Detector-level studies of electroweak processes at future e+e- colliders and their interface to global interpretations

ECFA workshops on e+e- Higgs/EW/Top factory

Jenny List WWdiff mini-workshop 25 June 2024

Outline

of this talk

- Introduction: what's the problem?
- Previous studies and what we learned from them
- Ongoing studies
- What we should discuss and find a solution for together

Outline

of this talk

- Introduction: what's the problem?
- Previous studies and what we learned from them
- Ongoing studies
- What we should discuss and find a solution for together

The central question for this talk:

How can we define the interface between

- experimental / detector-level projections
 - including projected systematic uncertainties
- and global fitting, e.g. in SMEFT?

Introduction

Why do we need to discuss this?

- Up to now, detector-level projections also many measurements eg at LEP are presented in terms of pseudo-observables:
 - eg for ee->Z->ff: A_{LR} , A_{FB} , ...
 - \bullet or for WW: $g_1,\,\kappa,\,\lambda$, \ldots

• Advantages:

- limited set of parameters extracted from measured (eg angular) distributions at detector-level,
 - ·i.e. compare "data" to detector-level MC for different values of the parameters
 - extract parameters from fit of detector-level prediction (as function of parameters) to "data"
- straight-forward inclusion of systematic uncertainties (determined independently)
- crucial: minimisation of impact of systematic effects by joint extraction of nuisance parameters together with the physics parameters

Importance of treating detector systematics in combined interpretation

Illustration J.Beyer, EPS-HEP 2021 https://indico.desy.de/event/28202/contributions/105243

DESY.

Importance of treating detector systematics in combined interpretation

Illustration J.Beyer, EPS-HEP 2021 https://indico.desy.de/event/28202/contributions/105243

So what's the problem?

Can't we stick with the previously used scheme?

$\boldsymbol{\cdot}$ in a global fit, eg in SMEFT, "everything depends on everything"

• eg:

- WW is not the only process with sensitivity to cTGCs
- WW also depends on other SMEFT operators

therefore

• a 3x3 covariance matrix of g_1 , κ , λ as result of detector-level study is not sufficient

• on the other hand

 directly interpreting detector-level MC in SMEFT would require propagation of expected modifications to detector-level, for all to be included measurements => unrealistic complexity?

thus need

 some intermediate level, at which detector effects have been minimized / eliminated — but still sufficient information is preserved to combine with other measurements in global fit

Previous studies

Early Theory-Level Studies for TESLA :)

- Theory-level study (Markus Diehl et al 2003!)
 - optimal observables

<u>Eur.Phys.J.C 27 (2003) 375-397</u> & <u>Eur.Phys.J.C 32 (2003) 17-27</u>

 $f_1(\mathbf{p}_1, \tau_1)$

Θ

 $e^+(\overline{\mathbf{k}},\overline{\tau})$

 $W^{-}(\mathbf{q},\lambda)$

 $W^+\left(\overline{\mathbf{q}},\overline{\lambda}\right)$

- most general set of CP conserving and CP violating triple-gauge boson couplings (28 real parameters!)
- can all be disentangled and constrained at a centre-of-mass energy of 500 GeV with polarised beams (incl. transverse polarisation for some of the CPV couplings)

 $f_3(\mathbf{p}_3, \mathbf{p}_3, \mathbf{p}_3,$

- no detector, no systematics
- but more general than Dim6-SMEFT (in ZWW / yWW vertex)
- fun fact: fortran77 implementation of OOs for all 28 coupling parameters exists and happily compiles & runs => true code longelivity !!! ;) $\frac{e^{-}(\mathbf{k},\tau)}{2}$

Detector-level Simulations

ILD & SiD for ILC TDR (Marchesini, Rosca, Barklow ~2011 ff)

- 500 GeV and 1 TeV
- joint extraction of 3 TGCs (LEP parametrisation) and beam poalrisations => model impact of all parameters on detector-level
- restricted to WW -> munuqq and WW->enuqq
- 3 TGCs and their covariance matrix passed on to global interpretations, e.g. SMEFT fits

- Polarisation from TGC fit much better than total cross-sections aka "modified Blondel scheme"
- small fraction of like-sign data eg 5...10% sufficient to reach 0.1% on polarisations
- LEP TGCs to few 10⁻⁴ with 1ab⁻¹ at 500 GeV

DESY. Interfacing detector-level studies | WWdiff mini0WS | 25 Jun 2024 | Jenny List

- Polarisation from TGC fit much better than total cross-sections aka "modified Blondel scheme"
- small fraction of like-sign data eg 5...10% sufficient to reach 0.1% on polarisations
- LEP TGCs to few 10⁻⁴ with 1ab⁻¹ at 500 GeV

- Polarisation from TGC fit much better than total cross-sections aka "modified Blondel scheme"
- small fraction of like-sign data eg 5...10% sufficient to reach 0.1% on polarisations
- LEP TGCs to few 10⁻⁴ with 1ab⁻¹ at 500 GeV

- Polarisation from TGC fit much better than total cross-sections aka "modified Blondel scheme"
- small fraction of like-sign data eg 5...10% sufficient to reach 0.1% on polarisations
- LEP TGCs to few 10⁻⁴ with 1ab⁻¹ at 500 GeV

<u>PhD Thesis R. Karl</u>

including 250 GeV (~2017-2018)

- Extrapolation of 500 GeV / 1 TeV detector-level studies to 250 GeV
- And first look into "single-W" contribution to evqq final-state (detector effects parametrized, but systematics included)
 => single-W important contribution to TGC precicision
 => must be fully included in the future!

<u>PhD Thesis R. Karl</u>

including 250 GeV (~2017-2018)

- Extrapolation of 500 GeV / 1 TeV detector-level studies to 250 GeV
- And first look into "single-W" contribution to evqq final-state (detector effects parametrized, but systematics included)
 => single-W important contribution to TGC precicision
 => must be fully included in the future!

<u>PhD Thesis R. Karl</u>

including 250 GeV (~2017-2018)

- Extrapolation of 500 GeV / 1 TeV detector-level studies to 250 GeV
- And first look into "single-W" contribution to evqq final-state (detector effects parametrized, but systematics included)
 => single-W important contribution to TGC precicision
 => must be fully included in the future!

LEP2

<u>PhD Thesis R. Karl</u>

including 250 GeV (~2017-2018)

- Extrapolation of 500 GeV / 1 TeV detector-level studies to 250 GeV
- And first look into "single-W" contribution to evqq final-state (detector effects parametrized, but systematics included)
 => single-W important contribution to TGC precicision
 => must be fully included in the future!

ILC 250

TGC	$E_{\rm CMS}[{\rm GeV}]$	$e^+e^- o \mu \nu q \bar{q}$	$e^+e^- \rightarrow e\nu q\bar{q}$	comb.
$\Delta g \left[10^{-4} \right]$	250	45.8	15.8	13.9
	500	8.46	4.14	3.52
$\Delta \kappa \left[10^{-4} \right]$	250	54.9	19	16.5
	500	8.85	4.63	3.65
$\Delta\lambda \left[10^{-4}\right]$	250	68.6	22.5	21.6
	500	15.6	6.14	5.77

LEP2

<u>PhD Thesis R. Karl</u>

including 250 GeV (~2017-2018)

- Extrapolation of 500 GeV / 1 TeV detector-level studies to 250 GeV
- And first look into "single-W" contribution to evqq final-state (detector effects parametrized, but systematics included)
 => single-W important contribution to TGC precicision
 => must be fully included in the future!

ILC 250

+single-W

Even more recently

<u>PhD Thesis J. Beyer</u>

4f and 2f final state combination with detector effects eg acceptance

- detector acceptance in forward region was a leading systematic in ee->μμ at LEP
- future colliders aims for much higher precision
- => can we eliminate this source of uncertainty by extracting the acceptance directly together with physics parameters?
- detailed study of ability to reduce impact systematics by combined fits to differential cross sections of 2f and 4f processes including many nuisance parameters at 250 GeV using LEP parametrisation

First Steps - WORK IN PROGRESS -

The enuqq channel - WW and singleW - tracking efficiency (Leonhard Reichenbach)

• vs polar angle for electron/positron (on eLpR sample, i.e. singleW dominated)

 e^+

 e^+

Wanted

Basic requirements

- A general scheme which
- is physics-wise consistent all relevant parameter <-> observable relations contained
- allows to constrain nuisance parameters in addition to physics parameters
 - can be added in SMEFT?
 - Global (L, P etc) easy?
 - Differential like acceptance ????
- can use the full experimental information without "exploding" the complexity (#parameters, #inputs)
 - Optimal observables for nuisance parameters?
 - Predictions of variations on detector level ?
- Your idea here!