

WP19 CEM-GM-ICS FRAS meeting IT String Test preparation status and readiness for installation

V. Barbarroux, R. Bautista, C. Franco, M. Lipinski, M. Noir, B. Schofield, M. Sosin

Outline

IT String Test preparation status and readiness for installation:

- IT String installation, commissioning schedule and infrastructure readiness (Vincent)
- Alignment systems mechanical supplies (sensors, supports, motorized adapters) (Michel)
- FSI optics (Clara, Mateusz)
- FSI acquisition system (Maciej)
- WPS acquisition system (Roberto)
- Software preparation status (Brad, Mateusz)
- Summary, questions

IT String

IT String schedule:

- Installation of jacks: Wk36/37 (first two weeks of September)
- Installation of HLS network and OF : Wk38/39
- Installation of Q2A and D1 : Wk39
- Installation of Q3 : Wk40/41
- Installation of CP: Wk41/42
- Limited access to mezzanine area during summer
- All infrastructure and controls/acquisition systems (FSI, WPS, motion controls) should be installed and tested by end of September (ready for Q2A ad D1 installation)
- Software blocks necessary for sensor systems validation and motorized adapters commissioning tested and deployed by end of September

Vincent

Vincent

IT String – schedule assumptions

FRAS on IT String Test:

- Preparation of equipment:
- June All cables controlled WPS cable check in progress
- Sept. All optical fibers controlled

Sept. • FSI acquisition system installed & controlled (July deadline for FSI rack kept)

- Summer WPS electronics installed & controlled
- Summer Motor control/command unit ready
 - Sept. WPS ready for installation
- Sept. -Nov. WPS calibration installation
 - Sept. HLS calibrated, qualified, ready for installation
 - Sept. Other sensors calibrated, qualified, ready for installation
 - Oct. Motor assemblies qualified, ready for installation

Vincent

IT String – schedule assumptions

FRAS on IT-String Test:

- Preparation of mechanical equipment and networks:
- Sept. Wire protection and supports ready for installation
- Sept. Hydraulic network installed and validated
- Sept. Sensors supports ready for installation
- Sept. Stretcher and pulley solutions for WPS
 - Commissioning
- From Sept. Component by component
 - March. Full commissioning

Michel

Sensors and supports

- Design : Validated
- Procurement :
 - Sensors : In progress
 - Sensor supports : Available
 - WPS protection : In progress Validation on the Collimator Mock-up
- Reception tests :
 - Reception tests (qualification and fiducialization) to be performed on each sensor before getting them ready for installation

Michel

Actuators

- Design :
 - Under final test at SCT
 - Design update following all tests to be performed

• Procurement :

- Procurement will be done with individual parts Assembly at CERN
- Reception tests :
 - Load test to be performed using the HPA load bench
 - Full qualification test to be performed using the MRO bench

FSI Optical systems

- Rack ready for installation, layout prepared. All fibre connections defined
- Most of equipment for FSI rack IT String ordered. Still waiting for part of optical circulators. Lasers (IT String spare, 2xRAC3) arrived
- Modules assembly documentation done, but still some corrections to be added
- Assembly of 2x Optical Patch (Distribution) chassis and Main chassis will start by end of June (after assembly if Collaboration interferometers)
- Deployment and commissioning in rack foreseen in July/August. No delays expected
- Procedures for fibre installation and commissioning to be finalized as fibres fragility is an issue

FSI Rack layout

- 45U with top and bottom ventilation of 230V + DIOT Fan-tray
- Optical connectors → 4U to be installed by EN/EL (132ch)
- FEC Server → 2U reserved.
- FSI Beam Conditioning → 3U
- FSI Optical Path 1 and 2 → 3U
- DIOT Crate 1 and 2 \rightarrow 3U
- DIOT fan → 1 unit of 1U

U-Size (")	Rack Module	Dissipation	Estimation (W)
Top of the rack	TOP VENT		
1			
2			
3	Optical connectors		
4			
5	Cable tray		
6		20 W - Server power supply	
7	GPU Server	70 W - GPU power consumption	
8		300 W - CPU+memory+Ethernet card	500
9		, , , , , , , , , , , , , , , , , , , ,	
10			
11	Cable trav		
12			
13	FSI Ream Conditioning	18 W - Laser consumption	14
14			
15	Cable trav		
16	court out	20.W. EDEA	
17	FSI Ontical Path 1	25 W - EDEA PS	25
18	1010pticult dolla	1.5 W - Power Meter	
19	Cable trav		
20		312 W - PSU	
21	DIOT Crate 1	1 x 20 W - DIOT System Board + FMC	70
22		8 x 5 W = 40 W- DIOT FSI photodetector module	
23	DIOT FanTray		
24		20 W - EDFA	
25	FSI Optical Path 2	35 W - EDFA PS	25
26		1.5 W - Power Meter	
27	Cable tray		
28		312 W - PSU	
29	DIOT Crate 2	1 x 20 W - DIOT System Board + FMC	70
30		8 x 5 W = 40 W- DIOT FSI photodetector module	
15 Bottom of the Rack	BOTTOM VENT	Total dissipation W	704

Maciek

FSI status on IT String

Component	Status	Meeting end-of-June deadline			
GPU Server	 Ordered on April 4 with lead time 8-10 weeks (delivery 4-18 June) Not received yet Latest news from IT: Last missing component to be delivered by 14 June, shipment around the week of 17 June 	 Delivery date not sure Needs preparation before installation Mid-July: realistic End-June: potentially need to take server from SCT/CI space (interrupt tests/development) 			
DI/OT Photodet Board v3	 16x PCBs: 6 delivered, rest to be delivered this week (17-21 June) 16x Front panels: 6 delivered, rest not before beginning July (further delays likely) Assembly to be performed (including writing the procedure) 	 End/Mid-July: realistic to have all End-June: Assemble/install 6 Photodet boards only Assemble/install 16 Photodet boards by retrieving front panels from v2 			
Other hardware	Received or in stock, except for interlock rely card (not priority)	End-June: ok			
GPU-based computation	 Full preliminary computation implementation expected by 19 June David off 19.06-08.07 	 End-July: realistic End-June: use version from SCT 			
Acquisition	 New transmission ready since long High data throughput to DDR of DI/OT SB has proven problematic (potential reason for sporadic problems in SCT) – mitigation by implementing data compression -> at a final stage (excluding decompressing) 	End-June: realistic			
SW+GW+HW Integration	 Integration of new acquisition code, with new GPU computations and new transmission and adding decompression To be done 	 End-July: realistic End-June: use version from SCT 			
Installation	• (to be) scheduled, install elements as the become available.				

FSI status on IT String

Maciek

Delivery of FSI acquisition for IT String with 1s acquisition cycle for 128 ch

- Initially planned for end-June 2024
- Realistic: delivery by end-July (delay of 4-5 weeks)
 - Install hardware as soon as available
- Unrealistic: delivery end-June
 - Contingency plans for delays of different components of the system
 - Implementation of contingency plans for delay of most components unjustified overhead
- What is the impact of delivering FSI acquisition by end-July?
- An attempt to deliver FSI acquisition by end June
 - Not guaranteed success
 - High overhead/cost: interrupt other installations, additional work to disassemble existing stuff

WPS Conditioner status (Electronics card)

Roberto

IT String:

- Design with ProAsic3 FPGA validated by design office (EDA-04908-V1), in process of production.
- Estimated overall cost, including mechanical components 31700.20 EUR/ 35 = 905.72 EUR/board.
- Delivery TBC bare boards arrived, assembly in progress
- EMC Testing:
 - Postponed, due to damaged amplifier at EMC lab
- RAC3, HL-LHC (rad-tol) design:
 - Component ordering
 - FPGAs ordered in joint procurement with CEM
 - DC/DC converter modules ordered for exploration testing of best rad-tol candidate
 - Remaining components to be ordered once design finalized
 - Design updates
 - IGLOO2 FPGA power usage study
 - Tested replacement LDO (previously tested under radiation) for temperature stability under high load working.
 - Received DC-DC Converter modules for component level radiation test, awaiting results to determine best candidate
 - In progress of re-routing the board for IGLOO2 FPGA + component replacements
 - To-do: update firmware of FPGA to be compatible with IGLOO2
 - Risk of delay contingency: use IT string design for 1 year?

WPS Calibration bench

WPS Calibration bench and software

- Bench:
 - All mechanical components assembled
 - Wiring completed
 - Small modification needed for start/stop button to be pushed back (awaiting component delivery)
 - Issue at point 2: bench does not fit extra concrete block not present in 3d model. Trying to find responsible for it, to cut it/move it (note the metal barrier must always be temporarily uninstalled to move the bench inside)
- Calibration bench software
 - CEM-MTA software testing ongoing
 - Laptop preparation ongoing
 - Issue with incompatibility of Labview with win11 (blue screen of death), now resolved – BIOS setting
 - Integration with CMW for calibration in situ completed, but need full integration testing

Roberto

IT String – mandatory software parts to be deployed before September 2024:

- WPS Sensors: FESA ready; SCADA ready; NXCALS logging OK
 - Still some final updates and integration InforEAM calibration coef. required
- Inclinometer: FESA ready (not yet released); SCADA ongoing; NXCALS logging
 OK
- HLS, Longitudinal sensors: FESA ready; SCADA ready; NXCALS logging OK
 - Still some final updates and integration InforEAM calibration constant reading
- Motor controls single axis control:
 - FESA axis control ready. Integration and tests of absolute resolver reading to be finalized
 - FESA control wrapper in preparation
 - SCADA not ready. SCADA wrapper of axis control to be finalized
- Environmental sensors (temperature, pressure, humidity)
 - To be derived from existing Unicos CPC/Survey FESA objects FESA/SCADA ready, but updates and integration required
 - Specification (or driver) of Sambuca AI access required (?)

IT String – safety functions implementation – summer/autumn 2024:

- Decision of simplification of final approach after discussions with Borja, Brad (<u>https://confluence.cern.ch/display/FRAS/2024.05.29+FRAS+Software+Meeting</u>):
 - Capacitive layer based on LGC (no new sensors needed); FSI only rotation covered; Resolver only relative simple calculations
 - Final descriptions of safety functions implementation ongoing (Vivien, Mateusz). Capacitive simplified LGC block
- Implementation of the safety functions analysis and initial development ongoing
- The LGC capacitive PL prototype to be tested on collimator test stand

IT String – block motion control, diagnostic logic:

- Block motion control (grouping axis into component motion control abstractions) specification to be prepared until end of July. Initial assumptions discussed with BE-ICS
- Diagnostic logic discussed. To be implemented at later stage, when most of objects will be defined

IT String – LGC implementation:

- LGC in external monitoring version operational with WPS, HLS. Tests with inclinometer should arrive soon
 - 'LGC' (main object); 'Aligned objects' beta version ready and operational (FESA/SCADA). Data logged to NXCALS
 - 'Bellow objects' development complete, validation pending
 - Housekeeping: will soon upgrade to FESA 8.5.0 to allow modern C++ compiler. This means GM-APC will
 not need to maintain a branch of LGC with old C++ compiler as was required up to now.
- LGC magnets deformation and internal monitoring
 - Deadline to implement deformations measurements and Internal Monitoring end of 2024
 - Some supplementary calculations (linear regression for cold mass deformation approximation) might need to be implemented by ICS
 - If until August/September 2024, clear solution will not be elaborated, then for the string tests we will need to apply simplified solution for now. Then in parallel final software options will need to be implemented having more time during 2025..2026
 - Difficult implementation of longitudinal sensor in LGC APC proposed solution acceptable by HPA

Software development now organized using Jira Plans. Target deliveries aligned with IT String deadlines.

SCOPE Q		Fields 🗸			÷←	Apr	. Jul Q3/24	Oc	
#	Issue ~ + Create issue	Progress (issue count)	Target start D	Target end D	Release				
› 🍕	CIET					co			
✓ ● FRAS Control System						MPONEN			
□ 1 :	G FRASCTRL-132 IT String: Configuration and Testing			31/Dec/24	0	~			
A v O FRASCTRL-126 FRAS SCADA Device Development						~			
	> FRASCTRL-117 SCADA development for all Aligned component (LGC) devices			31/Jul/24	0	~			
	> FRASCTRL-118 SCADA device development for Frequency Scanning Interferometry de			28/Jun/24	0	~		1	
	> 🚰 FRASCTRL-119 SCADA development for Capacitive stack devices			28/Jun/24	0	~		1	
	> 🛃 FRASCTRL-124 SCADA development for motion control and Sambuca devices			30/Sep/24	0	~			
	> 5 FRASCTRL-134 Tasks required to migrate unFRAS to 3.19			14/Jun/24	0	~	G		
	FRASCTRL-136 Python tool to generate dplist files, import files and import logic. As a f					~			
3	G FRASCTRL-125 FRAS FESA Device Development					~			
	> FRASCTRL-120 FESA development for LGC position estimation devices			31/Jul/24	0	~			
	> FRASCTRL-121 FESA development for Frequency Scanning Interferometry devices			30/Jun/24	0	~			
	> 5 FRASCTRL-122 FESA development for Capacitive stack devices			30/Jun/24	0	~			
	> FRASCTRL-123 FESA development for motion control and Sambuca devices			30/Sep/24	0	~			

Brad

Motion controls

Enrica Mario

- Information on Sambuca racks layout for IT String. Especially we require information how/which rack the Sambuca FEC will be deployed to request the Ethernet/(other services needed by you?)
 - There will be two racks: YJPOS01, YJPOS02.
 - We need Ethernet (two connections per rack), and power supplies. Jerome and Vincent might already be in contact for this.
- Expected readiness of absolute reading of resolvers (also when we could be ready in SCT to perform safety layer tests prior to IT String)
 - This feature is already implemented, yet it needs to be tested against to the conventions that we discussed lately. It will be ready for testing at the SCT by the end of the summer at the latest.
- Timeline of rack equipment installation + relay box installation.
 - We could start the installation from October and be ready in Q4 this year for both.
- Commissioning requirements and interactions with other teams (time, help from us, etc) w.r.t. defined milestones
 - We can split the commissioning in three phases:
 - Phase 1: internal commissioning. We internally verify that the control system works as expected.
 - Phase 2: mechanics and control validation. We verify that the control systems work well with the mechanics too. It involves CEM and GM.
 Phase 3: High level software validation. We verify that the software works well up to the highest level. It involves
 - CEM, GM, and ICS.

Thank you

12.06.2024