DEVELOPMENT OF SOFTWARE TOOLS FOR OPTIMIZING THE OPERATION OF GASEOUS DETECTORS AND GAS SYSTEMS

Andrés Navarro Pedregal contact@andresnav.com

EP-DT-FS Gas Team Supervisors: Gianluca Rigoletti & Pieter Vanslambrouck

August 20, 2024

EP-DT Detector Technologies

1. ABOUT ME & EP-DT-FS GAS TEAM

2. MOTIVATION

3. PROJECT

4. WORK

5. CONCLUSIONS & FUTURE WORK

ABOUT ME

- Education: University Carlos III of Madrid (Sep. 2020 Feb. 2025)
- **Study Program:** Dual Bachelor in Data Science & Telecommunication Engineering
- Research: Telematics Department at UC3M (Jul. 2023 - Present)
 Developing Autonomous Drone Swarms for Human Rescue
- **Experience:** DevOps, ML & AI, Software Infrastructure, and Microsoldering.

More Info https://linkedin.com/in/andresnav https://andresnav.com

ABOUT EP-DT-FS GAS TEAM

- Maintenance and operation of more than 30 gas systems.
- R&D on recuperation systems.
- R&D for ECO-friendly gas mixtures.
- A really great team to work on!

* Developed by CERN EP-DT

About Me & EP-DT-FS Gas Team •

1. ABOUT ME & EP-DT-FS GAS TEAM

2. MOTIVATION

3. PROJECT

4. WORK

5. CONCLUSIONS & FUTURE WORK

RPC GAS MIXTURES AT LHC

- Main components: R-134a, $i-C_4H_{10}$, SF_6 .
- RPCs account for **85% of the GHG emission** from particle detectors at CERN.
- 95% of the GWP due to R-134a, 5% due to SF_6 .

In Run 2, **100 000 tCO2e/year** emitted from *R*-134*a* consumption alone.

Acronyms:

GHG: Greenhouse Gas GWP: Global Warming Potential

current

RPC GAS MIXTURES AT LHC

- Main components: R-134a, $i-C_4H_{10}$, SF_6 .
- RPCs account for **85% of the GHG emission** from particle detectors at CERN.
- 95% of the GWP due to R-134a, 5% due to SF_6 .

In Run 2, **100 000 tCO2e/year** emitted from *R*-134*a* consumption alone.

30% of the emissions of Andorra.

Acronyms: GHG: Greenhouse Gas GWP: Global Warming Potential

current

1. ABOUT ME & EP-DT-FS GAS TEAM

2. MOTIVATION

3. PROJECT

4. WORK

5. CONCLUSIONS & FUTURE WORK

OLEFIN

Data analysis open-source tool for RPC study.

- Developed in Python with Pandas and Numpy for ease of use.
- Flexible and modular for high adaptability.
- Customizable and performant.

			Analysis scripts for the test beam of the en-dt-pas-mo system	
fix: downgrade dependenci Andres Navarro Pedregal au	es for python 3.7 thored 2 months ago	71951##5 6	-	
Name	Last commit	Last update	-0- 654 Commits 27 6 Branches	
Es vscode	Lint and refactor code	2 years ago	0 15 Tags	
El notebooks	Update obtin version to 1110	2 months ago	D.5 MiB Project Storage	
🗈 olefin	fic unit tests regarding outdated panda	2 months ago	README	
En tests	fix: format tests files with black	2 months ago	It MIT License	
🔶 .gitignore	new: add flake for development	2 months ago	+ Add CHANGELOO + Add CONTRIBUTING	
🤟 ,giflab-ci.yml	fix: remove installation of dev depende	2 months ago		
C LICENSE	Refactor old code into legacy package	3 years ago	+ Add Kubernetes cluster	
- README.md	Mass refactoring: rename to obefin	3 years ago	+ compare adoptations	
e flake.lock	new: add flake for development	2 months ago	Created on November 13, 2018	
Chilake.nix	flake: add needed packages and chang	2 months ago		
O pyproject.tomi	fic downgrade dependencies for pytho	2 months ago		
i requirements-dev.txt	dev: ping dependencies to versions an	2 months ago		
💐 setup.py	fic downgrade dependencies for pytho	2 months ago		
🗘 tox.ini	update: drop python 3.6 version	2 months ago		
README.md				
D				

https://gitlab.cern.ch/gasteam/olefin

Event: N waveforms from same RPC and trigger

peak times.

1. Signal:

ARCHITECTURE

event \rightarrow cluster size, event charge, signal classification.

Single waveform \rightarrow baseline, charge, height,

3. Acquisition:

N. triggers \rightarrow efficiency, st. prob., mean prompt charge, rate.

4. Run:

Set of acquisitions \rightarrow working point, rate, currents.

Overview of Olefin architecture

STUDIES OF NEW GAS MIXTURES

With the study of new gas ECO-friendly mixtures, there are new challenges in the analysis:

- The actual implementation only gives a rough overview of the run.
- No ability to study complex characteristics of the signals such as the after peaks.

OBJECTIVES

- 1. Research on the **backend storage form** of Olefin to support new features.
- 2. Understanding the **influence of background** radiation on the efficiency.
- 3. Study the addition of **new features** based on the shape and complexity of the signals.

1. ABOUT ME & EP-DT-FS GAS TEAM

2. MOTIVATION

3. PROJECT

4. WORK

5. CONCLUSIONS & FUTURE WORK

BACKEND ANALYSIS

Current implementation \rightarrow Pandas with Numpy.

 $\label{eq:Requirement} \mathsf{Requirement} \to \mathbf{Lists} \ \mathbf{inside} \ \mathbf{columns} \ \mathbf{to} \ \mathbf{add} \ \mathbf{new} \ \mathbf{features}.$

Candidates \rightarrow Pandas with Numpy (upgraded), Pandas with PyArrow, ROOT, and Polars.

Pandas with Numpy (upgraded)	Pandas with PyArrow	ROOT	Polars
Advantages			
Easy to use and already implemented.	High performance for columnar data.	Extensive features for high-energy physics.	High performance for columnar data.
Strong support for data analysis.	Native support of Pandas.	Efficient handling of complex data structures.	Multiprocessing built-in.
Well-suited for in-memory operations.	Support for lists inside columns natively.	Large support at CERN.	Support for lists inside columns natively.
Disadvantages			
Not performant for very large datasets.	Makeover of the current implementation.	Makeover of the current implementation.	
	Less native support for data analysis libraries.	Niche implementation for CERN.	Makeover of the current implementation.
Limited to in-memory operations.	Primarily focused on data storage and transfer.	Does not support lists inside columns.	

Comparison of different backends

BACKEND ANALYSIS

Performance tests for different backends

- No noticeable difference in performance when finding peaks.
- Trade-offs on switching backends are not worth it.

Decision: Stick to Pandas with Numpy and upgrade it.

CERN EP-DT Detector Technologies

BASELINE ESTIMATION

In the presence of background radiation, **noise** signals appear in the baseline region.

Underestimated features due to noise signals in the baseline region

Efficiency plateau problem

https://rpc-data-visualization.app.cern.ch/?ids=61394ids=61391ids=61406

BASELINE ESTIMATION

- Current implementation \rightarrow Mean over a start-up window.
- Requirement → Understand if the underestimation of the features is due to the Olefin framework or due to the physical nature.
- Candidates \rightarrow Full Mean, Savitzky-Golay filter, Mode, Median, Two Side Mean.

Method	Efficiency increase w.r.t mean	Time increase w.r.t mean	Problems
Mean baseline region			Affected by peaks in the baseline region
Mode baseline region	+0,18%	511x	Slow
Mean Full Signal	+1%	1.46x	More robust but takes much longer
Savitzky-Golay Filter	0%	54x	No performance increase
Two Side Mean	+1%	2x	Accurate only if peaks do not occur in the extremes

Comparison of different methods for baseline estimation

In conclusion, **no method provides an improvement** with similar performance.

PEAK ANALYSIS

With the new ECO-friendly gas mixtures, the need to **study the presence of after pulses** was crucial.

However, we wanted to do it in an efficient and robust manner.

Examples of different signals for peak identification

PEAK ANALYSIS: FIRST APPROACH

- 1. Calculate threshold.
- 2. Group samples under it.
- 3. Remove signals not interested.

Example of peak analysis

FIRST APPROACH: RESULTS

- Performance: 1.3x slower than normal analysis.
- Able to detect "simple peaks" (without the problems outlined below) with good accuracy.

Problems

Andrés Navarro Pedregal • EP-DT Summer Student 2024 Presentations

PEAK ANALYSIS: SECOND APPROACH

- 1. Do the previous steps.
- 2. Detect peaks with scipy find_peaks function.
- 3. Clean and establish new peaks.
- 4. Calculate features of detected peaks.

Example of peak analysis with the second approach

SECOND APPROACH: RESULTS

- New insights \rightarrow further studies must be perform to understand the new ECO-friendly gas mixtures.
- Performance \rightarrow **1.77x slower** than normal analysis (acceptable from 40s to 71s).
- Parameters highly influence the results \rightarrow need to be tuned.
- Added as an extension to the Olefin library.

INSIGHTS: SINGLE PEAK CHARGE DISTRIBUTION

The distribution of single peak charges for different amounts of *CO*₂.

For high amounts of CO_2 (60%), the single peak charge is smaller.

Single peak charge distribution of different levels of CO_2 gas mixtures

INSIGHTS: MEAN NUMBER OF PEAKS

The distribution of the mean number of peaks for different amounts of CO_2 .

Around the working point, for **high amounts** of CO_2 (60%), there average number of peaks increases.

Mean number of peaks of different levels of CO_2 gas mixtures

500

-1500

-1000

500

HVeff - w.p. [V]

INSIGHTS: SINGLE PEAK PROMPT CHARGE

The single peak prompt charge for different amounts of CO_2 .

Around the working point, for **high amounts** of CO_2 (60%), the charge of the single peaks diminish.

Single peak prompt charge of different levels of CO_2 gas mixtures

N

OTHER PROJECTS

Visualization tools for RPC data

Augmented the current visualization tool for RPC data.

https://rpc-data-visualization.app.cern.ch/

Implemented CI/CD pipelines for the Olefin project.

Work 0000000000000

CI/CD pipelines for Olefin

https://gitlab.cern.ch/gasteam/olefin

Grafana dashboard for gas system monitoring

Software for continuous monitoring of dosimeters.

https://gitlab.cern.ch/gasteam/dosimeter-data-

retreival

Status O record

C Farmed

O Faces

O Failed di Hill CO, 32 Hill I scienti Acti

O Patent

1. ABOUT ME & EP-DT-FS GAS TEAM

2. MOTIVATION

3. PROJECT

4. WORK

5. CONCLUSIONS & FUTURE WORK

- Backend Analysis: The use of Pandas with Numpy remains the most practical choice, balancing performance and feature support. ROOT and Arrow are promising but require significant changes and have steeper learning curves.
- **Baseline Estimation: No alternative method surpasses the mean baseline** in both performance and accuracy.
- Peak Analysis: New implementation with peak detection and characterization.

FUTURE WORK

- Optimize peak analysis parameters:
 - **Calibrate the parameters** of the peak analysis methods to improve accuracy and efficiency.
 - Explore **adaptive parameter tuning techniques** based on different signal characteristics.
- Case study on recent test beam data:
 - Apply the peak analysis approach to the latest test beam data to evaluate the performance in a real-world scenario.
- Enhance visualization tools:
 - Expand the capabilities of the RPC data visualization tools to enhance the study of long-term tests.

ACKNOWLEDGEMENTS

Thanks to my supervisors, **Gianluca Rigoletti** and **Pieter Vanslambrouck**, and everyone in the **EP-DT-FS Gas Team** for all the help and support.

Thank you!

Andrés Navarro Pedregal

EP-DT Summer Student 2024 Presentations, August 20, 2024