High-granularity charge readout of MPGDs with the Timepix4

Zoe Richardson On behalf of CERN EP-DT-DD GDD team Supervisors: Lucian Scharenberg, Florian Brunbauer

Zoe Richardson

About me

- From London, UK
- Physics undergraduate student at the University of Oxford
- Studying biological and particle physics for my masters
- Interested in medical physics

2

Zoe Richardson

Contents

- Motivation
- Technologies
- Motivation for these technologies
- Preliminary tests for the integration process
- Initial results
- Next steps

General motivation

- High-granularity charge readout of Micro-Pattern Gaseous Detectors (MPGDs) with the Timepix4
- Explore the possibility of integrating pixelated readout Application-Specific Integrated Circuits (ASICs) in gaseous detectors, using standard Printed Circuit Board (PCB) technologies
- Utilise the benefits of both systems
- Gaseous detectors
 - Low material budget
 - Large area coverage
 - High gain
 - High dynamic range

• High spatial accuracy

20/08/2024

Event selection based purely on geometry, e.g. in rare-event searches

Δ

Gaseous detectors – General overview

Gaseous detectors work by amplifying the primary electrons from an event to be read out through current induction

https://gdd.web.cern.ch/gem

https://doi.org/10.1007/s10894-018-0181-2

Zoe Richardson

Gaseous detector technologies of interest

Triple gas electron multiplier (triple-GEM)

The pixelated readout system

- Timepix4 hybrid pixel detector readout ASIC
- Readout system SPIDR4
- Control software
 - tpx4tools, Nikhef
 - Timepix4 control scripts from chip designers here at CERN
- Can be embedded (TSV Through Silicon Via)
- Large area coverage
- High performance (55 µm, 200ps, 5Ghz/mm²)
- Works on existing technologies

Motivation for these specific technologies

- Through silicon via (TSV) as a new technology allows us to embed the μRWELL
- Eventually we want to be able to make a gas-based amplification stage with a directly embedded readout
- µRWELL
 - Low material budget
 - Standard PCB techniques
 - Protects from discharge

- Timepix4
 - Large area coverage

- High performance
- Works on existing technologies
- Easier to produce than the existing technologies (GridPix)

Integration process

Timepix4 underneath, with the triple-GEM housing on top

DOI 10.1088/1748-0221/9/01/C01058 - GEMPix

Zoe Richardson

Integration process – Steps to be taken

- Detector characterisation and assembly can we assemble the Timepix4 TSV with familiar technologies as a test of operation?
- Operation and analysis does the existing reconstruction software work with gaseous detector signals?
- Simulation of microRWELL How well is the signal from gaseous detectors coupled, given the pitch of the holes and readout pads is different?

Detector characterisation and assembly

Taking gain measurements on the triple-GEM with **single-channel readout** to prepare for the attachment of the Timepix4

Zoe Richardson

Operation and analysis

Cluster time window

Counts [1 × 1 pixel]

Operation and analysis

Cluster distance (pixels)

Simulation

- Single readout in different pads based on the geometry of the holes
- Thank you Djunes Janssens!

Zoe Richardson

Simulation

From preparation to operation

- So far the goal has been to prepare to operate
- We have been able to communicate with the chip for a week
- Thanks to Xavi Llopart and Jerome Alozy
- Thanks to Pierre Carbonez and Tristan Genetay

triple-GEM readout with Timepix4 3900 divider voltage, 2500 gain, Sr90 source.

Results Without source

Zoe Richardson

20/08/2024

17

Results – Background subtracted

Background subtracted

Zoe Richardson

Results – origin of underlying pattern

Zoe Richardson

Next steps

- Repeat measurements with improved equalisation
- Test the μ RWELL with the chip by placing it on-top
- Improve readout speed for high-rate capabilities. Try to get fastlinks (160Gb/s) with Nikhef software running. Currently running at 40Mb/s.

Thank you

Zoe Richardson