
Study of new dataframe 
backends for the olefin 

library
Andrés Navarro Pedregal



What is a dataframe backend?

Why matters?

● Defines the speed of the data processing
● The types of data you can store
● How easy it is to fidget around with the data

A library that manages the data and does operations on it



Requirements

● Performance in the order of seconds

● Lists of variable size inside columns: for new features

● Cross-platform compatible: Windows and Linux

● Export to compressed file formats

● Parallelization of runs



Backends studied

● Pandas with numpy: current setup

● Pandas with pyarrow: new version of pandas based on arrow

● Polars: really fast implementation of arrow focused on parallelization

● PyROOT: CERN’s ROOT for python

● Datatable: another backend worth to check



Pandas with numpy

Advantages:

● Current setup, little change

● Support for older version of python

● Export to any type

Disadvantages:

● Does not support variable size lists 

inside dataframes

● Slow compared to arrow implementation 

(still fast enough for current use case)



Pandas with pyarrow

Advantages:

● Arrow implementation, fast

● Has schemas, can define the structure in 

advance -> more robust

● Can be implemented gradually with the 

previous versions

● Export to any type

● Can operate in lists inside a dataframe

Disadvantages:

● A bit less performant that polars 

● Does not have parallelization built in

● Supported by python 3.8 and up



Polars

Advantages:

● Most performant

● Parallelization built in with lazy processing

● Export to any type

● Has schemas same as pandas with pyarrow

● Can operate in lists inside dataframes

● Supports zero-copy data sharing

Disadvantages:

● Might be too overkill

● Need to redo most of the library but can 

be done incrementally

● Supported by python 3.8 and up



PyROOT

Advantages:

● Widespread in the CERN ecosystem

● Export in compressed formats: TTree, 

RNTuple

● Good fit functions for the data

Disadvantages:

● Need to rewrite the whole library

● Not support for some functions used: 

lists inside columns

● No parallelization

● No backwards compatibility with 

previous versions



Datatable

Advantages:

● Empty :)

Disadvantages:

● Less performant than arrow 

● Need to rewrite the whole library

● Does not support lists inside columns

● No parallelization



Tests

● Pandas with pyarrow and polars are usually faster for dataframe operations.

● But Arrow format is really bad at transposing data!

https://gitlab.cern.ch/annavarr/olefin-backend-test


Conclusions

Pandas with pyarrow:

● Easiest, will take less time

Polars:

● If we want the best performance and 
utilization of the computers.

All in all, if we want a more performant library sustainable for the future; I would recommend two options:
pandas with pyarrow (as it is the new standard for pandas) or polars.

Moreover, they can be interchanged with the previous version so backwards compatibility can be kept.

Problem: need to drop python 3.7


