The NNPDF4.0 aN³LO PDFs

Giacomo Magni, on behalf of NNPDF

Higgs WG1: aN³LO PDF for Run3 & YR5 26 June 2024

email: gmagni@nikhef.nl

PDFs determination at aN³LO

Several theoretical inputs are needed in a PDF fit:

QCD **splitting functions** which controls the DGLAP evolution.

VFNS matching conditions for each running component.

$$f_i^{(n_f+1)}(x,Q^2) = A_{ij}(x,\alpha_s) f_j^{(n_f)}(x,Q^2)$$

Partonic coefficients functions, accounting for massive corrections when possible.

$$\sigma(x, Q^2) = \sum_{i=0}^{n_f} C_{k,i}(x, \alpha_s) \otimes f_i(x, Q^2)$$
NNPDF4.0 Kinematic coverage

aN³LO splitting functions

Analytical calculations of the complete N³LO spitting functions are not available. Large number of partial results available.

- Large- n_f : $\mathcal{O}(n_f^3)$, $P_{NS}^{(n_f^2)}$, Vogt et al. [arxiv:1610.07477]; $P_{qq,PS}^{(n_f^2)}$ Gehrmann et al. [arxiv:2308.07958]; $P_{gq}^{(n_f^2)}$ Falcioni et al. [arxiv:2310.01245];
- NS small-*x*: Davies et al. [arxiv:2202.10362] $P_{NS}^{(3)} \supset \sum_{k=0}^{6} \ln^{k}(x)$ Singlet small-*x*: Bonvini, Marzani [arxiv:1805.06460] $P_{ij}^{(3)} \supset \sum_{k=0}^{3} \frac{\ln^{k}(x)}{x}$
- Large-x: Duhr et al. [arxiv:2205.04493]; Mistlberger et al. [arxiv:1911.10174]; Moch et al [arxiv:0912.0369].

$$P_{ii}^{(3)} \approx A_{4,i} \frac{1}{(1-x)_{+}} + B_{4,i} \delta(1-x) + C_{4,i} \ln(1-x) + D_{4,i}$$
$$P_{ij}^{(3)} \approx \sum_{k}^{6} \ln^{k}(1-x)$$

5 or 10 lowest Mellin Moments: Moch et al. [arxiv:1707.08315]
 [arxiv:2111.15561]; Falcioni et al. [arxiv:2302.07593],
 [arxiv:2307.04158] (more recent [arxiv:2404.09701], not included)

How do we combine the different limits?

The approximation procedure is performed in Mellin space for each n_f part independently:

$$\gamma_{ij}^{(3)} = \gamma_{ij,n_f^3}^{(3)} + \gamma_{ij,N\to\infty}^{(3)} + \gamma_{ij,N\to0}^{(3)} + \tilde{\gamma}$$

The parametrised part is constructed as:

$$\tilde{\gamma}_{ij} = \sum_{l} a_{ij}^{(l)} G_{l}(N)$$

 Vary the functions G_l to generate a set of approximation and determine IHOU

$$cov_{nm}^{(ij)} = \frac{1}{N_{ij}} \sum_{k=1}^{N_{ij}} \Delta_n^{(k)} \Delta_m^{(k)}, \quad \Delta_n^{(k)} = T_n^{(k)} - \bar{T}_n$$

Determine MHOU from scale variation.

$$cov_{nm} = cov_{MHOU} + cov_{IHOU}$$

aN³LO splitting functions

- For P_{qg} , P_{qq} , P_{gq} the N³LO approximation **uncertainty is negligible** [IHOU < MHOU].
- In P_{gg} the N³LO approximation uncertainty is significant [IHOU > MHOU for $x \ge 10^{-4}$].

Quark sector

Gluon sector

• **IHOU** = incomplete higher order uncertainties [only for aN^3LO]. **MHOU** = missing higher order uncertainties.

aN³LO DIS coefficient functions

DIS structure functions are known at N³LO in the massless limit for F_2, F_L, F_3 :

- ► DIS NC: Larin, Nogueira, Van Ritbergen, Vermaseren [arxiv:9605317] Moch, Vermaseren, Vogt [arxiv:0411112], [arxiv:0504242] Blümlein et al. [arxiv:2208.14325].
- ► DIS CC: Davies, Moch, Vermaseren, Vogt [arxiv:0812.4168] [arxiv:1606.08907]

DIS Heavy structure functions can be parametrised joining the known limits $(Q \rightarrow m_h^2 Q \gg m_h^2 \text{ and } x \rightarrow 0)$ with proper damping functions f_1, f_2 : N.Laurenti [arxiv:2401.12139]

$$C_{g,h}^{(3,0)} = C_{g,h}^{thr}(z, \frac{m_h}{Q}) f_1(z) + C_{g,h}^{asy}(z, \frac{m_h}{Q}) f_2(z)$$

KLMV Kawamura, Lo Presti, Moch, Vogt [arxiv:1205.5727]

Approximate N³LO massive DIS

IHOU from massive coefficient are also taken into account.

DIS VFNS at aN³LO

To treat heavy quarks consistently during a PDF fit we must adopt a Variable Flavor Number Scheme.

PDFs matching conditions included at N³LO almost

completely: Blümlein et al. [arxiv:0904.3563] [arxiv:1008.3347] [arxiv:1402.0359] [arxiv:1409.1135] [arxiv:1406.4654] [arxiv:2211.0546] [arxiv:2311.00644] exception of $a_{H,g}^{(3)}$, computed in

[arxiv:2403.00513]

$$\begin{pmatrix} g \\ \Sigma \\ h^+ \end{pmatrix}^{n_f+1} (\mu_h^2) = \mathbf{A}_{S,h^+}^{(n_f)}(\mu_h^2) \cdot \begin{pmatrix} g \\ \Sigma \\ h^+ \end{pmatrix}^{n_f} (\mu_h^2)$$

DIS structure functions are computed in the **FONLL** procedure: [arxiv:1001.2312]

- Extended up to N³LO for the Heavy structure functions F_{heavy}
- Extended up to NNLO for light F_{light} + massless N³LO contributions.

$$F_{h,FONLL} = F_{ZM}^{(n_f+1)} + F_{FFNS}^{(n_f)} - \lim_{m_h \to 0} F_{FFN}^{(n_f)}$$

aN³LO theory predictions

To produce our N^3LO PDF fit:

- IHOU.
- DY, jets and top data.
- formalism:

The NNPDF4.0 aN3LO PDF set

Perturbative convergence

- ► aN³LO PDFs with/without MHOU are compatible.
- aN^3LO corrections have a larger effect on the small-x, low-Q DIS data.

Ratio to NNPDF4.0 aN3LO MHOU 1.04 -1.02 -0.98 -0.96 -0.94 -

- Good perturbative convergence in the data region.
- Impact of aN³LO corrections is mild on quarks PDFs.
- ▶ ~ 2 % effect on the gluon around $x \approx 10^{-2}$.

Impact of MHOU

LHC phenomenology: Higgs production

• aN³LO PDFs effects are visible in gluon fusion, leading to a 2.1% suppression w.r.t NNLO PDFs.

> NNLO PDF: $\sigma(gg \to H) = 44.73 \pm 0.26 \text{ (pdf)} \pm 2.1 \text{ (scale) [pb]}$ aN3LO PDF: $\sigma(gg \rightarrow H) = 43.78 \pm 0.24 \text{ (pdf)} \pm 2.0 \text{ (scale) [pb]}$

- Higgs VBF is more stable at different perturbative orders, although the PDF dependency is not negligible.
- More faithful estimation of NNLO TH uncertainties due to HO, YR4 estimate is too optimistic ($\sim 1\%$):

Effect of aN³LO PDF

1 -- 2 -- 0

$\Delta_{\text{NNLO}}^{\text{exact}} \equiv \left \frac{\sigma_{\text{N}^{3}\text{LO}-\text{PDF}}^{\text{N}^{3}\text{LO}} - \sigma_{\text{NNLO}-\text{PDF}}^{\text{N}^{3}\text{LO}}}{\sigma_{\text{N}^{3}\text{LO}-\text{PDF}}^{\text{N}^{3}\text{LO}}} \right \qquad \qquad \Delta_{\text{NNLO}}^{\text{app}} \equiv \frac{1}{2} \left \frac{\sigma_{\text{NNLO}-\text{PDF}}^{\text{NNLO}-\text{PDF}}}{\sigma_{\text{N}^{3}\text{LO}-\text{PDF}}^{\text{N}^{3}\text{LO}}} \right $
--

Drogoga	NNPDF4.0							
Frocess	$\sigma~({ m pb})$	$\delta_{ m th}$	$\delta_{ m PDF}^{ m noMHOU}$	$\delta_{ m PDF}^{ m MHOU}$	$\Delta^{ m app}_{ m NNLO}$	$\Delta_{ m NNLO}^{ m exact}$		
gg ightarrow h	43.8	4.8	0.6	0.7	0.2	2.2		
$h \; \mathrm{VBF}$	4.44	0.6	0.5	0.6	0.2	1.3		
hW^+	0.97	0.6	0.5	0.6	0.2	0.5		
hW^-	0.61	0.6	0.6	0.6	0.2	0.3		
hZ	0.87	0.5	0.4	0.5	0.1	0.3		

Relative uncertainty (%)

$$\sigma_{\rm NLO-PDF}^{\rm NNLO} = \sigma_{\rm NLO-PDF}^{\rm NNLO}$$

aN³LO PDF with QED corrections

Barontini, Laurenti, Rojo [arxiv:2406.01779]

Recently we have also provided an additional global fits:

NNPDF40 QED aN3LO \checkmark

The photon **PDF** is computed from **DIS** structure functions at a given high Q^2 scale. [LuxQED Manohar et al. [arxiv:1607.04266] [arxiv:1708.01256]

DGLAP with mixed $QED \otimes QCD : \mathcal{O}(\alpha_s \alpha_{em}), \mathcal{O}(\alpha_{em}^2)$

The photon PDF subtracts some momentum from other partons (especially gluon):

$$\int_0^1 x dx \left(g(x) + \sum_i q_i^+(x) + \gamma(x) \right) = 1$$

- QED effects on the PDFs are comparable to QCD **aN³LO** corrections, **both must be taken into account** to achieve best accuracy.
- At large-x, similar effect on the $\gamma(x, Q^2)$ PDF as in MSTH20 aN3LO QED Cridge et al. [arxiv:2312.07665]

Summary & outlook

Newest NNPDF4.0 releases:

- \checkmark NNLO theory uncertainties through scale variations.
- \checkmark aN³LO QCD: state of the art **DGLAP** and **DIS**, along with theory uncertainties.

- aN³LO PDFs can be used both with N³LO partonic matrix elements.
- ► aN³LO PDFs can be used to **evaluate** more precisely missing higher order effects.
- Reduction of the N³LO $gg \rightarrow H$ cross section: -2.1% (aN3LO PDF), -3.7% (aN3LO + QED PDF) w.r.t. NNLO PDFs (and fixed matrix element)

Possible combination of NNPDF40 aN3LO and MSTH20 aN3LO is technically feasible (PDF4LHC like combination)

Jan 2024:

NNPDF4.0 MHOU

NNPDF4.0 QED

Feb 2024: NNPDF4.0 aN3LO

Jun 2024: NNPDF4.0 QED aN3LO

Summary & outlook

Newest NNPDF4.0 releases:

- ✓ Theory uncertainties [NNPDF4.0 MHOU]
- ✓ aN³LO effects in DGLAP and DIS [NNPDF4.0 aN3LO]
- ✓ Photon PDF [NNPDF4.0 QED, NNPDF4.0 QED aN3LO].

Possible combination of NNPDF40 aN3LO and MSTH20 aN3LO is technically feasible (PDF4LHC like combination)

Towards NNPDF4.1 :

- Full NNLO: removal of NNLO k-factors (Matrix-Pineappl interface)
- EWK corrections through k-factors
- Improved methodology: for ex. extended Hyperoptimization
- Extension of fitted data (LHC 13 TeV): DY, Top, Jets; DIS + Jet

WIP:

Towards NNPDF4.1

aN³LO splitting functions approxmation

How does the approximation change if we add more test functions?

0.001

0.100

10-5

Out[•]=

-0.2

— 5 moments

— 10 moments

Hadronic processes: DY, Jets, Top

Single boson production (DY):

- N³LO corrections to Z and W^{\pm} differential in $m_{\ell\ell}$ or y_{Z} , can be included through k-factors. Effects are around 1-2% of the total cross sections, and quite flat in the boson rapidity.
- Effect at PDF level is negligible (limited number of data). N³LO DY k-factors not included in the default fit.
- Differential distributions in p_t are available only up to NNLO.

Jets, Dijets, Top:

N³LO corrections are not known or public available.

We use NNLO MHOU from 3pt renormalisation scale variation to estimate unknown N^3LO effects.

LHC phenomenology: Drell-Yan

- Also for gauge boson production (depending on quark luminosities), the usage of aN³LO PDFs improve the perturbative convergence.
- Similar N³LO/NNLO ratio to MSHT20 aN3LO.
- For DY processes we find: $\Delta_{NNLO}^{exact} \leq \Delta_{NNLO}^{app}$

Drocoss		NNPDF4.0							
Process	$\sigma~({ m pb})$	$\delta_{ m th}$	$\delta_{ m PDF}^{ m noMHOU}$	$\delta_{ m PDF}^{ m MHOU}$	$\Delta^{ m app}_{ m NNLO}$	$\Delta_{ m NNLO}^{ m exact}$			
W^+ (p)	$1.2 imes 10^4$	1.0	0.5	0.5	1.1	0.1			
$W^-~(\mathrm{p})$	$8.8 imes 10^3$	1.0	0.5	0.5	1.1	0.1			
Z (p)	$1.9 imes 10^3$	0.9	0.4	0.5	1.1	0.3			
$W^+~({ m hm})$	4.7×10^{-4}	2.8	2.8	3.3	3.2	1.1			
$W^-~({ m hm})$	$1.4 imes 10^{-4}$	2.9	2.9	3.3	3.3	0.1			
$Z~({ m hm})$	$2.1 imes 10^{-4}$	2.3	2.3	2.5	3.4	0.3			

Comparison to MSHT20 aN3LO

McGowan, Cridge, Harland-Lang, Thorne [arxiv:2207.04739]

N³LO Splitting functions

NNPDF4.0 $aN^{3}LO / NNLO$

MSHT20 aN³LO / NNLO

Comparison to MSHT20 aN3LO [pheno]

McGowan, Cridge, Harland-Lang, Thorne [arxiv:2207.04739]

$$\Delta_{\text{NNLO}}^{\text{exact}} \equiv \left| \frac{\sigma_{\text{N}^{3}\text{LO}-\text{PDF}}^{\text{N}^{3}\text{LO}} - \sigma_{\text{N}\text{N}\text{LO}-\text{PDF}}^{\text{N}^{3}\text{LO}}}{\sigma_{\text{N}^{3}\text{LO}-\text{PDF}}^{\text{N}^{3}\text{LO}}} \right|$$

Relative uncertainty (%)

Process	NNPDF4.0							MSHT20				
	$\sigma~({ m pb})$	$\delta_{ m th}$	$\delta_{ m PDF}^{ m noMHOU}$	$\delta_{ m PDF}^{ m MHOU}$	$\Delta^{ m app}_{ m NNLO}$	$\Delta_{ m NNLO}^{ m exact}$	$\sigma~({ m pb})$	$\delta_{ m th}\sigma$	$\delta_{ m PDF}$	$\Delta^{ m app}_{ m NNLO}$	$\Delta_{ m NNLO}^{ m exact}$	
gg ightarrow h	43.8	4.8	0.6	0.7	0.2	2.2	42.3	5.1	1.7	1.4	5.3	
$h \; \mathrm{VBF}$	4.44	0.6	0.5	0.6	0.2	1.3	4.46	2.1	2.0	1.3	2.9	
hW^+	0.97	0.6	0.5	0.6	0.2	0.5	0.95	1.5	1.4	0.8	0.9	
hW^-	0.61	0.6	0.6	0.6	0.2	0.3	0.60	1.6	1.5	0.9	1.0	
hZ	0.87	0.5	0.4	0.5	0.1	0.3	0.85	1.4	1.4	1.1	0.8	

Process		NNPDF4.0						MSHT20				
	$\sigma~({ m pb})$	$\delta_{ m th}$	$\delta_{ m PDF}^{ m noMHOU}$	$\delta_{ m PDF}^{ m MHOU}$	$\Delta^{ m app}_{ m NNLO}$	$\Delta_{ m NNLO}^{ m exact}$	$\sigma~({ m pb})$	$\delta_{ m th}\sigma$	$\delta_{ m PDF}$	$\Delta^{ m app}_{ m NNLO}$	$\Delta_{ m NNLO}^{ m exact}$	
W^+ (p)	$1.2 imes 10^4$	1.0	0.5	0.5	1.1	0.1	$1.2 imes 10^4$	1.9	1.7	2.3	0.8	
$W^-~({ m p})$	$8.8 imes 10^3$	1.0	0.5	0.5	1.1	0.1	$8.7 imes10^3$	1.9	1.6	2.1	0.0	
Z (p)	$1.9 imes 10^3$	0.9	0.4	0.5	1.1	0.3	1.9×10^3	1.8	1.6	2.6	0.3	
W^+ (hm)	4.7×10^{-4}	2.8	2.8	3.3	3.2	1.1	4.6×10^{-4}	4.0	3.9	2.0	1.3	
$W^-~({ m hm})$	$1.4 imes 10^{-4}$	2.9	2.9	3.3	3.3	0.1	$1.5 imes 10^{-4}$	4.2	4.2	2.0	0.6	
$Z~({ m hm})$	$2.1 imes 10^{-4}$	2.3	2.3	2.5	3.4	0.3	$2.2 imes 10^{-4}$	3.6	3.6	2.7	0.2	

$$\Delta_{\rm NNLO}^{\rm app} \equiv \frac{1}{2} \left| \frac{\sigma_{\rm NNLO-PDF}^{\rm NNLO} - \sigma_{\rm NLO-PDF}^{\rm NNLO}}{\sigma_{\rm NNLO-PDF}^{\rm NNLO}} \right|$$

QED corrections in Higgs gluon fusion

- The photon induced effects (Blue vs Orange) are essentially negligible.

• The QED corrections to quarks and gluons (Red vs Orange) are at most $\mathcal{O}(2\%)$.