factory

WWdiff focus topic

Focus topic team:
P. Azzi, T. Barklow, A. Denner, W. Kilian, J. List, F. Siegert
J. de Blas, A. Groshjean (coord.)

WWdiff Focus Topic

- Full studies of $W W$ (and $e v W$) at \sqrt{s} between 161 GeV up to $\sim 365 \mathrm{GeV}$
- Typically covered in projections for future $e+e$ - colliders within the so-called aTGC-dominance assumption (justified at LEP2, not so clear at future $e^{+} e^{-}$):
All possible new physics effects correcting the process other than aTGC are constrained much better by other processes (typically EWPO) and can be neglected
\rightarrow Studies performed in the context of sensitivity to aTGC (only)

$$
\begin{aligned}
\Delta \mathscr{L}^{\mathrm{aTGC}}= & i e \delta \kappa_{\gamma} A^{\mu \nu} W_{\mu}^{+} W_{v}^{-}+i g \cos \theta_{w}\left[\delta g_{1 Z}\left(W_{\mu \nu}^{+} W^{-\mu}-W_{\mu \nu}^{-} W^{+\mu}\right) Z^{\nu}+\left(\delta g_{1 Z}-\frac{g^{\prime 2}}{g^{2}} \delta \kappa_{\gamma}\right) Z^{\mu \nu} W_{\mu}^{+} W_{v}^{-}\right] \\
& +\frac{i g \lambda_{z}}{m_{W}^{2}}\left(\sin \theta_{w} W_{\mu}^{+v} W_{v}^{-\rho} A_{\rho}^{\mu}+\cos \theta_{w} W_{\mu}^{+v} W_{v}^{-\rho} Z_{\rho}^{\mu}\right),
\end{aligned}
$$

WWdiff Focus Topic

- Full studies of $W W$ (and $e v W$) at \sqrt{s} between 161 GeV up to $\sim 365 \mathrm{GeV}$
- Typically covered in projections for future $e+e$ - colliders within the so-called aTGC-dominance assumption (justified at LEP2, not so clear at future $e^{+} e^{-}$):
All possible new physics effects correcting the process other than aTGC are constrained much better by other processes (typically EWPO) and can be neglected
\rightarrow Studies performed in the context of sensitivity to aTGC (only)

$$
\begin{aligned}
& \Delta \mathscr{L}^{\mathrm{aTGC}}= i e \delta \kappa_{\gamma} A^{\mu \nu} W_{\mu}^{+} W_{v}^{-}+i g \cos \theta_{w}\left[\delta g_{1 Z}\left(W_{\mu \nu}^{+} W^{-\mu}-W_{\mu \nu}^{-} W^{+\mu}\right) Z^{v}+\left(\delta g_{1 Z}-\frac{g^{\prime 2}}{g^{2}} \delta \kappa_{\gamma}\right) Z^{\mu \nu} W_{\mu}^{+} W_{v}^{-}\right] \\
&+\frac{i g \lambda_{z}}{m_{W}^{2}}\left(\sin \theta_{w} W_{\mu}^{+v} W_{v}^{-\rho} A_{\rho}^{\mu}+\cos \theta_{w} W_{\mu}^{+v} W_{v}^{-\rho} Z_{\rho}^{\mu}\right), \quad \text { Uncertainties in other interactions } \\
& \text { can hinder precision of aTGC }
\end{aligned}
$$

WWdiff Focus Topic

- Full studies of $W W$ (and $e v W$) at \sqrt{s} between 161 GeV up to $\sim 365 \mathrm{GeV}$
- Typically covered in projections for future $e+e$ - colliders within the so-called aTGC-dominance assumption (justified at LEP2, not so clear at future $e^{+} e^{-}$):
All possible new physics effects correcting the process other than aTGC are constrained much better by other processes (typically EWPO) and can be neglected
\rightarrow Studies performed in the context of sensitivity to aTGC (only)

$$
\begin{aligned}
\Delta \mathscr{L}^{\mathrm{aTGC}}= & i e \delta \kappa_{\gamma} A^{\mu \nu} W_{\mu}^{+} W_{v}^{-}+i g \cos \theta_{w}\left[\delta g_{1 Z}\left(W_{\mu \nu}^{+} W^{-\mu}-W_{\mu \nu}^{-} W^{+\mu}\right) Z^{\nu}+\left(\delta g_{1 Z}-\frac{g^{\prime 2}}{g^{2}} \delta \kappa_{\gamma}\right) Z^{\mu v} W_{\mu}^{+} W_{v}^{-}\right] \\
& +\frac{i g \lambda_{z}}{m_{W}^{2}}\left(\sin \theta_{w} W_{\mu}^{+v} W_{v}^{-\rho} A_{\rho}^{\mu}+\cos \theta_{w} W_{\mu}^{+v} W_{v}^{-\rho} Z_{\rho}^{\mu}\right),
\end{aligned}
$$

- Plus one can also study sensitivity to CP -violating couplings at future $e^{+} e^{-}$

$$
\left(\mathcal{L}_{\mathrm{CPV}}^{\text {bosonic }}\right)_{\text {broken }}^{V_{1} V_{2} V_{3}}=i e\left(\widetilde{\kappa}_{\gamma} \widetilde{F}_{\mu \nu} W^{+\mu} W^{-\nu}+\frac{\widetilde{\lambda}_{\gamma}}{M_{W}^{2}} \widetilde{F}^{\nu \lambda} W_{\lambda \mu}^{+} W_{\nu}^{-\mu}+\cot \theta_{w} \widetilde{\kappa}_{Z} \tilde{Z}_{\mu \nu} W^{+\mu} W^{-\nu}+\cot \theta_{w} \frac{\widetilde{\lambda}_{Z}}{M_{W}^{2}} \widetilde{Z}^{\nu \lambda} W_{\lambda \mu}^{+} W_{\nu}^{-\mu}\right)
$$

WWdiff Focus Topic

- Full studies of $W W$ (and $e v W$) at \sqrt{s} between 161 GeV up to $\sim 365 \mathrm{GeV}$
- Understanding aTGC precision is also important for Higgs
aTGC and Higgs to vector couplings generated by same new physics
(SMEFT correlations)

$$
e^{+} e^{-} \rightarrow \boldsymbol{W}^{+} \boldsymbol{W}^{-}
$$

- and in general for global interpretations, be in the SMEFT or in UV complete models

WWdiff Focus Topic

- Also in most cases restricted to use partial information, e.g. differential in polar angle as in LEP2 final results:

- Use all differential information, e.g. Statistical Optimal Observables

00 vs. $\cos \theta_{W}$ distr: Improvement in aTGC ~2-4x
Idealized: Full simulation studies needed

WWdiff Focus Topic

- Basic questions on $e^{+} e^{-} \rightarrow W^{+} W^{-}$at future Higgs factories:
- Sensitivity to aTGC (CP-preserving \& CP-odd) from full simulation studies
\checkmark Impact of polarization/energy?
\checkmark Gain from combining with $e v W$?
\checkmark Can we neglect other contributions at future $\mathrm{e}^{+} \mathrm{e}$?
- Answer may depend on other EW measurements \rightarrow Global study
\checkmark What are the needs in terms of precision of SM calculations to match the experimental precision? Doable?
\checkmark Interplay WW-Higgs for aTGC/HVV?
- Sensitivity gain wrt HLLHC? \leftarrow HLLHC projections?
- Monte Carlo samples needed?
\checkmark Start from semi-leptonic, then consider fully leptonic and hadronic
- Practical question: Output of studies so they can be included in Global interpretations?

WWdiff Focus Topic

- More details:
https://arxiv.org/pdf/2401.07564

Focus topics for the ECFA study on Higgs / Top / EW factories

```
Juan Alcaraz Maestre \({ }^{1}\), Juliette Alimena \({ }^{2}\), John Alison \({ }^{3}\), Patrizia Azzi \({ }^{4}\), Paolo Azzurri \({ }^{5}\), Emanuele Bagnaschi \({ }^{6,7}\), Timothy Barklow \({ }^{8}\), Matthew J. Basso \({ }^{9}\), Josh Bendavid \({ }^{10}\), Martin Beneke \({ }^{11}\), Eli Ben-Haim \({ }^{12}\), Mikael Berggren \({ }^{2}\), Jorge de Blas \({ }^{13}\), Marzia Bordone \({ }^{6}\), Ivanka Bozovic \({ }^{14}\),
Valentina Cairo \({ }^{6}\), Nuno Filipe Castro \({ }^{15}\), Marina Cobal \({ }^{16}\), Paula Collins \({ }^{6}\), Mogens Dam \({ }^{17}\), Valerio Dao \({ }^{6}\), Matteo Defranchis \({ }^{6}\), Ansgar Denner \({ }^{18}\), Stefan Dittmaier \({ }^{19}\), Gauthier Durieux \({ }^{20}\), Ulrich Einhaus \({ }^{2}\),
Mary-Cruz Fouz \({ }^{1}\), Roberto Franceschini \({ }^{21}\), Ayres Freitas \({ }^{22}\), Frank Gaede \({ }^{2}\), Gerardo Ganis \({ }^{6}\),
Pablo Goldenzweig \({ }^{23}\), Ricardo Gonçalo \({ }^{24,25}\), Rebeca Gonzalez Suarez \({ }^{26}\), Loukas Gouskos \({ }^{27}\),
Alexander Grohsjean \({ }^{28}\), Jan Hajer \({ }^{29}\), Chris Hays \({ }^{30}\), Sven Heinemeyer \({ }^{31}\), André Hoang \({ }^{32}\), Adrián Irles \({ }^{33}\), Abideh Jafari \({ }^{2}\), Karl Jakobs \({ }^{19}\), Daniel Jeans \({ }^{34}\), Jernej F. Kamenik \({ }^{35}\), Matthew Kenzie \({ }^{36}\),
\[
\text { WWdiff } \rightarrow \text { Pages 23-24 }
\]
```


5 WWdiff - Full studies of $W \boldsymbol{W}$ and $e \nu W$

```
Expert Team: Patrizia Azzi, Timothy Barklow, Jorge de Blas, Ansgar Denner, Alexander Grohsjean, Wolfgang Kilian, Jenny List, Frank Siegert
```


Motivation

Constraints on gauge boson interactions are crucial ingredients to global interpretations, be it in SMEFT or in UV complete models. In particular, in models where the electroweak symmetry is linearly realised in the light fields, new physics contributions to anomalous triple gauge couplings are directly connected to corrections on Higgs couplings, establishing a complementarity between the two sectors of measurements.

- GitLab page:
https://gitlab.in2p3.fr/ecfa-study/ECFA-HiggsTopEW-Factories/-/wikis/FocusTopics/WWdiff

Timeline of ECFA e+e- Higgs/EW/Top factory study

- Any results related to this focus topic to be included in ECFA e+e- Higgs/EW/Top factory report \leftarrow Input to the next European Strategy Update
- Timeline dictated by next update of the European Strategy for Particle Physics
- Accelerated wrt original estimates
- Community input to be submitted by March 31, 2025 (ESPPU process to be concluded in June 2026)
- First version of ECFA study report should be completed by (mid) December
- Comments could be included later, but updates of results will be difficult
- Effective deadline: 3rd ECFA workshop on $\mathrm{e}^{+} \mathrm{e}$ - Higgs, Top \& Electroweak Factories https://indico.in2p3.fr/event/32629/
- October 9-II, 2024
- Results should be presented there
- I page draft summery of results should be available
- Studies can continue afterwards and can be published independently

Agenda of this meeting

Mini-workshop on WWdiff focus topic

囲 martes 25 jun 2024, 17:00 \rightarrow 19:00 Europe/Zurich

- Alexander Grohsjean (Hamburg University (DE)) , Jorge de Blas (Universidad de Granada (ES)) , Junping Tian (The University of Tokyo) ,

Marcel Vos (IFIC Valencia (ES)), Sven Heinemeyer (CSIC (Madrid, ES))

Descripción Zoom link:
https://cern.zoom.us/j/62514084522?pwd=bLni4ghU1czUuC3B4oz8azvQoGNOel. 1
Meeting ID:
62514084522
546249

17:00 \rightarrow 17:10 Introduction to WWdiff focus topic and ECFA timeline

© 10 m ■

17:10 \rightarrow 17:40 From Optimal Observables to Machine learning in EFT analyses of e+ e- ->W+W-
Ponente: Jiayin Gu (Fudan University)
17:40 \rightarrow 18:10 WW and multiboson projections and EFT interpretation at the HL-LHC
© 30 m -
© 30 m と
Ponente: Alexander Savin (University of Wisconsin Madison (US))

18:10 \rightarrow 18:40 WW studies at future e+e- colliders

Ponente: Jenny List (Deutsches Elektronen-Synchrotron (DE))

