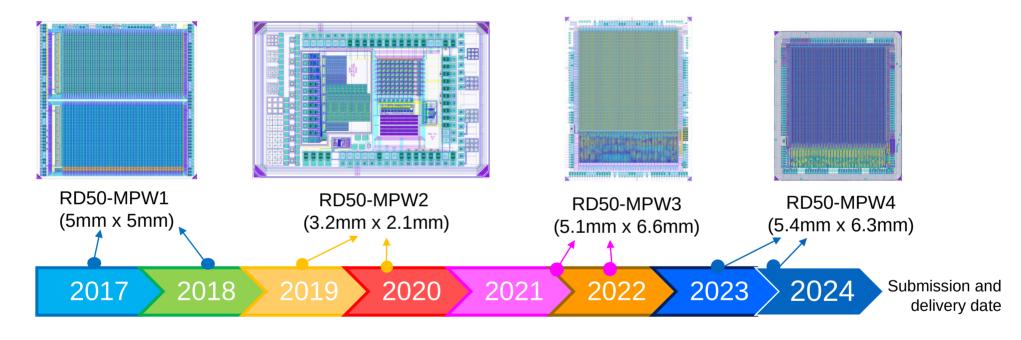


DRD3 Week Jun. 24 / WG1

Characterization of the RD50-MPW4 HV-CMOS pixel sensor


Bernhard Pilsl (HEPHY), Harald Handerkas (HEPHY)

on behalf of the CERN RD50 CMOS working group

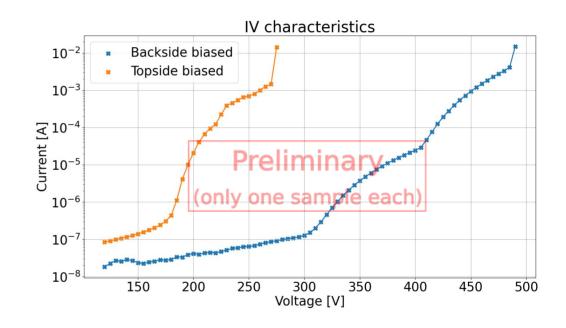
RD50 DMAPS Timeline

- RD50-MPW1: Analog on top design, suffered from high leakage current
- RD50-MPW2: Analog only chip, improved guard ring structure, fixed dark current problem

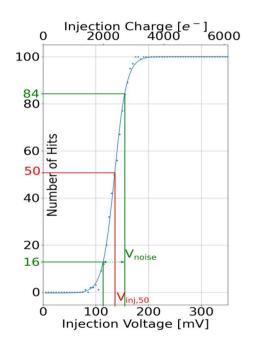
Both sensors feature:

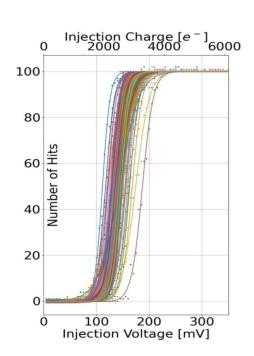
- 64x64 pixel matrix arranged in 32 FEI-3 style double columns
- Active area of 4x4 mm²
- Pixel-size of 62x62μm²
- 8 bit timestamp information (based on 25ns) for each hit
- 4 bit in-pixel trimming
- 640MHz readout

Modifications / Improvements MPW3 → MPW4

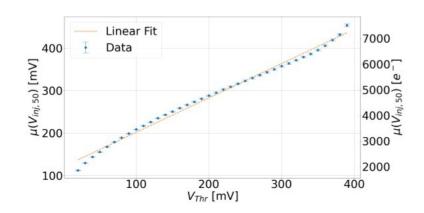

- Noise significantly reduced by
 - separating power domains of in-pixel and peripheral digital readout
 - improved routing of power lines
- Optimized guard rings
 - allow higher breakdown voltages
- Length of EOC readout signals adjustable
- Backside processing for better biasing

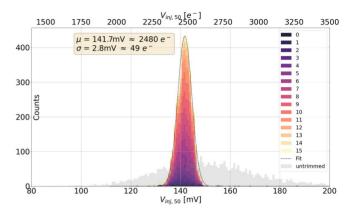
IV measurements

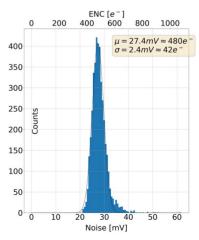

- IV measurements of whole chip
- Breakdown at:
 - Topside biased V ≈ 270V
 - Backside biased V ≈ 490V
- Current increase for topside biased already at V ≈ 190V
 - Full depletion reached
 - Depletion region touches back or sides of the sensor



Injection Scan methods

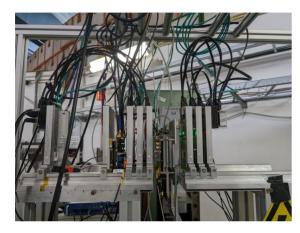

- Utilizing In-Pixel injection capacity of C ≈ 2.8fF
- Inject 100 times for V_{inj} from 0 → 350mV in 5mV steps for full matrix
- Record and fit data to S-curve
- V_{inj,50}: voltage at which 50% of injected hits detected
- V_{noise}: voltage difference from 16% → 84% of injected hits detected



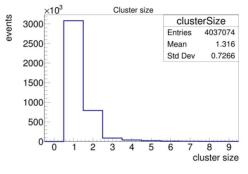


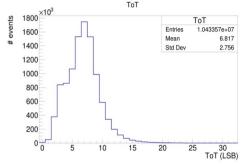
Injection Scan results

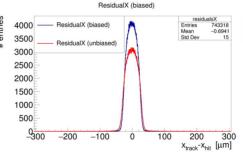
- After trimming pixel response σ ≈ 50e⁻¹
- Equivalent Noise Charge: 480(±42)e⁻
- Scanning threshold voltage → convert threshold voltage to charge
 - CSA (+ comparator) show linear behavior for wide range of V_{Thr} and V_{Inj}

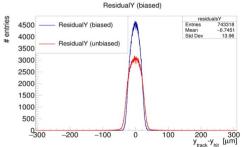


Testbeam Setup

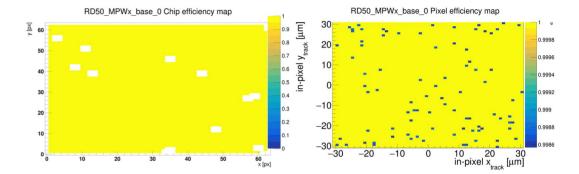

- Test-Beam at DESY in Apr. 2024
- Focus on non-irradiated samples / comparison of top- and backside biasing
- 4.2 GeV electrons at f ≈ 10kHz
- Adenium (Alpide based) telescope
- AIDA 2020 TLU for synchronization
- *Telepix* as ROI trigger and timing layer

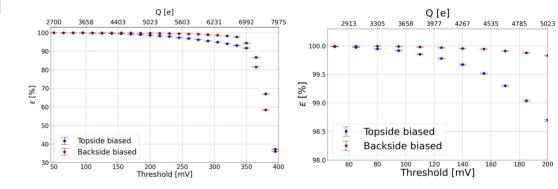





General Testbeam Results

- Average cluster size ≈ 1.3
- Average Time over Threshold ≈ 6.8LSB
- Spatial resolution by geometric mean of σ of the residuals:
 - Resolution in X ≈ 17.8 μ m
 - Resolution in Y ≈ 16.4μm
 - Difference most likely due to rectangular Alpide pixels





Efficiency

- Total efficiency > 99.99% evaluated
 - $V_{Bias} = -190V$
 - Q_{Thr} ≈ 2700e⁻
- Homogeneous in-pixel efficiency
 - Efficiency >99% up to threshold of O(5000e⁻)
- Backside biased sample working better at high thresholds (compared to topside biasing)

 Plots of Cluster-size, ToT, Spatial resolution proving full depletion at 200V still to be produced

Summary / Outlook

- RD50-MPW4 fixed problems of MPW3
- Backside processing allows for higher bias voltages as well as threshold settings

- RD50-MPW series is a success story and ready for optimization towards
 - Larger matrix
 - Improved spatial and time resolution

- Beam campaign with irradiated samples planned in autumn 2024 at DESY
 - Samples irradiated from 1 x $10^{14} \rightarrow 3 \times 10^{16} \text{ 1MeV } n_{eq}/\text{cm}^2$

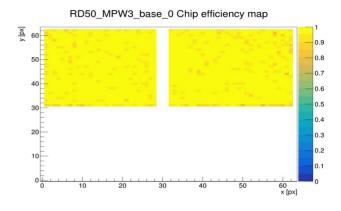
Bernhard Pilsl (HEPHY) Bernhard.Pilsl@oeaw.ac.at

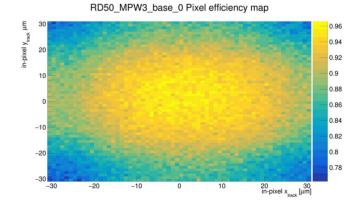
Thank you for your attention! Questions?

This work has been partly performed in the framework of the CERN-RD50 collaboration.

The measurements leading to these results have been performed at the Test Beam Facility at DESY Hamburg (Germany), a member of the Helmholtz Association (HGF).

The research leading to these results has received funding from the European Union's Horizon Europe research and innovation programme under grant agreement no. 101057511.




BACKUP

Recap MPW3

