

ATLAS & CMS CO2 detector cooling upgrade project

Sustainability Accelerator Panel – P.HANF (EN-CV) & P.PETAGNA (EP-DT)

2024/06/27

Indico 1427241

Logistic situation of an experiment (e.g. ATLAS)

The Si detector cooling chain

Experimental cavern

- high radiation
- high magnetic field
- inaccessible during operation
- Iimited access during LHC
 shutdown

(home to the particle detectors)

Service cavern

- no radiation
- no magnetic field

Cooling towers

(final heat sink)

- accessible
- specific safety rules apply
 (home to the detector cooling systems)

Detectors cooling requirements

- Typical lifespan of the order of 10 to 15 years
- Absolute reliability (system available 24/24 7/7 over the lifespan)
 - Stability in time (typically better than ±1K)
 - Saturation temperature in the detector << o °C
 - Low T gradient (max few K) along a cooling loop
 - Environment in the cavern: high magnetic field
- Environment in the cavern: high radiation (no oil contamination in the fluid)

Related challenges

- 1. Extremely low temperature needed at the cooling plant to maintain performances of silicon sensors;
- 2. Integration on site Stong limitations associated with regards to the current underground facilities
- 3. Operation & Modularity of the needs with an high T°C stability from 0-100%
- 4. Distribution of the Coolant to the internals of the detectors Hundreds of micro channels

The new detector Cooling system architecture (e.g. ATLAS)

Refrigeration production choice: "R744 Primary system"

LHC Cooling systems : current status and objectives

ODP: Ozone depletion potential **GWP:** Global Warming Potential **TFAs:** Trifluoroacetic acids being part of the PFAS "forever chemicals"

1. CO2 as refrigerant History & Families

0

2. CO2 thermodynamical properties

GOOD QUALITIES AS REFRIGERANT:

- High reduced pressure
- High vapor/liquid density ratio
 - Low viscosity
- Small surface tension (=small bubble size, i.e. high heat transfer coefficient)
- High latent heat of evaporation (specific enthalpy) (=can absorb large heat quantities)

3. CO2 Optimized design & ressources management

Piping sizing

"Liquid" li	ne	Velocity	m/s	[ft/s]	0.8	[2.6]	0.8	[2.6]	0.8	[2.6]	
		Diameter	mm	[inch]	61	[2 /]	36	[1 4]	59	[2 3]	
		Diameter		function	01	[2.4]		[1144]	50	[2,3]	
		Area "liquid"	mm ²	[inch ²]	2968	[4.6]	998	[1.55]	2609	[4.04]	
Total pipe	cross	Area "Wet return"	mm ²	[inch ²]	39353	[61.0]	14892	[23.08]	6382	[9.89]	
section ar	ea										
Liquid cro	Liquid cross section area			%		8		7		41	

 $L_{eqv} = 50 \text{ [m]} / 194 \text{ [ft]} - Pump circ.: n_{circ} = 3 - Evaporating temp.: TE = -40[°C] / -40[°F]$

Compressor displacement

Refrigerant	R	134a	R 717		CO ₂			
Refrigerant capacity	kW	[TR]	250	[71]	250	[71]	250	[71]
Required compressor displacement	m³/h	[ft ³ /h]	1628	[57489]	1092	[38578]	124	[4387]
Relative displacement	8		13.1		8	3.8	1.0	

Evaporating temp.: TE = -40[°C] / -40[°F]

Condensing temp.: TE = -15[°C] / -5[°F]

Environmental performances: Targeted carbon footprint on direct emission 4.

LHC operation

5. Environmental performances: Targeted carbon footprint on indirect emission

Detailed technical bench mark benchmark to list potential efficient compressor candidates → from 2018 to 2020

Refrigeration concept development and performances evaluation on test benches → from 2020 to 2023

Validation and implementation of the final solution based on a **Total Cost of Ownership** approach on the LHC lifetime operation (2042) → from 2023 to 2026

<u>Despites more expensive, CERN went for the most efficient proposed solution!</u> <u>18% energy savings</u> representing a total of <u>162 MWh on a monthly base</u> for ATLAS + CMS

6. Environmental performances: Targeted carbon footprint on indirect emission

Possibility of non-negligible subsidies of the Program ECO21 from SIG aiming to reduce energy consumption with any kingd of simple, fast solutions →

Valid for any kind of retrofit, optimisation of refrigeration, cooling and ventilation systems

<u>Up to 40 CHF by TCO2 eq saved on a</u> <u>yearly based going until the life time</u> <u>expectation of the system!!</u>

home.cern