FCC – 92B4 Optimizations

S. White, S. Liuzzo, P. Raimondi

The European Synchrotron

SIMULATION PARAMETERS

- 16 GV RF voltage used
- Tapering calculated with radiation effects from dipoles only, applied to all magnets
- Only 32 turns needed to reach DA convergence
- cs_frac=0.3, cs_comp=0.1
- Fixed tunes and chromaticity

Frac. tunes (6D motion):	[0.20504858 0.30417061 0.12119645]
Energy:	1.825000e+11 eV
Energy loss / turn:	8-808215c+00 cV
Mode emittances:	[2.10161873e-09 -7.92172220e-37 2.46045742e-06]
Damping partition numbers:	[0.99994323 1.00000158 2.00005519]
Damping times:	[0.01253191 0.01253118 0.00626543] s
Energy spread:	0.00148887
Bunch length:	0.00165673 m
Cavities voltage:	1600000000.0 V
Synchrotron phase:	2.55861 rd
Synchrotron frequency:	400.776 Hz

Emittance of the LCCO optics is 2.1 nm.rad vs 0.68 nm.rad for the Z lattice:

- Expect shrinkage of DA expressed in sigma
- Not an issue for injection

INITIAL DA/MA

Synchrontron radiations have a <u>major</u> impact on DA Key ingredient in any characterization /optimization work

Slight adjustments of arc sextupoles: SF2 increased by ~16%, optimal DA ~ optimal MA

 δ_p

MATCHING SECTIONS

Now look at arc and matching section: many variable, genetic algorithm used

Modest gain in horizontal dynamic aperture

Degradation of off-momentum aperture: still large > +/-2%

Similar results were obtained using the final focus sextupoles

 \rightarrow Look first at octupoles

SYMMETRIC OCTUPOLES

LR Octupole families moved together Pairing arbitrary: OCT0 and OCT1 were initially zero Significant gain obtained with OCT2 and OCT3 scan

Use optimum for OCT2 and OCT3, leave OCT0 and OCT1 at zero

ASYMMETRIC OCTUPOLES

Red dots mark the results of previous slide with symmetric settings

Asymmetric settings: no significant gain

For the future: some correlation observed, could be used to build some knobs

For now: keep symmetric settings

DECAPOLES

Page 8

Decapoles already well optimized

Leave at initial values

FINAL OPTIMIZATION

A final optimization is done including FF sextupoles and octupoles (OCT2 and OCT3 symmetric)

Significant gain in DA, mostly due to octupoles: approx. +20/-16 sigmas

Momentum aperture preserved: > +/-2%

FCC requirement (MA>2%, DA > 15sigmas) met for lattice without errors

CONCLUSION

Robust optimization procedure established:

- can now be done easily for any LCCO providing magnet definition remain the same
- strongly profits from "built-in" knobs of the LCCO lattice
- Further improvements: combined knobs, reduce number of variables

Substantial gain of DA/MA demonstrated with this procedure:

• May help to recover performance for lattices with errors

A similar procedure could be used for online optimization of the real machine

