. For the SM-like h_1 , we have $M_1 = 125 \text{ GeV}$ and $\Gamma_1 = 3.8 \text{ MeV}$ for all points considered. The other input parameters are specified in table 1. The on-shell channel $h_3 \rightarrow h_2 h_2$ is kinematically forbidden for all points considered here.

