Heavy Higgs Bosons in BSM

Mustafa Ashry

mustafa@sci.cu.edu.eg

DEPARTMENT OF MATHEMATICS, FACULTY OF SCIENCE, CAIRO UNIVERSITY

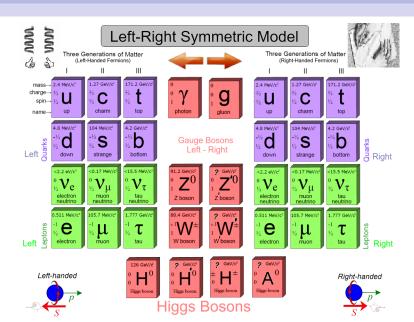
Based on PhysRevD.107.055044, PhysRevD.104.015016,BSM-2021 Conf. Proc., Eur.Phys.J.C 84 (2024) 433 [4, 9, 3, 5]

Mini Workshop on HHH

July 31, 2024

- 1 The LRIS Model
- Heavy Higgs in LRIS at the LHC
 - $h' \to hh \to b\bar{b}\gamma\gamma$ and $h' \to ZZ \to 4\ell$
 - lacksquare H^{\pm} Contribution to a_{μ}
- B Heavy Higgs in BLSSM Model
- 4 Conclusion

- 1 The LRIS Model
- 2 Heavy Higgs in LRIS at the LHC
 - $h' \to hh \to b\bar{b}\gamma\gamma$ and $h' \to ZZ \to 4\ell$
 - $\blacksquare H^{\pm}$ Contribution to a_{μ}
- **B** Heavy Higgs in BLSSM Model
- 4 Conclusion


- 1 The LRIS Model
- 2 Heavy Higgs in LRIS at the LHC
 - $lackbox{\bullet} h' o hh o bar{b}\gamma\gamma$ and $h' o ZZ o 4\ell$
 - $\blacksquare H^{\pm}$ Contribution to a_{μ}
- Heavy Higgs in BLSSM Model
- 4 Conclusion

- 1 The LRIS Model
- 2 Heavy Higgs in LRIS at the LHC
 - $lackbox{1}{\bullet} h'
 ightarrow hh
 ightarrow bar{b}\gamma\gamma$ and $h'
 ightarrow ZZ
 ightarrow 4\ell$
 - $\blacksquare H^{\pm}$ Contribution to a_{μ}
- Heavy Higgs in BLSSM Model
- 4 Conclusion

- 1 The LRIS Model
- 2 Heavy Higgs in LRIS at the LHC
 - $lackbox{1}{\bullet} h'
 ightarrow hh
 ightarrow bar{b}\gamma\gamma$ and $h'
 ightarrow ZZ
 ightarrow 4\ell$
 - $\blacksquare H^{\pm}$ Contribution to a_{μ}
- 3 Heavy Higgs in BLSSM Model
- 4 Conclusion

- **The LRIS Model**
- 2 Heavy Higgs in LRIS at the LHC
 - $h' \to hh \to b\bar{b}\gamma\gamma$ and $h' \to ZZ \to 4\ell$
 - lacksquare H^{\pm} Contribution to a_{μ}
- 3 Heavy Higgs in BLSSM Model
- 4 Conclusion

- 1 The LRIS Model
- 2 Heavy Higgs in LRIS at the LHC
 - $h' \to hh \to b\bar{b}\gamma\gamma$ and $h' \to ZZ \to 4\ell$
 - H^{\pm} Contribution to a_{μ}
- **3** Heavy Higgs in BLSSM Model
- **4** Conclusion

Fields	$SU(3)_C \times SU(2)_L \times SU(2)_R \times U_{B-L}$	\mathbb{Z}_2
$Q_L = \begin{pmatrix} u_L \\ d_L \end{pmatrix}$	$(3,2,1, frac{1}{3})$	+1
$Q_R = \begin{pmatrix} u_R \\ d_R \end{pmatrix}$	$({f 3},{f 1},{f 2},rac{1}{3})$	+1
$L_{L} = \begin{pmatrix} \nu_{L} \\ e_{L} \end{pmatrix}$ $L_{R} = \begin{pmatrix} \nu_{R} \\ e_{R} \end{pmatrix}$	$({f 1},{f 2},{f 1},-1)$	+1
$L_R = \begin{pmatrix} \nu_R \\ e_R \end{pmatrix}$	$({f 1},{f 1},{f 2},-1)$	+1
S_1	$({f 1},{f 1},{f 1},-2)$	-1
S_2	$({f 1},{f 1},{f 1},2)$	+1
$\phi = \begin{pmatrix} \phi_1^0 & \phi_1^+ \\ \phi_2^- & \phi_2^0 \end{pmatrix}$	$({f 1},{f 2},{f 2},0)$	+1
$\chi_R = \begin{pmatrix} \chi_R^+ \\ \chi_R^0 \end{pmatrix}$	$({f 1},{f 1},{f 2},1)$	+1

 Table 1: The LRIS particle Content quantum numbers.

The Higgs potential is [7]

$$\begin{split} V(\phi,\chi_R) &= \mu_1 \mathsf{Tr}(\phi^\dagger \phi) + \mu_2 [\mathsf{Tr}(\tilde{\phi}\phi^\dagger) + \mathsf{Tr}(\tilde{\phi}^\dagger \phi)] + \lambda_1 (\mathsf{Tr}(\phi^\dagger \phi))^2 \\ &+ \lambda_2 [(\mathsf{Tr}(\tilde{\phi}\phi^\dagger))^2 + (\mathsf{Tr}(\tilde{\phi}^\dagger \phi))^2] + \lambda_3 \mathsf{Tr}(\tilde{\phi}\phi^\dagger) \mathsf{Tr}(\tilde{\phi}^\dagger \phi) \\ &+ \lambda_4 \mathsf{Tr}(\phi\phi^\dagger) (\mathsf{Tr}(\tilde{\phi}\phi^\dagger) + \mathsf{Tr}(\tilde{\phi}^\dagger \phi)) + \mu_3 (\chi_R^\dagger \chi_R) + \rho_1 (\chi_R^\dagger \chi_R)^2 \\ &+ \alpha_1 \mathsf{Tr}(\phi^\dagger \phi) (\chi_R^\dagger \chi_R) + \alpha_2 (\chi_R^\dagger \phi^\dagger \phi \chi_R) + \alpha_3 (\chi_R^\dagger \tilde{\phi}^\dagger \tilde{\phi} \chi_R) \\ &+ \alpha_4 (\chi_R^\dagger \phi^\dagger \tilde{\phi} \chi_R + h.c.). \end{split} \tag{1}$$

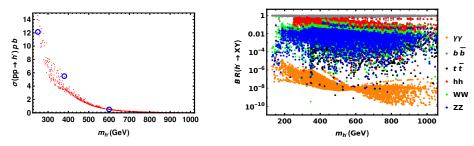
The Yukawa Lagrangian

$$\mathcal{L}_{Y} = \sum_{i,j=1}^{3} \bar{L}_{L,i} (\phi y_{ij}^{L} + \tilde{\phi} \tilde{y}_{ij}^{L}) L_{R,j} + \bar{Q}_{L,i} (\phi y_{ij}^{Q} + \tilde{\phi} \tilde{y}_{ij}^{Q}) Q_{R,j} + \bar{L}_{R,i} \tilde{\chi}_{R} y_{ij}^{s} S_{2,j}^{c} + H.c. .$$
(2)

Spontaneous symmetry breaking (SSB) occurs via the vevs

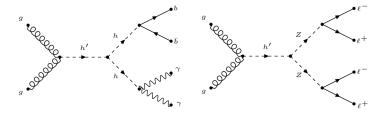
$$\langle \phi \rangle = \begin{pmatrix} k_1 & 0 \\ 0 & k_2 \end{pmatrix} \sim \mathcal{O}(\mathsf{GeV}), \quad \langle \chi \rangle = \begin{pmatrix} 0 \\ v_R \end{pmatrix} \sim \mathcal{O}(\mathsf{TeV}).$$
 (3)

and $t_{\beta} = \tan \beta = k_1/k_2, v = \sqrt{k_1^2 + k_2^2} = 246$ GeV.


■ After SSB, the IS neutrino masses Lagrangian is [13, 14, 10, 16]

$$\mathcal{L}_{m}^{\nu} = M_{D}\bar{\nu}_{L}\nu_{R} + M_{R}\bar{\nu}_{R}^{c}S_{2} + \mu_{s}S_{2}^{c}S_{2} + h.c., \tag{4}$$

where $M_D=v(y^Ls_\beta+\tilde{y}^Lc_\beta)/\sqrt{2}$ is the neutrino Dirac mass matrix and $M_R=y^sv_R/\sqrt{2}$.


- The LRIS Model
- 2 Heavy Higgs in LRIS at the LHC
 - $lackbox{\bullet} h' o hh o bar{b}\gamma\gamma$ and $h' o ZZ o 4\ell$
 - $\blacksquare H^{\pm}$ Contribution to a_{μ}
- **3** Heavy Higgs in BLSSM Model
- 4 Conclusion

■ Fig. 1 (right) shows the h' decay branching ratios with $m_{h'}$. For $m_{h'} \leq 600$ GeV, BR $(h' \to hh) \geq 10\%$, which gives a hope for probing this heavy Higgs through this channel.

Figure 1: (Left) The h' ggF production cross section with the three BP points circled. (Right) h'-decay branching ratios.

■ Here we adapt the following different values of h'-mass: $m_{h'} = 250 \text{ GeV}, \ 400 \text{ GeV} \text{ and } 600 \text{ GeV}$

Figure 2: Feynman diagram for the h' ggF production and decay process $gg \to h' \to hh \to b\bar{b}\gamma\gamma$ and $gg \to h' \to ZZ \to 4\ell$.

Heavy Higgs in LRIS at the LHC

■ We have $\Gamma_{h'}/m_{h'}\ll 1$ and in the narrow width approximation the total cross sections are decomposed into

$$\begin{split} &\sigma(pp\to h'\to hh\to b\bar{b}\gamma\gamma)\approx \sigma(pp\to h')\times \mathsf{BR}(h'\to hh)\times \mathsf{BR}(h\to b\bar{b})\times \mathsf{BR}(h\to \gamma\gamma),\\ &\sigma(pp\to h'\to ZZ\to 4\ell)\approx \sigma(pp\to h')\times \mathsf{BR}(h'\to ZZ)\times (\mathsf{BR}(Z\to 2\ell))^2 \end{split}$$

$m_{h'}$ (GeV)	$\sigma(pp \to h') \; (pb)$	$BR(h' \to hh)$	$\sigma(pp \to h' \to hh \to b\bar{b}\gamma\gamma)$ (fb)
250	12.140	0.30	6.30
400	5.050	0.20	1.01
600	0.504	0.18	0.05

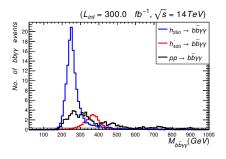
Table 2: $pp \to h' \to hh \to b\bar{b}\gamma\gamma$ production and decays.

	$m_{h'} \; (GeV)$	$\sigma(pp o h') \; (pb)$	BR(h' o ZZ)	$\sigma(pp \to h' \to ZZ \to 4\ell)$ (fb)
Ì	250	12.140	0.050	0.2428
	400	5.050	0.025	0.0579

Table 3: $pp \rightarrow h' \rightarrow ZZ$ production and its decay.

Heavy Higgs in LRIS at the LHC
$$h' o hh o bar{b}\gamma\gamma$$
 and $h' o ZZ o 4\ell$

The relevant backgrounds are


$pp \rightarrow bbh\gamma\gamma/bbja/bbjj/cc\gamma\gamma/ccj\gamma/jj\gamma\gamma/ggh\gamma\gamma/tt/tt\gamma/tth\gamma\gamma/bbz\gamma\gamma/zh\gamma\gamma.$

Cuts (Select)	Signal (S): $m_{h'} = 250 (400) \text{ GeV}$	Background (B)	S/√B
Initial (no cut)	1904.00 (308.00)	25058.00	12.000 (1.95)
$(M_{\gamma\gamma})^{<125.0}_{>119.5} \text{ GeV}$	$522.00 \pm 19.30 \ (106.60 \pm 8.36)$	387.40 ± 19.20	$26.53 \pm 0.01 \ (5.42 \pm 0.01)$

Table 4: Cut flow for $h' \to hh \to b\bar{b}\gamma\gamma$ at $300~{\rm fb}^{-1}$ and $\sqrt{s}=14~{\rm TeV}$ for $m_{h'}=250~{\rm GeV}$ $(400~{\rm GeV}).$

Cuts (Select)	Signal (S): $m_{h'}=600 \text{ GeV}$	Background (B)	S/\sqrt{B}
Initial (no cut)	155.000	250589.00	0.310
$M_{bb} < 200.0 \; {\rm GeV}$	52.250 ± 5.18	39823.60 ± 82.40	0.264 ± 0.0008
$(M_{\gamma\gamma})^{<140.0}_{>119.5} \text{ GeV}$	34.432 ± 5.91	1826.60 ± 42.00	0.800 ± 0.0004
$(\Delta R)_{\gamma\gamma<2.0}^{bb<2.0}$	28.300 ± 4.46	198.63 ± 7.66	2.010 ± 0.0200
$(P_T)_{\gamma\gamma} > 200.0 \text{ GeV}$	22.160 ± 4.36	60.75 ± 7.70	2.800 ± 0.0260

Table 5: Cut flow for $h' \to hh \to b\bar{b}\gamma\gamma$ at $L_{\rm int}=3000~{\rm fb}^{-1}$ and $\sqrt{s}=14~{\rm TeV}$ for $m_{h'}=600~{\rm GeV}$.

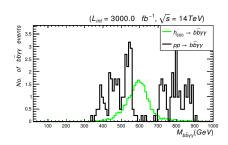


Figure 3: Left: Number of signal events for $h' \to b\bar{b}\gamma\gamma$ decays at mass $m_{h'}=250$ GeV (blue) and 400 GeV (red) induced by ggF versus the invariant mass of the final states $b\bar{b}\gamma\gamma$, at $\sqrt{s}=14$ TeV and $L_{\rm int}=300~{\rm fb}^{-1}$ alongside with the relevant background events (black) after applying the cut flow of Tab. 4. Right: $m_{h'}=600$ GeV (green) at $\sqrt{s}=14$ TeV and $L_{\rm int}=3000~{\rm fb}^{-1}$ alongside the background (black) after (right) applying the cut flow set of Tab. 5.

Cuts (Select) Signal (S): $m_{h'} = 250$ GeV (400 GeV) Background (B) S/ \sqrt{B}

initial (no cut)	128.00 (114.00)	79890.00	2.58000 (0.45000)
$H_T > 150.0 \text{ GeV}$	$58.65 \pm 7.34 \ (38.20 \pm 2.01)$	247.70 ± 15.70	$2.02457 \pm 0.00790 \ (1.26340 \pm 0.00790)$
Table 6: Cut fl	ow charts for the $h' \to ZZ$ –	→ 4ℓ signal ver	sus its relevant

Table 6: Cut flow charts for the $h' \to ZZ \to 4\ell$ signal versus its relevant background and the corresponding number of events and significance at $3000~{\rm fb}^{-1}$ and $\sqrt{s}=14~{\rm TeV}$ for $m_{h'}=250~{\rm GeV},~400~{\rm GeV}.$

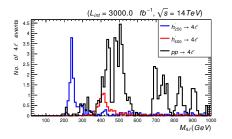
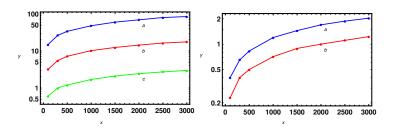



Figure 4: Number of signal events for $pp \to h' \to ZZ \to 4\ell$ decays at mass $m_{h'} = 250$ GeV (red) and 400 GeV (blue) at $\sqrt{s} = 14$ TeV and $L_{\rm int} = 3000$ fb⁻¹ with the background (black) applying the cut flow of Tab. 6.

14 / 36 Mustafa Ashry Heavy Higgs Bosons in BSM

Figure 5: Left: Historical significance of $h'\to b\bar b\gamma\gamma$ versus $L_{\rm int}$ at mass $m_{h'}=250$, 400, 600 GeV (blue/red/green). Right: Historical significance of $pp\to h'\to ZZ\to 4\ell$ signal at $m_{h'}=250$, 400 GeV (blue/red).

Recent experimental possible 4.2σ a_{μ} deviation from the SM [11, 1]

$$\delta a_{\mu} = a_{\mu}^{\text{exp}} - a_{\mu}^{\text{SM}} = (2.51 \pm 0.59) \times 10^{-9}.$$
 (5)

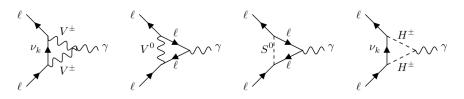


Figure 6: LRIS 1-loop a_ℓ via $\nu_k, H^\pm, V^\pm = W, W', V^0 = Z, Z', S^0 = h, A.$

■ The relevant H^{\pm} -leptons couplings are

$$\xi_{k\ell} \simeq \frac{\sqrt{2}}{vc_{2\beta}} \sum_{i=1}^{3} U_{k,i+3}^* (s_{2\beta} M_{\mathsf{lp}} - M_D)_{\ell i}, \quad k = 4, \dots, 9,$$
 (6)

$$\zeta_{k\ell} \simeq \frac{\sqrt{2}}{vc_{2\beta}} \sum_{i=1}^{3} U_{ki} (M_{\mathsf{lp}} - s_{2\beta} M_D)_{i\ell}, \qquad k = 1, 2, 3, \tag{7}$$

■ The charged Higgs H^{\pm} contribution to a_{μ} is given by

$$a_{\ell}^{H^{\pm}} = G_{\mathsf{F}}^{\ell} \; \Gamma_{\gamma}^{H^{\pm}} \; \sum_{k=1}^{9} \left(|\zeta'_{k\ell}|^2 \; \mathcal{F}_2(x_{H^{\pm}}^{\nu_k}) + 2\mathsf{Re}[\zeta'_{k\ell}{\xi'_{k\ell}^*}] \; \mathcal{F}_1(x_{H^{\pm}}^{\nu_k}) \right), \quad (8)$$

where the couplings ${\zeta'}_{k\ell}=\frac{v}{m_{\nu_k}}\zeta_{k\ell}$ and ${\xi'}_{k\ell}=\frac{v}{m_\ell}\xi_{k\ell}.$

■ The loop functions \mathcal{F}_k (k=1,2) in Eq. (8) are given by

$$\mathcal{F}_k(y) = \frac{y\mathcal{P}_k(y)}{(y-1)^{k+1}} - \frac{6y^{k+1}\log(y)}{(y-1)^{k+2}}, \quad k = 1, 2,$$
 (9)

$$\mathcal{P}_1(y) = 3y + 3,\tag{10}$$

$$\mathcal{P}_2(y) = 2y^2 + 5y - 1. \tag{11}$$

■ The charged Higgs boson contribution to the a_{μ} anomaly Eq. (8) can be approximated to

$$a_{\ell}^{H^{\pm}} \simeq 2G_{\mathsf{F}}^{\ell} \; \Gamma_{\gamma}^{H^{\pm}} \; \sum_{k=4}^{9} \mathsf{Re}[\zeta'_{k\ell} \xi'_{k\ell}^{*}] \; \mathcal{F}_{1}(x_{H^{\pm}}^{\nu_{k}}) \lesssim \frac{3\Gamma_{\gamma}^{H^{\pm}}}{8\pi^{2}} \; m_{\ell} \sum_{k=4}^{9} \frac{\zeta_{k\ell} \xi_{k\ell}}{m_{\nu_{k}}}. \tag{12}$$

Figure 7: (Left/right) $\delta a_{\mu,e}$ with $x_{H^\pm}^{\nu_5}=m_{\nu_5}^2/m_{H^\pm}^2$. The 1σ and 2σ standard errors of measurements of a_μ are included in green and red borders. BP is encircled.

Heavy Higgs in LRIS at the LHC

 $\sqsubseteq_{H^{\pm}}$ Contribution to a_{μ}

α_{32}	t_{eta}	v_R	$Z_{31}^{H^\pm}$	$Z_{32}^{H^\pm}$	$Z_{33}^{H^\pm}$	$m_{H^{\pm}}$
0.0058	0.1	10000	-0.099	-0.994	0.024	545

Table 7: BP and H^\pm mixing and mass for $y^s={\rm diag}(1.53\times 10^{-2},9.76\times 10^{-1},2.05\times 10^{-1})$ and $\mu^s={\rm diag}(1.01\times 10^{-5},3.82\times 10^{-9},5.49\times 10^{-6})$. Finally, the nonvanishing elements of the orthogonal matrix $\mathcal R$ are $\mathcal R_{13}=\mathcal R_{21}=\mathcal R_{32}=1$.

$m_{ u_1}$	$m_{ u_2}$	$m_{ u_3}$	$m_{ u_4}$	$m_{ u_5}$	$m_{ u_6}$	m_{ν_7}	m_{ν_8}	$m_{ u_9}$
1.0×10^{-13}	8.5×10^{-12}	5.0×10^{-11}	108	695	1449	108	695	1449

Table 8: BP neutrino mass spectrum in GeVs.

δa_{μ}	$-\delta a_e$	$BR(\mu \to e \gamma)$
2.5×10^{-9}	8.1×10^{-17}	3.4×10^{-13}

Table 9: BP Observalbles $g_{\mu(e)}-2$, $BR(\mu\to e\gamma)$ of the BP given in Tab. 8.

Heavy Higgs in LRIS at the LHC

$$L_{H^{\pm}}$$
 Contribution to a_{μ}

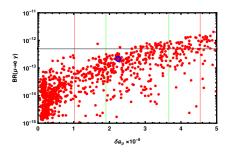
Matrix	\mathcal{R}	y^s		μ^s	y^L	\tilde{y}^L	y^Q	\tilde{y}^Q	U_{PMNS}
1, 1	0	1.53×1	10^{-2} 1.	0.01×10^{-5}	-2.83×10^{-5}	3.13×10^{-4}	6.33×10^{-5}	-3.44×10^{-4}	0.8251
1, 2	0	0		0	-6.86×10^{-3}	6.86×10^{-2}	-1.49×10^{-4}	1.48×10^{-3}	0.5449
1,3	1	0		0	-9.42×10^{-5}	9.42×10^{-4}	-3.53×10^{-4}	3.53×10^{-3}	0.1490
2, 1	1	0		0	-2.75×10^{-5}	2.75×10^{-4}	1.38×10^{-4}	-1.38×10^{-3}	-0.4554
2, 2	0	9.76×1	10^{-2} 3.	$.82 \times 10^{-9}$	-3.39×10^{-2}	3.46×10^{-1}	2.27×10^{-5}	5.26×10^{-3}	0.4795
2,3	0	0		0	5.20×10^{-5}	-5.20×10^{-4}	-4.19×10^{-3}	4.19×10^{-2}	0.7513
3, 1	0	0		0	3.93×10^{-4}	-3.93×10^{-3}	-6.08×10^{-4}	6.08×10^{-3}	0.3343
3, 2	1	0		0	-2.96×10^{-2}	2.96×10^{-1}	4.16×10^{-3}	-4.16×10^{-2}	-0.6836
3, 3	0	2.05 ×	10^{-1} 5.	49×10^{-6}	1.03×10^{-2}	-6.54×10^{-4}	-7.66×10^{-2}	9.99×10^{-1}	0.6427

Table 10: Yukawa and IS matrices BP.

$$U = \begin{pmatrix} U_{3\times3} & U_{3\times6} \\ U_{6\times3} & U_{6\times6} \end{pmatrix}^T = \begin{pmatrix} -0.8243 & 0.4535 & -0.3389 & 0 & 0 & 0 & 0 & 0.0000 & -0.0001 \\ 0.5465 & 0.4812 & -0.6853 & 0 & 0 & 0 & 0.0009 & 0.0002 & 0 \\ -0.1468 & -0.7453 & -0.6403 & 0 & 0 & 0 & 0 & -0.1137 & 0 \\ -0.0004 & -0.0003 & 0.0004 & -0.7071 & 0 & 0 & 0.7071 & 0 & 0 \\ -0.0120 & -0.0604 & -0.0517 & 0 & -0.7071 & 0 & 0 & 0.7025 & 0 \\ 0.0001 & 0.0000 & 0.0003 & 0 & 0 & 0.7071 & 0 & 0 & -0.7071 \\ -0.0004 & -0.0003 & 0.0004 & 0.7071 & 0 & 0 & 0.7071 & 0 & 0 \\ 0.0120 & 0.0604 & 0.0517 & 0 & -0.7071 & 0 & 0 & -0.7025 & 0 \\ -0.0001 & 0.0000 & 0.0000 & 0 & 0 & 0.7071 & 0 & 0 & 0.7071 \end{pmatrix}$$

■ Experimentally, BR $(\mu \to e \gamma) \lesssim 4.2 \times 10^{-13}~(90\% {\rm CL})$ [6]. LRIS H^\pm

$$\mathsf{BR}(\mu \to e \gamma)_{\mathsf{LRIS}} \lesssim \frac{9\alpha_{\mathsf{em}}}{256\pi^4} \frac{m_{\mu}^5}{\Gamma_{\mu}} \sum_{k=4}^{9} \frac{1}{m_{\nu_k}^2} \left(\frac{\zeta_{k,e} \xi_{k,\mu}}{m_{\mu}} + \frac{\xi_{k,e} \zeta_{k,\mu}}{m_e} \right)^2. \tag{14}$$


- Also, experiments make the upper bounds $R_{\mu \to e}^{\rm Ti} \leqslant 10^{-18}, \ R_{\mu \to e}^{\rm Al} \leqslant 10^{-16}, \ R_{\mu \to e}^{\rm Au} \leqslant 7 \times 10^{-13}$ to the $\mu\text{-}e$ conversion rates on a nucleus (A) [12].
- The H^{\pm} contribution to the μ -e conversion is [2, 8]

$$R_{\mu \to e}^{A} = \frac{32G_{\mathsf{F}}^{2}m_{\mu}^{5}}{\Gamma_{\mathsf{capt}}^{A}} \left[\left| \tilde{C}_{V,R}^{pp} V_{A}^{(p)} + \tilde{C}_{V,R}^{nn} V_{A}^{(n)} + \frac{1}{4} C_{D,L} D_{A} \right|^{2} + \{L \leftrightarrow R\} \right]. \tag{15}$$

$$\Gamma_{\rm capt}^A \sim \mathcal{O}(1-10) \times 10^6~s^{-1}$$
, and $V_A^{(p)}, V_A^{(n)}, D_A \sim \mathcal{O}(10^{-2}-10^{-1})$ for $A={\rm AI}$, Ti, Au [12].

$BR(\mu \to e\gamma)$	$R_{\mu o e}^{Al}$	$R_{\mu o e}^{Ti}$	$R^{Au}_{\mu o e}$
2.10×10^{-13}	4.10×10^{-51}	3.80×10^{-50}	4.10×10^{-49}

 Table 11: LFV observables BP given in Table 8 in LRIS.

Figure 8: BR($\mu \to e\gamma$) versus δa_{μ} in LRIS. BP is encircled.

■ All BPs are tested and found to satisfy the μ -e conversion experimental limits as in Table 11.

22 / 36 Mustafa Ashry Heavy Higgs Bosons in BSM

- The LRIS Model
- Heavy Higgs in LRIS at the LHC
 - $h' \to hh \to b\bar{b}\gamma\gamma$ and $h' \to ZZ \to 4\ell$
 - H^{\pm} Contribution to a_{μ}
- 3 Heavy Higgs in BLSSM Model
- **4** Conclusion

Superpotential

$$\begin{split} W &= Y_u^{ij} \hat{u}_i^c \hat{Q}_j \cdot \hat{H}_u - Y_d^{ij} \hat{d}_i^c \hat{Q}_j \cdot \hat{H}_d - Y_e^{ij} \hat{E}_i^c \hat{L}_j \cdot \hat{H}_d + Y_\nu^{ij} \hat{N}_i^c \hat{L}_j \cdot \hat{H}_u \\ &+ \frac{1}{2} Y_N^{ij} \hat{N}_i^c \hat{\chi}_1 \hat{N}_j^c + \mu \hat{H}_u \cdot \hat{H}_d - \mu' \hat{\chi}_1 \hat{\chi}_2. \end{split}$$

Superfield	Spin-0	Spin- $\frac{1}{2}$	Generations	$\mathbb{G}_{SM}\otimes U(1)_{B-L}$
\hat{Q}	$ ilde{Q}$	Q	3	$(3, 2, \frac{1}{6}, \frac{1}{3})$
\hat{d}^c	$ ilde{d}^c$	d^c	3	$\left(\overline{3},1,\ \ \frac{1}{3},-\frac{1}{3}\right)$
\hat{u}^c	\tilde{u}^c	u^c	3	$(\overline{\bf 3},{f 1},-rac{5}{3},-rac{1}{3})$
\hat{L}	$ ilde{L}$	L	3	$\left(1,2,-rac{1}{2},-1 ight)$
\hat{E}^c	\tilde{e}^c	e^c	3	(1,1, 1, 1)
\hat{N}^c	$ ilde{N}^c$	N^c	3	(1,1,0,1)
\hat{H}_d	H_d	$ ilde{H}_d$	1	$(1,2,-\frac{1}{2},0)$
\hat{H}_u	H_u	$ ilde{H}_u$	1	$(1, 2, \frac{1}{2}, 0)$
$\hat{\chi}_1$	χ_1	$ ilde{\chi}_1$	1	$\left(1,1,\ \ ilde{0},-2 ight)$
$\hat{\chi}_2$	χ_2	$ ilde{\chi}_2$	1	(1,1, 0, 2)

■ The Z - Z' mixing angle is

$$\tan 2\theta' = \frac{2\tilde{g}\sqrt{g_1^2 + g_2^2}}{\tilde{g}^2 + 16(\frac{v'}{v})^2 g_{BL}^2 - g_2^2 - g_1^2} \lesssim 10^{-3},\tag{16}$$

where \tilde{g} is the gauge mixing between $U(1)_Y$ and $U(1)_{B-L}$ and $v'=\sqrt{v_1^2+v_2^2}$ is the B-L vev.

■ The Higgs potential is

$$\begin{split} V(H,\chi) &= |\mu|^2 (|H_u^0|^2 + |H_d^0|^2) + |\mu'|^2 (|\chi_1|^2 + |\chi_2|^2) \\ &+ \frac{g^2}{8} (|H_u^0|^2 - |H_d^0|^2)^2 + \frac{g_{BL}^2}{2} (|\chi_1|^2 - |\chi_2|^2)^2 \\ &- \frac{\tilde{g}g_{BL}}{4} (|H_u^0|^2 - |H_d^0|^2) (|\chi_1|^2 - |\chi_2|^2) \\ &- m_1^2 |\chi_1|^2 - m_2^2 |\chi_2|^2 - B_\mu' \chi_1 \chi_2. \end{split}$$

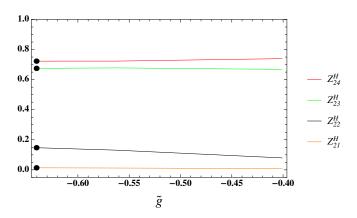


Figure 9: The Higgs mixing Z_{2i}^H $(i=1,\ldots,4)$ versus the gauge kinetic mixing coupling \tilde{g} .

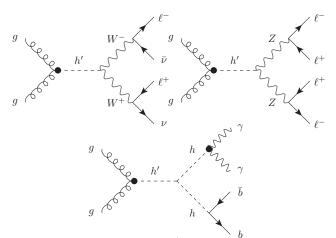


Figure 10: Feynman diagrams for h' production via ggF and decays via (from left to right) $W^+W^- \to 2\ell + E_T$, $h' \to ZZ \to 4\ell$ and $h' \to hh \to b\bar{b}\gamma\gamma$.

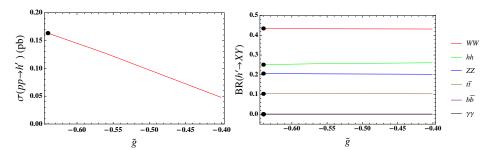


Figure 11: ggF h' production cross section at $\sqrt{s}=14$ TeV (left) and h' decay BRs (right) versus the kinetic mixing coupling \tilde{g} .

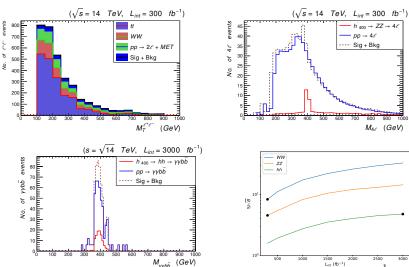


Figure 12: S and B distributions at $m_{h'}=400$ GeV, $L_{\rm int}=300$ fb $^{-1}$. Below-right: Historical significance.

29 / 36

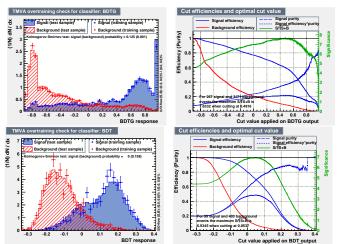


Figure 13: $H \to WW \to 2j + MET$ (up) and $H \to hh \to \gamma\gamma\bar{b}b$ (down): S and B distributions, significance, correlation matrix and the ROC curves for different learning ML algorithms at $m_{h'} = 400$ GeV, $L_{\rm int} = 300/3000$ fb⁻¹ [15].

- The LRIS Model
- Heavy Higgs in LRIS at the LHC
 - $h' \to hh \to b\bar{b}\gamma\gamma$ and $h' \to ZZ \to 4\ell$
 - H^{\pm} Contribution to a_{μ}
- **3** Heavy Higgs in BLSSM Model
- **4** Conclusion

- Possible signatures for heavy nonsusy Higgs bosons.
- Possible signatures for heavy susy Higgs bosons.

References I

- B. Abi et al. Measurement of the Positive Muon Anomalous Magnetic Moment to 0.46 ppm. Phys. Rev. Lett., 126(14):141801, 2021.
- [2] R. Alonso, M. Dhen, M. B. Gavela, and T. Hambye. Muon conversion to electron in nuclei in type-I seesaw models. JHEP, 01:118, 2013.
- M. Ashry, K. Ezzat, and S. Khalil.
 Search for Heavy Neutral Higgs Bosons at the LHC.
 In Beyond Standard Model: From Theory to Experiment, 2021.
- [4] M. Ashry, K. Ezzat, and S. Khalil. Muon g-2 anomaly in a left-right model with an inverse seesaw mechanism. Phys. Rev. D, 107(5):055044, 2023.
- [5] M. Ashry, S. Khalil, and S. Moretti. Searching for a heavy neutral CP-even Higgs boson in the BLSSM at the LHC Run 3 and HL-LHC. <u>Eur. Phys. J. C</u>, 84(4):433, 2024.
- [6] A. M. Baldini et al. Search for the lepton flavour violating decay $\mu^+ \to e^+ \gamma$ with the full dataset of the MEG experiment. Eur. Phys. J. C, 76(8):434, 2016.
- [7] Debasish Borah, Sudhanwa Patra, and Utpal Sarkar.
 TeV scale Left Right Symmetry with spontaneous D-parity breaking.
 Phys.Rev., D83:035007, 2011.

References II

- Sacha Davidson, Yoshitaka Kuno, and Masato Yamanaka.
 Selecting μ → e conversion targets to distinguish lepton flavour-changing operators. Phys. Lett. B, 790:380–388, 2019.
- K. Ezzat, M. Ashry, and S. Khalil.
 Search for a heavy neutral Higgs boson in a left-right model with an inverse seesaw mechanism at the LHC. Phys. Rev. D, 104(1):015016, 2021.
- [10] M.C. Gonzalez-Garcia and J.W.F. Valle. Fast Decaying Neutrinos and Observable Flavor Violation in a New Class of Majoron Models. Phys. Lett. B, 216:360–366, 1989.
- [11] Alexander Keshavarzi, William J. Marciano, Massimo Passera, and Alberto Sirlin. Muon g-2 and $\Delta\alpha$ connection. Phys. Rev. D, 102(3):033002, 2020.
- [12] Ryuichiro Kitano, Masafumi Koike, and Yasuhiro Okada. Detailed calculation of lepton flavor violating muon electron conversion rate for various nuclei. Phys. Rev. D, 66:096002, 2002. [Erratum: Phys.Rev.D 76, 059902 (2007)].
- R.N. Mohapatra.
 Mechanism for Understanding Small Neutrino Mass in Superstring Theories.
 Phys. Rev. Lett., 56:561–563, 1986.

 R.N. Mohapatra and J.W.F. Valle.
- [14] R.N. Mohapatra and J.W.F. Valle. Neutrino Mass and Baryon Number Nonconservation in Superstring Models. Phys. Rev. D, 34:1642, 1986.

References III

- [15] Armen Tumasyan et al. Search for a new resonance decaying into two spin-0 bosons in a final state with two photons and two bottom quarks in proton-proton collisions at $\sqrt{s}=13$ TeV. 10 2023.
- [16] C. Weiland. Enhanced lepton flavour violation in the supersymmetric inverse seesaw. J. Phys. Conf. Ser., 447:012037, 2013.

Thank you! Questions?