EP-DT Summer Student Presentations 2024 20.08.2024

ADVANCEMENTS ON AERIAL ROBOTIC SYSTEMS AND SENSOR TECHNOLOGIES FOR FUTURE HEP DETECTORS

EP R&D

Presenter:

Kelvin Chan

Supervisors:

Francesco Mazzei, Paolo Francesco Scaramuzzino, Luca Bernardi, Corrado Gargiulo

On behalf of EP-R&D WP4.2 Robotics for Detectors

About Me:

EP R&D

Education: Hong Kong University of Science and Technology **<u>Major</u>**: Physics

Other Experience:

- **HKUST** Robotics team leader
- One year internship at Hong Kong Observatory

ABOUT ME

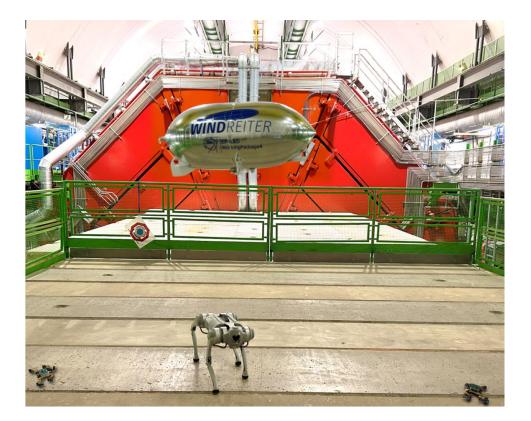
JNIVERSITY OF SCIENCE AND TECHNOLOGY

香港科技大學

EP-DT SUMMER STUDENT PRESENTATIONS 2024

EP-DT SUMMER STUDENT PRESENTATIONS 2024 ABOUT MY GROUP

About My Group:


Project: EP-R&D WP4.2 Robotics for Detectors

Main Goal:

Automate tasks like installation, inspection, disconnection and maintenance of detectors using robots

<u>Challenges:</u> High radiation and magnetic field environments

<u>Solutions:</u> Aerial Robots Blimps (my project) Legged Robots

About My Project:

Project: Aerial Robot (Blimp) development

What the group is working on:

- 1. Virtual environment for visualization of the Blimp dynamics and control (Francesco)
- 2. Camera placement optimization inside the cavern (Paolo)
- 3. Payload integration within the Blimp sensor bay

<u>What I did during the summer project:</u>

- 1. Development of a camera-based detection and localization system of the Blimp
- 2. Onboard integration of a radiation detector

Rundown:

Blimp localization system:

- Background Introduction
- Object detection and YOLO
- Working flow
- Results and discussion
- Localization method
- Future developments

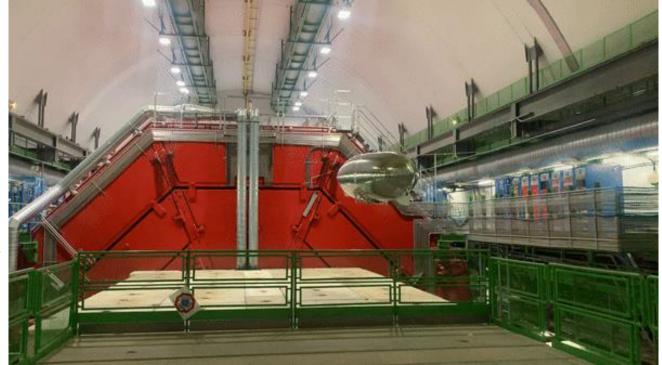
Onboard radiation monitoring with MiniPIX TPX3 detector

- Background Introduction
- Onboard communication
- Radiation dose
- Future developments

BLIMP LOCALIZATION SYSTEM

EP-DT SUMMER STUDENT PRESENTATIONS 2024 BACKGROUND INTRODUCTION

Main Goal:


• Locate the **real-time position** of the Blimp in motion

Method:

- Install webcams inside the detector cavern
- Use a camera-based detection and localization system to:
 - Minimize radiation & magnetic interferences
 - Minimize Blimp weight (No additional hardware is required on the Blimp)

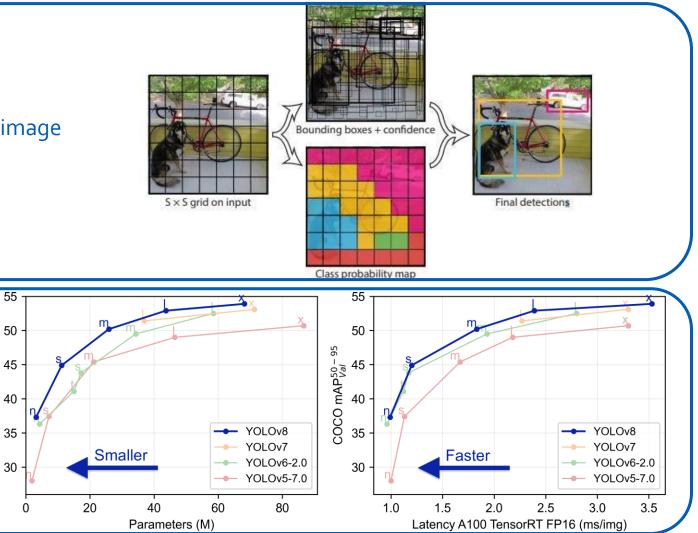
Working Principle of a camera-based Localization System: In each video frame captured by the webcams, a Machine Learning Model:

- 1. identifies in real time the Blimp
- 2. creates bounding boxes around each detected Blimp
- 3. computes the x-y position of the center of the bounding box
- 4. calculates the 3D position using information coming from multiple views

EP-DT SUMMER STUDENT PRESENTATIONS 2024 OBJECT DETECTION AND YOLO

You Only Look Once (YOLO):

R&D


- Deep learning algorithm for object detection
- Regression problem [1]:

→ Reduced latency

- → bounding boxes and probabilities from a single image
- Exceptional speed and accuracy balance:
 - → Very useful for real-time detections

YOLO v8 with respect to previous versions [2]:

→ Same accuracy with less parameters

[1] Redmon, J., Divvala, S., Girshick, R., Farhadi, A.(2016). You Only Look Once: Unified, Real-TimeObject Detection.

[2] Terven, J., Diana-Margarita Cordova-Esparza, Julio-Alejandro Romero-Gonzalez. (2023). A Comprehensive Review of YOLO Architectures in Computer Vision: From YOLOv1 to YOLOv8 and YOLO-NAS. Machine Learning and Knowledge Extraction

COCO mAP^{50 - 95}

EP-DT SUMMER STUDENT PRESENTATIONS 2024 OBJECT DETECTION METRICS

Object Detection Metrics:

EP R&D

Confusion Matrix	Precision	Recall	F1 score $F1 = \frac{precison * recall}{precision + recall}$	
Image: Desitive Free Class Positive Positive Free Class Positive Positive Free Class Positive Positi	$Precision = \frac{TP}{TP + FP}$	$Recall = \frac{TP}{TP + FN}$		
Represents the results of model predictions	The percentage of correct predictions (how accurate the model is)	How well the model finds all positive (objects)	A measure that takes both precision and recall in account	
	True Class Positive Negative outpot FP outpot FN TN Represents the results of	True Class Positive NegativePositiveNegativeTPFPPrecision $= \frac{TP}{TP + FP}$ FNTNRepresents the results of model predictionsThe percentage of correct predictions (how accurate the)	True Class Positive NegotivePositiveNegotiveTPFPPrecision = $\frac{TP}{TP + FP}$ Recall = $\frac{TP}{TP + FN}$ Recall = $\frac{TP}{TP + FN}$ Represents the results of model predictionsThe percentage of correct predictions (how accurate the	

EP-DT SUMMER STUDENT PRESENTATIONS 2024 WORKING FLOW

Working flow:

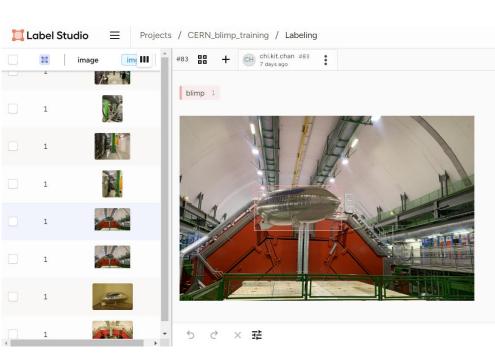
EP R&D

- Dataset Preparation: Label Studio (Best) / Roboflow / LabelImg
- Model Training: YOLOv8 & Pycharm (Python Script)
- Model deploy: OpenCV & Pycharm (Python Script)
- <u>Blimp localization system</u>-> evaluate the performance of the detection model

Refer to GitHub page for further details and code

https://github.com/Kelvinchan324/CERN_blimp_dectection

EP-DT SUMMER STUDENT PRESENTATIONS 2024 DATASET PREPARATION

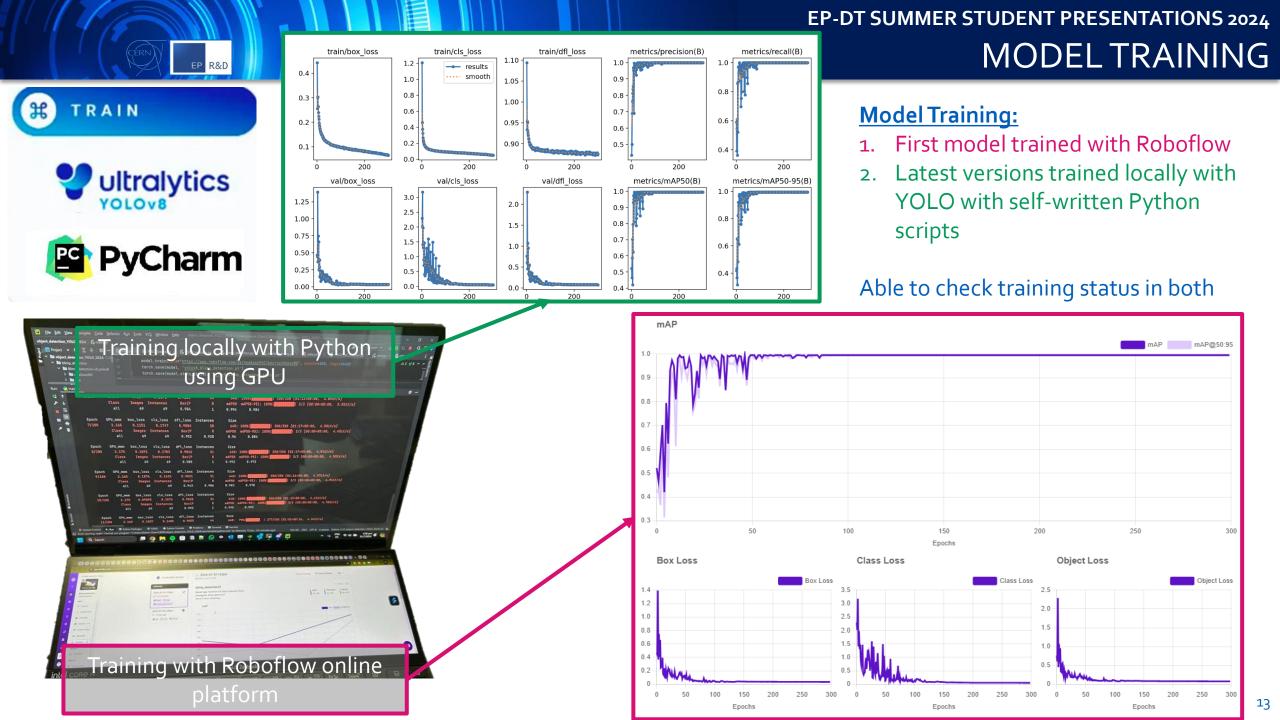


EP R&D

Dataset Preparation:

- Separate dataset of images into three groups
 Training, validation and testing
- 2. Identify Blimps on images with labelling tools

Number of photos used for different models



Training Object	Model Version	Training	Validation	Testing	Total	
Generic Blimps	20240731-r	5595	69	230	5894	
	20240731-py	5595	69	230	5894	
Specific Blimp	Specific Blimp 20240802-py		12 1		14	
	20240806-py	184	30	10	224	
	20240807-py	287	70	24	381	
	20240808-py	600	100	54	754	

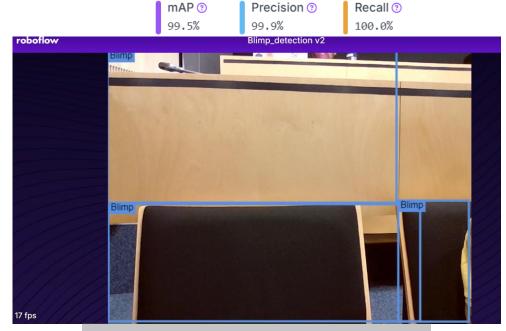
EP-DT SUMMER STUDENT PRESENTATIONS 2024 WORKING FLOW

EP R&D

EP-DT SUMMER STUDENT PRESENTATIONS 2024 WORKING FLOW

EP R&D




EP R&D

Results and discussions:

Models "20240731-r" (Roboflow) & "20240731-py" (Local)

- Same dataset: around **6000** generic Blimp images
- Performance: **Bad** although metrics look good
- Images are too generic so that the model mistakenly recognizes everything as a Blimp

Model "20240731-r" (Roboflow)

Model "20240731-py" (Local)

Results and discussions:

EP R&D

Model "20240802-py"

- Dataset: 14 specific Blimp images in ALICE cavern
- Performance: Acceptable
- HIGH Precision, LOW Recall, LOW F1

Model can recognize the Blimp but may lose track

Model "20240806-py"

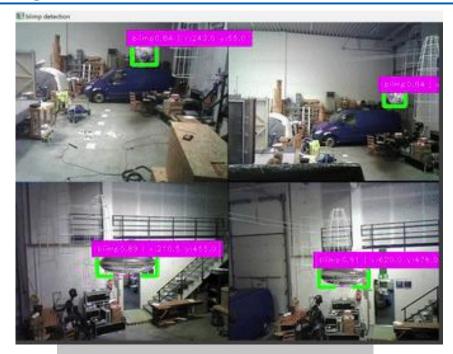
🛞 DEPLOY

OpenCV

- Dataset: around 200 specific Blimp images in ALICE cavern
- Performance: Good
- HIGH Precision, Acceptable Recall, Acceptable F1

Model can recognize the Blimp in 2022 videos with no issues

Model "20240806-py"


Results and discussions:

Model "20240807-py"

• Dataset: 400 specific Blimp images

EP R&D

- Performance: Good
- HIGH Precision, HIGH Recall, HIGH F1 Model can recognize the Blimp with different background

Model "20240807-py"

Model "20240808-py"

🛞 DEPLOY

20penCV

PyCharm

- Dataset: around 750 specific Blimp images
- Performance: Very Good
- HIGH Precision, HIGH Recall, HIGH F1

Model can recognize the Blimp even if partially visible & different lighting

EP-DT SUMMER STUDENT PRESENTATIONS 2024 WORKING FLOW

EP R&D

EP-DT SUMMER STUDENT PRESENTATIONS 2024 LOCALIZATION METHOD

Blimp Localization System

- Transform multiple 2D image coordinates into real world coordinates [1]
- Use a Triangulation Algorithm to localize the Blimp

Triangulation Algorithm:

- 1. Input **camera parameters** (e.g., camera field of view, position, orientation, etc.)
- Input 2D coordinates (x-y position of the center of the bounding box around the detected Blimp) coming from the detection model from 2 cameras at least
- 3. Find 3D triangulation point using **OpenCV** [2]:
 - If projections intercept, the intercept is identified as the 3D Blimp position
 - Projections may not intercept due to noise, then the 3D Blimp position is identified as the centroid of the figure generated by the projection lines

 $+(x_w, y_w, z_w)$ world x_n^n, y_n^n coord. (x_n^L, y_n^L) normalized normalized coordinate of coordinate of left camera right camera object point P_i feature point $p_{j,k+1}$

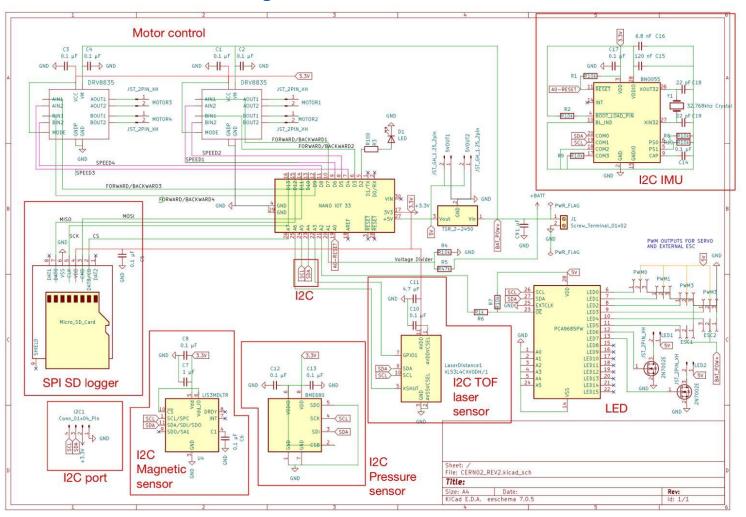
[1] Photo: Measurement of Dynamic Responses from Large Structural Tests by Analyzing Non-Synchronized Videos. (2019). ResearchGate. <u>https://doi.org/10.3390//s19163520</u> [2] OpenCV triangulation: OpenCV: Triangulation. (2024). Opencv.org. https://docs.opencv.org/4.x/do/dbd/group_triangulation.html

EP-DT SUMMER STUDENT PRESENTATIONS 2024 FUTURE DEVELOPMENTS

Future Developments:

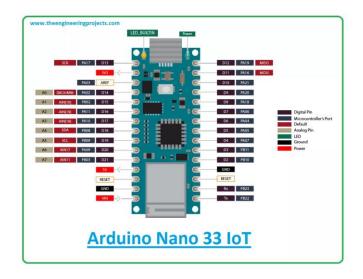
R&D

- Improve the detection model by putting the Blimp in the real environment with different lighting conditions
- Improve the detection model with real-time localization
- Test the accuracy of the detection model and localization system in simulation
- Real environment testing and camera calibrations to refine and increase the accuracy of the localization system


BLIMP PAYLOAD RADIATION SENSOR

EP-DT SUMMER STUDENT PRESENTATIONS 2024 ONBOARD COMMUNICATION

Blimp objective:


EP R&D

Monitor radiation and magnetic fields

Original Blimp communications

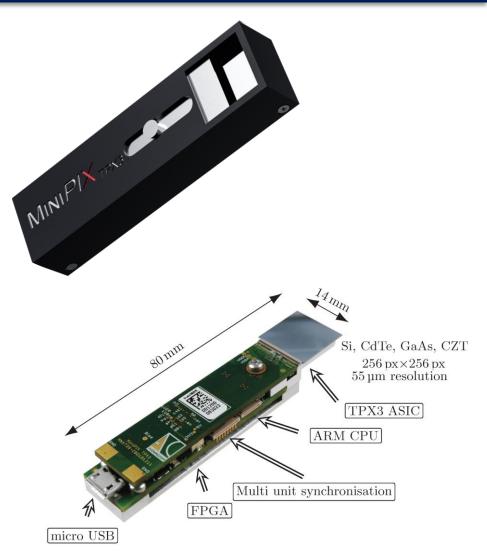
- Most sensors on the Blimp uses I2C protocol
- SD logger uses **SPI** protocol
- Need to add radiation sensor
- No free pins available

EP-DT SUMMER STUDENT PRESENTATIONS 2024 BACKGROUND INTRODUCTION

Objective:

Radiation Monitoring:

R&D


• Indicate which regions have high radiation concentrations that could endanger individuals

Blimp protection:

• Reduce radiation exposure and sensors damage by avoiding high radiation areas

MiniPix TPX3 Detector

- Weight: 41g
- Manufacturer: ADVACAM
- Chip: Timepix 3
- Sensor material: Silicon (Si)
- Sensor thickness: 500 μm
- Connectivity: micro-USB 2.0
- Operating mode: Time-of-Arrival(ToA), Time-over-Threshold (ToT)

EP-DT SUMMER STUDENT PRESENTATIONS 2024 ONBOARD COMMUNICATION

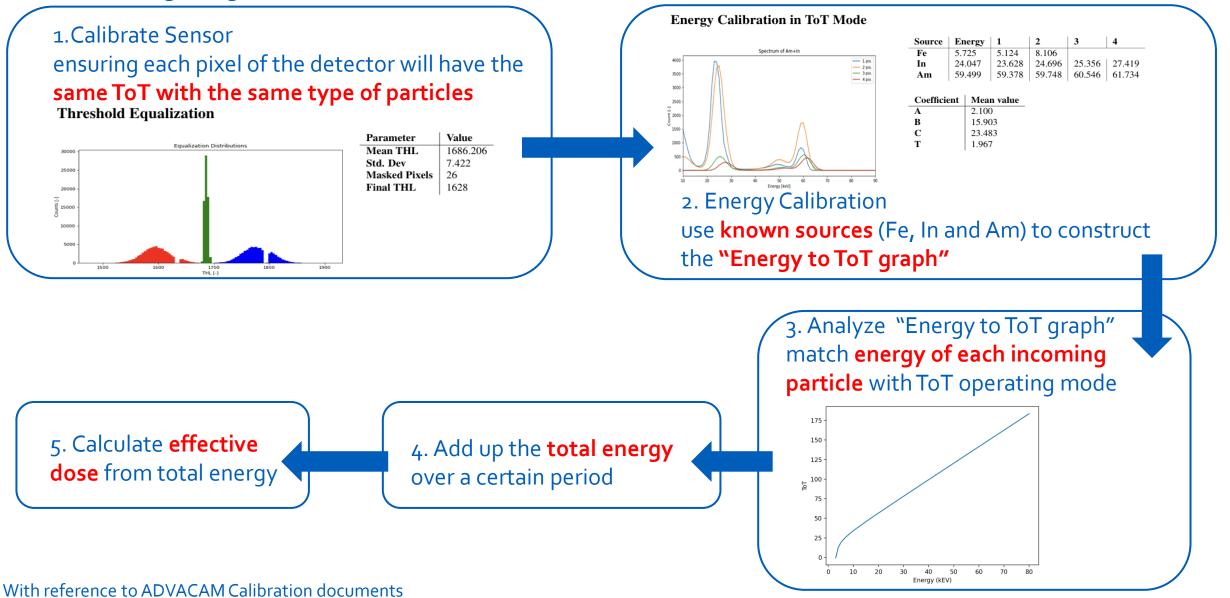
MINIPIX TEXA

R&D

Onboard communication with a Raspberry Pi:

- Weight: 46g
- Able to install the PixetPro ARM64 API package
- Able to secure shell (ssh) to communicate with ground control station
- Able to acquire frame measurement with a Python script
- Able to read out data-driven measurements with a Python script

	File	Edit	Format	View	Help					
	Inde	x	Matrix	Index	x	ToA	ToT	FToA	0ve	rflow
	0		8704	851	5971	23	8	0		
	1		9222	851	5971	39	16	0		
	2		9742	851	5972	33	15	0		
	3		8962	851	5971	37	17	0		
	4		9226	851	5972	34	18	0		
	5		9744	851	5972	35	11	0		
-	6		9485	851	5972	42	24	0		
	7		8965	851	5971	50	21	0		
	8		8966	851	5972	31	26	0		
	9		9225	851	5971	60	15	0		
	10		8449	851	5970	45	10	0		
	11		8963	851	5971	37	23	0		
	12		9743	851	5972	44	16	0		
	13		9482	851	5972	38	24	0		
	14		9484	851	5972	50	25	0		
	15		8964	851	5971	61	21	0		
	16		9223	851	5971	50	16	0		
	17		9224	851	5971	71	21	0		
	18		8705	851	5970	52	13	0		
	19		8706	851	5970	58	15	0		
	20		9483		5971		11	0		
	21		9486	851	5972	35	13	0		
	22		8192		5970		1	0		
	23		8448	851	5970	136	13	0		
	24		5272	474	54362	2	3	9	0	
	25		20174	561	59263	3	2	14	0	
	26		20672	6570	01144	1	2	9	0	
	27		1250	887	20733	3	69	18	0	
	28		994		20733		54	17	0	
	29		38404	162	65948	35	5	25	0	


Data-driven measurements

EP-DT SUMMER STUDENT PRESENTATIONS 2024 RADIATION DOSE

25

Procedures of getting the Radiation dose :

R&D

Future Developments:

R&D

- Use the Raspberry Pi Zero instead of the Raspberry Pi 4B to reduce the load on the Blimp (maximum payload of around 200g) 46g -> 16g
- Blimp onboard ssh communication testing
- Radiation Dose Calibration of the sensor in real environment

EP-DT SUMMER STUDENT PRESENTATIONS 2024 FUTURE DEVELOPMENTS

Future Developments:

R&D

 Use the Raspberry Pi Zero instead of the Raspberry Pi 4B to reduce the load on the Blimp (maximum payload of around 200g) 46g -> 16g

MINIPLY

- Blimp onboard ssh communication testing
- Radiation Dose Calibration of the sensor in real environment

Future Developments:

R&D

- Use the Raspberry Pi Zero instead of the Raspberry Pi 4B to reduce the load on the Blimp (maximum payload of around 200g) 46g -> 16g
- Blimp onboard ssh communication testing
- Radiation Dose Calibration of the sensor in real environment

EP-DT SUMMER STUDENT PRESENTATIONS 2024 OVERALL CONCLUSION

Overall Conclusion:

Blimp Localization System:

EP R&D

- Latest detection model efficiently identifies the Blimps in video frames
- The first developed detection models gave False Positives
- Significant improvements were obtained after refining the detection model
- The localization system must use triangulation with multiple camera views

Onboard radiation monitoring with MiniPIX TPX3 detector:

- A Raspberry Pi was used for data readout, due to communication and weight limits
- Implement the procedure to get the dose rate from energy using ToT measurements
- Refinements and real-environment testing are required

blimp 0.99 | x : 100.0, y:100.0

THANK YOU FOR YOUR ATTENTION

BACKUP SLIDES

EP-DT SUMMER STUDENT PRESENTATIONS 2024 OBJECT DETECTION AND YOLO

You Only Look Once (YOLO):

- YOLO frames object detection as a regression problem, predicting bounding boxes and associated class probabilities directly from full images in a single evaluation
- To predict each bounding box, or object on the image, the YOLO algorithm **adopts characteristics from the entire image**.
- Additionally, it simultaneously predicts all bounding boxes for a picture in all of the classes.
- The image is divided into a S X S grid, and predictions are made for each grid cell regarding B bounding boxes, their corresponding confidence, and the probability of the C class. The tensor encoded with these predictions is S*S* (B*5+C)

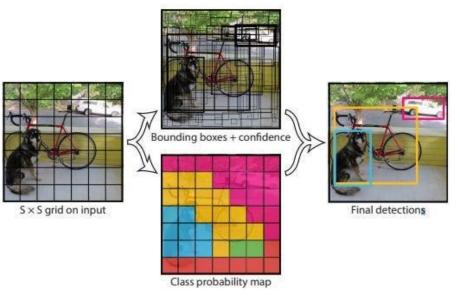


Figure 1: Working principle of YOLO

EP-DT SUMMER STUDENT PRESENTATIONS 2024 BACKUP SLIDES

Hybrid Silicon pixel detectors:

R&D

- Aluminum layer on top
- n-type implant just below the top surface,
- p-type implant pixels toward the bottom
- High voltage (positive) connection to the aluminum surface
- Negative connection to the p-type silicon layer
- Via a layer of solder bumps, a hybrid readout ASIC
 (Application Specific Integrated Circuit) is attached to the sensor component.

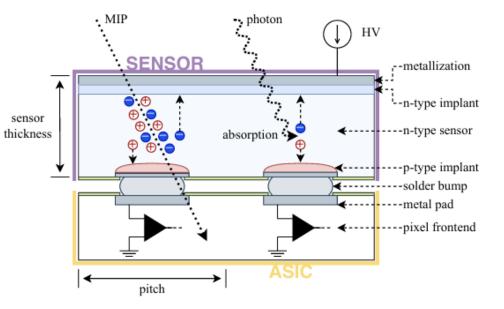
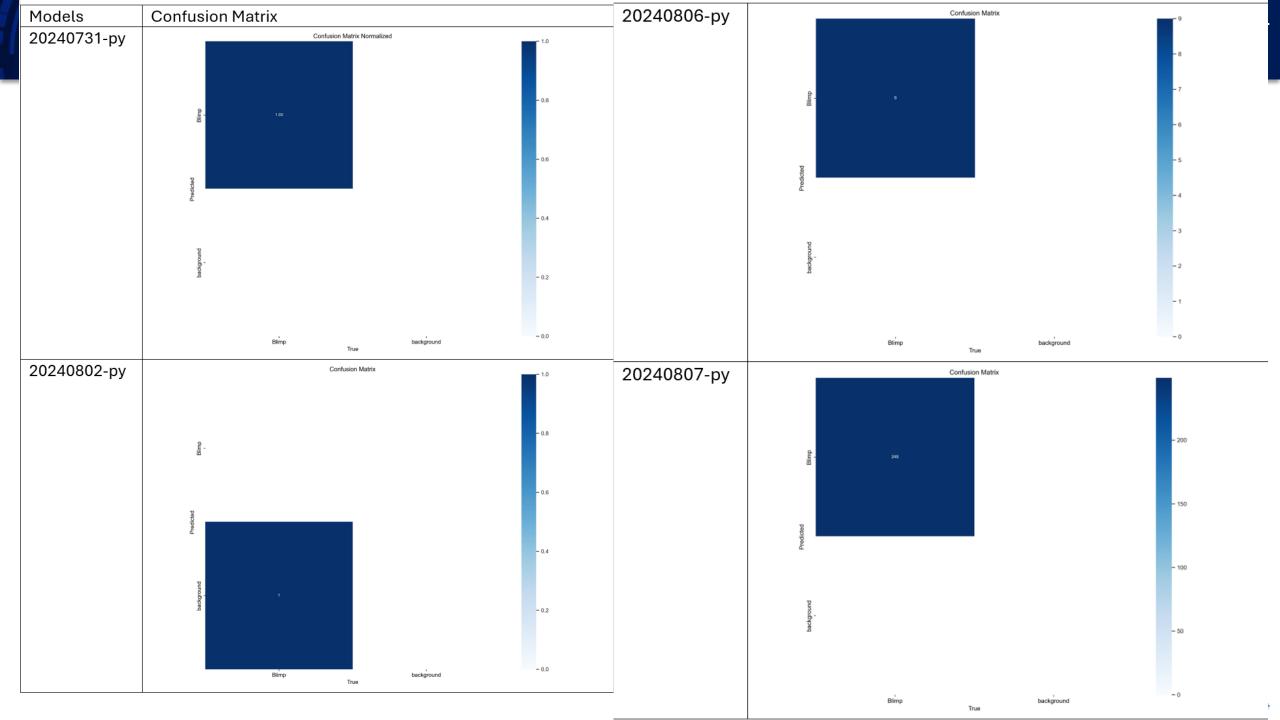
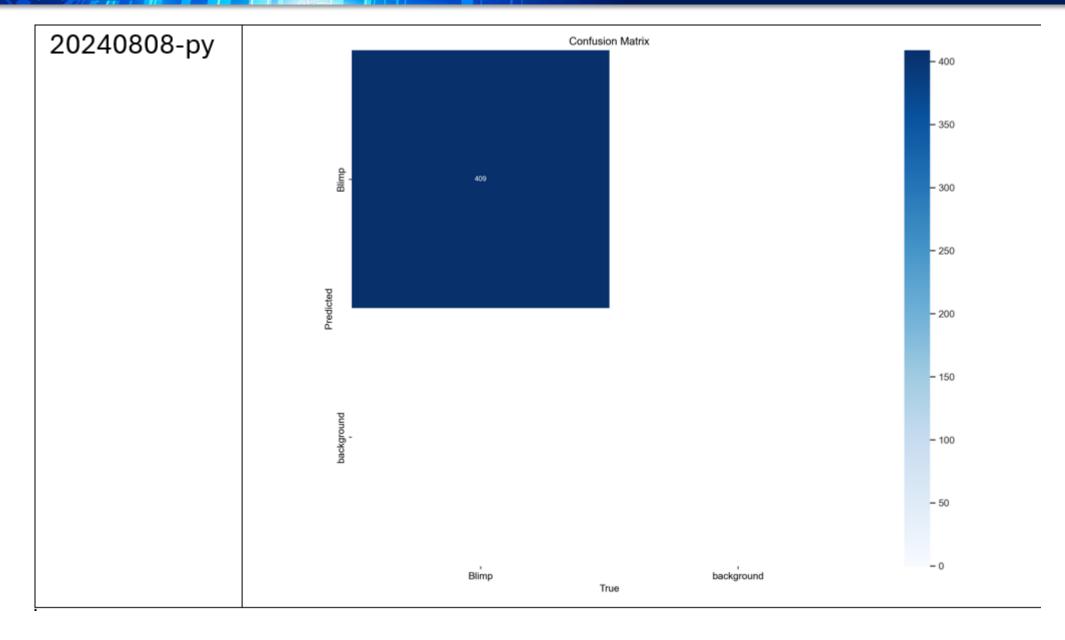
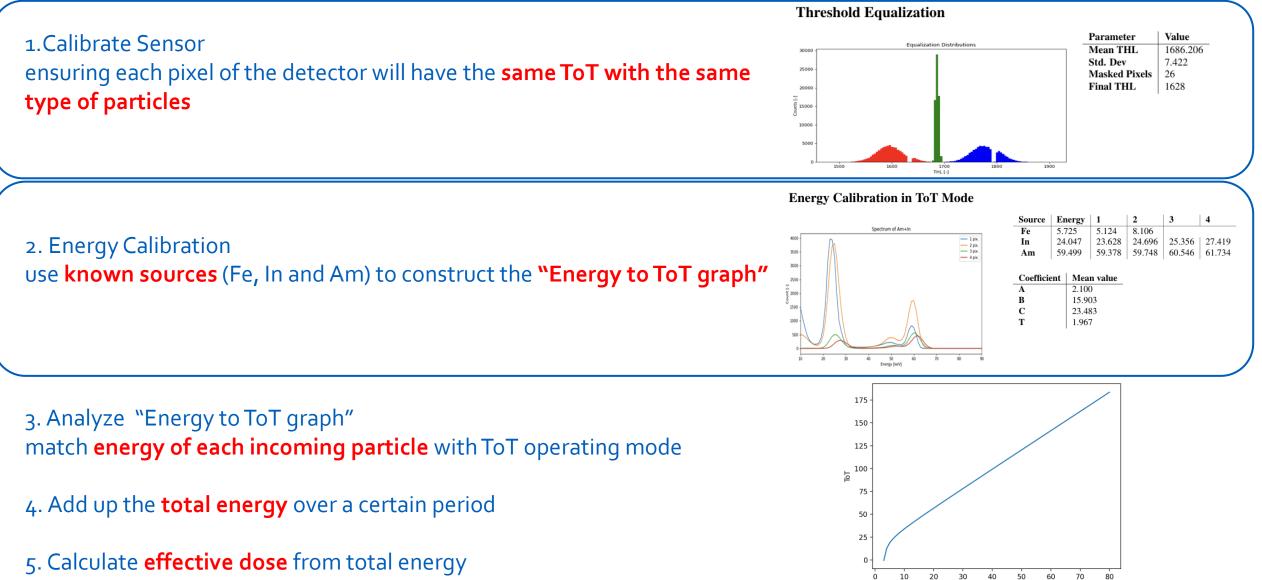




Figure 27:Schematic cross-section of a hybrid pixel detector

EP R&D


EP-DT SUMMER STUDENT PRESENTATIONS 2024 RADIATION DOSE

Energy (kEV)

Procedures of getting the Radiation dose :

R&D

With reference to ADVACAM Calibration documents

