Revisiting $D^+ \to \pi^+ \ell^+ \ell^-$ in SM using LCSR

Anshika Bansal

(Work in progress with Alexander Khodjamirian and Thomas Mannel)

24/09/2024

Talk at "LHCb FSP Meeting 2024", Bochum, Germany (23/09/2024 - 24/09/2024)

Introduction

- $c \to u\ell^+\ell^-$ transition : FCNC transition \Longrightarrow short distance effects are strongly suppressed in SM due to GIM mechanism.
- FCNCs in charm sector are enhanced in various BSM scenarios \implies considered to be a good indicator of New Physics.
- $D \to \pi \ell^+ \ell^-$: Simplest decay mode to study $c \to u \ell^+ \ell^-$.
	- Dominated by weak singly Cabibbo suppressed (SCS) $D \to \pi$ transition combined with an electromagnetic emission of the lepton pair.
	- A simple mechanism: $D \to \pi \ell^+ \ell^- \approx D \to \pi V \to \ell^+ \ell^-$ *(with* $V = \rho, \omega, \phi, ...$).

Introduction

- $c \to u\ell^+\ell^-$ transition : FCNC transition \Longrightarrow short distance effects are strongly suppressed in SM due to GIM mechanism.
- FCNCs in charm sector are enhanced in various BSM scenarios \implies considered to be a good indicator of New Physics.
- $D \to \pi \ell^+ \ell^-$: Simplest decay mode to study $c \to u \ell^+ \ell^-$.
	- Dominated by weak singly Cabibbo suppressed (SCS) $D \to \pi$ transition combined with an electromagnetic emission of the lepton pair.
	- A simple mechanism: $D \to \pi \ell^+ \ell^- \approx D \to \pi V \to \ell^+ \ell^-$ *(with* $V = \rho, \omega, \phi, ...$).

• A QCD based study (to handle long distance effects) is desirable.

Available estimates are based on QCDf (for $D \to \rho \ell^+ \ell^-$). [T. Feldmann, B. Müller, D. Seidel, JHEP08 (2017) 105]

Later used for $D \to \pi \ell^+ \ell^-$ (major focus on New Physics) [A. Bharucha, D. Boito, C. Méaux, JHEP 04 (2021) 158]

Introduction

- $c \to u\ell^+\ell^-$ transition : FCNC transition \Longrightarrow short distance effects are strongly suppressed in SM due to GIM mechanism.
- FCNCs in charm sector are enhanced in various BSM scenarios \implies considered to be a good indicator of New Physics.
- $D \to \pi \ell^+ \ell^-$: Simplest decay mode to study $c \to u \ell^+ \ell^-$.
	- Dominated by weak singly Cabibbo suppressed (SCS) $D \to \pi$ transition combined with an electromagnetic emission of the lepton pair.
	- A simple mechanism: $D \to \pi \ell^+ \ell^- \approx D \to \pi V \to \ell^+ \ell^-$ *(with* $V = \rho, \omega, \phi, ...$).

• A QCD based study (to handle long distance effects) is desirable.

Available estimates are based on QCDf (for $D \to \rho \ell^+ \ell^-$). [T. Feldmann, B. Müller, D. Seidel, JHEP08 (2017) 105]

Later used for $D \to \pi \ell^+ \ell^-$ (major focus on New Physics) [A. Bharucha, D. Boito, C. Méaux, JHEP 04 (2021) 158]

• Other $D_{(s)} \to P\ell^+\ell^-$ channels $(P = \pi, K, \eta)$, Cabibbo favoured(CF) and doubly Cabibbo suppressed(DCS) are also interesting since they share long-distance dynamics (annihilation mechanism).

Effective Operators

The effective Hamiltonian for $D \to \pi \ell^+ \ell^-$ (SCS)

WCs $\omega \mu = 1.3$ GeV at NNLO : $C_1 = 1.034, C_2 = -0.633$

[Stefan de Boer, Bastian Müller, Dirk Siegel, JHEP 08 (2016)]

Effective Operators

The effective Hamiltonian for $D \to \pi \ell^+ \ell^-$ (SCS)

WCs $\omega \mu = 1.3$ GeV at NNLO : $C_1 = 1.034, C_2 = -0.633$

[Stefan de Boer, Bastian Müller, Dirk Siegel, JHEP 08 (2016)]

• Hamiltonian in the GIM limit $(\lambda_b = 0, \lambda_d = -\lambda_s)$:

$$
\mathcal{H}_{\text{eff}}^{(\Delta_s=0,\lambda_b=0)} = \frac{4G_F}{\sqrt{2}} \lambda_d \left[C_1 (O_1^d - O_1^s) + C_2 (O_2^d - O_2^s) \right]
$$

Effective Operators

The effective Hamiltonian for $D \to \pi \ell^+ \ell^-$ (SCS)

WCs $\omega \mu = 1.3$ GeV at NNLO : $C_1 = 1.034, C_2 = -0.633$

[Stefan de Boer, Bastian Müller, Dirk Siegel, JHEP 08 (2016)]

• Hamiltonian in the GIM limit $(\lambda_b = 0, \lambda_d = -\lambda_s)$:

$$
\mathcal{H}_{\text{eff}}^{(\Delta_s=0,\lambda_b=0)} = \frac{4G_F}{\sqrt{2}} \lambda_d \left[C_1 (O_1^d - O_1^s) + C_2 (O_2^d - O_2^s) \right]
$$

• The largest effect beyond GIM limit $\sim \lambda_b C_9$ ($C_9 = -0.488$)

• In the GIM limit $(\lambda_b = 0, \lambda_d = -\lambda_s)$:,

$$
\mathcal{A}(D^+\to \pi^+\ell^+\ell^-)=\left(\frac{16\pi\alpha_{em}G_F}{\sqrt{2}}\right)\lambda_d\frac{\bar{u}_\ell\gamma^\mu\nu_\ell}{q^2}\mathcal{A}_\mu^{D^+\to \pi^+\gamma^*}(p,q)
$$

• In the GIM limit $(\lambda_b = 0, \lambda_d = -\lambda_s)$:,

$$
\mathscr{A}(D^+\to\pi^+\ell^+\ell^-)=\left(\frac{16\pi\alpha_{em}G_F}{\sqrt{2}}\right)\lambda_d\frac{\bar{u}_{\ell}\gamma^{\mu}\nu_{\ell}}{q^2}\mathscr{A}_{\mu}^{D^+\to\pi^+\gamma^*}(p,q)
$$
\nThe leptonic part

\nThe hadronic part (hadronic matrix element)

• In the GIM limit $(\lambda_b = 0, \lambda_d = -\lambda_s)$:,

$$
\mathcal{A}(D^+ \to \pi^+ \ell^+ \ell^-) = \left(\frac{16\pi \alpha_{em} G_F}{\sqrt{2}}\right) \lambda_d \frac{\bar{u}_{\ell} \gamma^{\mu} \nu_{\ell}}{q^2} \mathcal{A}_{\mu}^{D^+ \to \pi^+ \gamma^*}(p, q)
$$
\nThe leptonic part

\nThe hadronic part (hadronic matrix element)

\n
$$
\mathcal{A}_{\mu}^{D^+ \to \pi^+ \gamma^*}(p, q) = i \int d^4 x e^{iq.x} \langle \pi^+(p) | T \left\{ j_{\mu}^{em}(x), \mathcal{H}_{\text{eff}}^{(\Delta_s = 0, \lambda_b = 0)} \right\} | D^+(p + q) \rangle
$$
\n
$$
= \left[(p \cdot q) q_{\mu} - q^2 p_{\mu} \right] \mathcal{A}_{\mathcal{D}}^{D^+ \to \pi^+ \gamma^*}(q^2) \quad \text{(Due to conservation of EM current)}
$$

 $(D^+ \rightarrow \pi^+ \ell^+ \ell^-) =$ $16\pi\alpha_{em}G_F$ $\left(\frac{2}{2}\right)^{\lambda}$ ^d^{*d*} $\bar{u}_e \gamma^\mu \nu_e$ q^2 *D*+→*π*+*γ** *^μ* (*p*, *q*) **The leptonic part The hadronic part (hadronic matrix element)** In the GIM limit $(\lambda_b = 0, \lambda_d = -\lambda_s)$: $= \left[(p \cdot q)q_{\mu} - q^2 p_{\mu} \right] \mathcal{A}_{\mathcal{D}}^{D^+\to \pi^+\gamma^*}(q^2)$ (Due to conservation of EM current) $D^{+}\rightarrow\pi^{+}\gamma^{*}(p,q) = i \int d^{4}x e^{iq.x} \langle \pi^{+}(p) | T \left\{ j_{\mu}^{em}(x), \mathcal{H}_{eff}^{(\Delta_{s}=0,\lambda_{b}=0)} \right\} | D^{+}(p+q) \rangle$

The non-local invariant amplitude :

dominated by long distance effects in the physical region of q^2 . $(4m_e^2 < q^2 < (m_D - m_\pi)^2)$

$$
\mathscr{A}(D^+ \to \pi^+ \ell^+ \ell^-) = \left(\frac{16\pi a_{em} G_F}{\sqrt{2}}\right) \lambda_d \frac{\bar{u}_{\ell} \gamma^{\mu} \nu_{\ell}}{q^2} \mathscr{A}_{\mu}^{D^+ \to \pi^+ \gamma^*}(p, q)
$$
\nThe leptonic part

\nThe hadronic part (hadronic matrix element)

\n
$$
\mathscr{A}_{\mu}^{D^+ \to \pi^+ \gamma^*}(p, q) = i \int d^4 x e^{iq.x} \langle \pi^+(p) | T \left\{ j_{\mu}^{em}(x), \mathscr{H}_{\text{eff}}^{(\Delta_s = 0, \lambda_b = 0)} \right\} | D^+(p + q) \rangle
$$
\n
$$
= \left[(p \cdot q) q_{\mu} - q^2 p_{\mu} \right] \mathscr{A}_{\mathscr{D}}^{D^+ \to \pi^+ \gamma^*}(q^2) \quad \text{(Due to conservation of EM current)}
$$
\n
$$
\text{dominated by long distance effects in the physical region of } q^2.
$$
\n(4m_{\ell}² < q² < (m_D - m_{\pi})²)

The object of our interest

At NLO, there will be multiple diagrams with the exchange of virtual gluons : Out of the scope of the present study.

The use of U-spin

- Combining Two approximations: GIM limit, $\lambda_b = 0$, $\lambda_d = -\lambda_s$ and $SU(3)_{fl}$ limit, $m_s = m_{u,d}$
- The Hamiltonians of CF, SCS, and DSC modes form a U-triplet:

(Only annihilation topology)

$$
O^{(U=1)}_1\equiv\begin{pmatrix}(\bar{u}_L\gamma_\mu s_L)(\bar{d}_L\gamma^\mu c_L)\\[0.4em] \frac{1}{\sqrt{2}}\left[(\bar{u}_L\gamma_\mu d_L)(\bar{d}_L\gamma^\mu c_L) - (\bar{u}_L\gamma_\mu s_L)(\bar{s}_L\gamma^\mu c_L)\right]\\[0.4em] (\bar{u}_L\gamma_\mu d_L)(\bar{s}_L\gamma^\mu c_L)\end{pmatrix}=\begin{pmatrix} | \ 1, +1\rangle\\[0.4em] -| \ 1, 0\rangle\\[0.4em] | \ 1, -1\rangle\end{pmatrix}
$$

The use of U-spin

- Combining Two approximations: GIM limit, $\lambda_b = 0$, $\lambda_d = -\lambda_s$ and $SU(3)_{fl}$ limit, $m_s = m_{u,d}$
- The Hamiltonians of CF, SCS, and DSC modes form a U-triplet:

(Only annihilation topology)

$$
O^{(U=1)}_1\equiv\begin{pmatrix}(\bar u_L\gamma_\mu s_L)(\bar d_L\gamma^\mu c_L)\\[0.4em] \frac{1}{\sqrt{2}}\left[(\bar u_L\gamma_\mu d_L)(\bar d_L\gamma^\mu c_L) -(\bar u_L\gamma_\mu s_L)(\bar s_L\gamma^\mu c_L)\right]\\[0.4em] (\bar u_L\gamma_\mu d_L)(\bar s_L\gamma^\mu c_L)\end{pmatrix}=\begin{pmatrix} | \ 1, +1\rangle\\[0.4em] -| \ 1, 0\rangle\\[0.4em] | \ 1, -1\rangle\end{pmatrix}
$$

• As j_{μ}^{em} is a U-singlet, the matrix element of interest: $\langle P^+|j_{\mu}^{em}(x)O_1^{(U=1)}\rangle$ Two ways to make a U-spin singlet $\langle P_{(U=1/2)}^+|j_{\mu}^{em}(x)O_1^{(U=1)}|D_{(U=1/2)}^+\rangle$ $\langle P_{(U=1)}^+|j_{\mu}^{em}(x)O_1^{(U=1)}|D^0\rangle$ $\sqrt{2}$ $|K^+\rangle = |u\bar{s}\rangle$ $\ket{\pi^+} = \ket{u\bar{d}}$ = $\ket{\pi^+}$ $|1/2, + 1/2\rangle$ $-|1/2,-1/2\rangle$ $\sqrt{2}$ $|D_s^+\rangle = |c\bar{s}\rangle$ $|D^{+}\rangle = |c\bar{d}\rangle$) = ($|1/2, + 1/2\rangle$ $-|1/2,-1/2\rangle$ $|K^0\rangle = |d\bar{s}\rangle$ $\frac{\sqrt{3}}{2}$ | η_8 $\rangle - \frac{1}{2}$ | π^0 $\rangle = \frac{1}{\sqrt{2}}$ 2 $|d\bar{d} - s\bar{s}\rangle$ $|\bar{K}^0\rangle = |s\bar{d}\rangle$ = $|1, +1\rangle$ $-\vert 1{,}0\rangle$ $-|1,-1\rangle$ $|D^0\rangle = |c\bar{u}\rangle = |0,0\rangle$

The use of U-spin

- Combining Two approximations: GIM limit, $\lambda_b = 0$, $\lambda_d = -\lambda_s$ and $SU(3)_{fl}$ limit, $m_s = m_{u,d}$
- The Hamiltonians of CF, SCS, and DSC modes form a U-triplet:

(Only annihilation topology)

$$
O_1^{(U=1)} \equiv \left(\begin{matrix} (\bar u_L \gamma_\mu s_L)(\bar d_L \gamma^\mu c_L) \\ \frac{1}{\sqrt{2}} \left[(\bar u_L \gamma_\mu d_L)(\bar d_L \gamma^\mu c_L) - (\bar u_L \gamma_\mu s_L)(\bar s_L \gamma^\mu c_L) \right] \\ (\bar u_L \gamma_\mu d_L)(\bar s_L \gamma^\mu c_L) \end{matrix}\right) = \left(\begin{matrix} | \ 1, +1\rangle \\ -| \ 1, 0\rangle \\ | \ 1, -1\rangle \end{matrix}\right)
$$

• As
$$
j_{\mu}^{em}
$$
 is a U-singlet, the matrix element of interest:
\n
$$
\langle P^+ | j_{\mu}^{em}(x)O_1^{(U=1)} | D^+ \rangle
$$
\n
$$
\langle P^+_{(U=1/2)} | j_{\mu}^{em}(x)O_1^{(U=1)} | D^+ \rangle
$$
\n
$$
\langle P^+_{(U=1/2)} | j_{\mu}^{em}(x)O_1^{(U=1)} | D^+_{(U=1/2)} \rangle
$$
\n
$$
\langle P^+_{(U=1/2)} | j_{\mu}^{em}(x)O_1^{(U=1)} | D^+_{(U=1/2)} \rangle
$$
\n
$$
\langle P^+_{(U=1)} | j_{\mu}^{em}(x)O_1^{(U=1)} | D^0 \rangle
$$
\n
$$
\langle P^+_{(U=1)} | j_{\mu}^{em}(x)O_1^{(U=1)} | D^0 \rangle
$$
\n
$$
\langle P^+_{(U=1)} | j_{\mu}^{em}(x)O_1^{(U=1)} | D^0 \rangle
$$
\n
$$
\langle P^+_{(U=1)} | j_{\mu}^{em}(x)O_1^{(U=1)} | D^0 \rangle
$$
\n
$$
\langle P^+_{(U=1/2)} | j_{\mu}^{em}(x)O_1^{(U=1)} | D^0 \rangle
$$
\n
$$
\langle P^+_{(U=1/2)} | j_{\mu}^{em}(x)O_1^{(U=1)} | D^0 \rangle
$$
\n
$$
\langle P^+_{(U=1)} | j_{\mu}^{em}(x)O_1^{(U=1)} | D^0 \rangle
$$
\n
$$
\langle P^+_{(U=1/2)} | j_{\mu}^{em}(x)O_1^{(U=1)} | D^0 \rangle
$$
\n
$$
\langle P^+_{(U=1/2)} | j_{\mu}^{em}(x)O_1^{(U=1)} | D^0 \rangle
$$
\n
$$
\langle P^+_{(U=1/2)} | j_{\mu}^{em}(x)O_1^{(U=1)} | D^0 \rangle
$$
\n
$$
\langle P^+_{(U=1/2)} | j_{\mu}^{em}(x)O_1^{(U=1)} | D^+ \rangle
$$
\n
$$
\langle P^+_{(U=1/2
$$

U-spin relations

$$
\mathcal{A}^{(D^+\to\pi^+\gamma^*)}(q^2) = -\mathcal{A}^{(D_s^+\to K^+\gamma^*)}(q^2) = \mathcal{A}^{(D_s^+\to\pi^+\gamma^*)}(q^2) = \mathcal{A}^{(D^+\to K^+\gamma^*)}(q^2)
$$
\n
$$
\mathcal{A}^{(D^0\to\bar{K}^0\gamma^*)}(q^2) = \mathcal{A}^{(D^0\to K^0\gamma^*)}(q^2) = -\frac{1}{2}\mathcal{A}^{(D^0\to\pi^0\gamma^*)}(q^2) + \frac{\sqrt{3}}{2}\mathcal{A}^{(D^0\to\eta^0\gamma^*)}(q^2)
$$
\n
$$
D^0, \eta' : \text{ U-spin singlets.}
$$
\n
$$
\mathcal{A}^{(D^0\to\eta_8\gamma^*)}(q^2) = -\sqrt{3}\mathcal{A}^{(D^0\to\pi^0\gamma^*)}(q^2)
$$

• Measuring the CF modes, e.g. $D_s \to \pi^+ \ell^+ \ell^-$ will allow to disentangle this topology.

What do we know from Experiments?

• Upper bounds from PDG:

[PDG]

What do we know from Experiments?

• Upper bounds from PDG:

[PDG]

• Most recent upper bound on $(D^+ \to \pi^+\mu^+\mu^-)$: vetoing the resonance region. [LHCb, (JHEP06 (2021) 044)]

Can we really isolate resonances?

• The full amplitude represented via hadronic dispersion relation :

Decay constant
\n
$$
\mathcal{A}^{(D^+\to\pi^+\gamma^*)}(q^2) = \sum_{V=\rho,\omega,\phi} \frac{\kappa_V f_V |A_{DV\pi}| e^{i\varphi_V}}{(m_V^2 - q^2 - i m_V \Gamma_V^{tot})} + \int_{s_0^h}^{\infty} ds \frac{\rho_h(s)}{(s - q^2 - i\epsilon)}
$$
\nContinuum and higher
\nresonances

Can we really isolate resonances?

• The full amplitude represented via hadronic dispersion relation :

Decay constant
\n
$$
\mathcal{A}^{(D^+\to\pi^+\gamma^*)}(q^2) = \sum_{V=\rho,\omega,\phi} \frac{\kappa_V f_V |A_{DV\pi}| e^{i\varphi_V}}{(m_V^2 - q^2 - i m_V \Gamma_V^{tot})} + \int_{s_0^h}^{\infty} ds \frac{\rho_h(s)}{(s - q^2 - i \epsilon)}
$$
\nContinuum and higher
\nresonances

- Dispersion relation tells us: vetoing a certain q^2 region does not remove resonances from the amplitude.
- The radial excitations of ρ , ω , ϕ and the "tail" at $s > (m_D m_\pi)^2$ are indispensable.

Can we really isolate resonances?

• The full amplitude represented via hadronic dispersion relation :

Decay constant
\n
$$
\mathcal{A}^{(D^+\to\pi^+\gamma^*)}(q^2) = \sum_{V=\rho,\omega,\phi} \frac{\kappa_V f_V |A_{DV\pi}| e^{i\varphi_V}}{(m_V^2 - q^2 - i m_V \Gamma_V^{tot})} + \int_{s_0^h}^{\infty} ds \frac{\rho_h(s)}{(s - q^2 - i \epsilon)}
$$
\nContinuum and higher
\nresonances

- Dispersion relation tells us: vetoing a certain q^2 region does not remove resonances from the amplitude.
- The radial excitations of ρ , ω , ϕ and the "tail" at $s > (m_D m_\pi)^2$ are indispensable.

As, the experimental bounds are approaching theory predictions, it is important to revisit it within the Standard Model.

,

• LCSR can provide estimates only in the spacelike region.

- LCSR can provide estimates only in the spacelike region.
- The dispersion relation is valid for all values of q^2

$$
\mathcal{A}^{(D^+\to\pi^+\gamma^*)}(q^2) = \mathcal{A}^{(D^+\to\pi^+\gamma^*)}(q_0^2) + (q^2 - q_0^2) \Bigg[\sum_{V=\rho,\omega,\phi} \frac{\kappa_V f_V |A_{DV\pi}| e^{i\varphi_V}}{(m_V^2 - q_0^2)(m_V^2 - q^2 - im_V \Gamma_V^{tot})} + \int_{s_0^h}^{\infty} ds \frac{\rho_h(s)}{(s - q_0^2)(s - q^2 - i\epsilon)} \Bigg]
$$

,

$$
|A_{D V \pi}| = \left(\frac{8\pi BR(D^+ \to V\pi^+)}{\tau(B)G_F^2 |V_{cs}|^2 |V_{ud}|^2 m_{D^+}^3 \lambda_{D^+ V \pi^+}^{3/2}}\right)^{1/2}
$$

 $k_{\rho} = 1/\sqrt{2}$, $k_{\omega} = 1/(3\sqrt{2})$, $k_{\phi} = -1/3$: Follow from the valence quark content of V

- LCSR can provide estimates only in the spacelike region.
- The dispersion relation is valid for all values of q^2

$$
\mathcal{A}^{(D^+\to\pi^+\gamma^*)}(q^2) = \mathcal{A}^{(D^+\to\pi^+\gamma^*)}(q_0^2) + (q^2 - q_0^2) \Big[\sum_{V=\rho,\omega,\phi} \frac{\kappa_V f_V |A_{DV\pi}| e^{i\varphi_V}}{(m_V^2 - q_0^2)(m_V^2 - q^2 - im_V \Gamma_V^{tot})} + \left(\int_{\phi_0}^{\infty} ds \frac{\rho_h(s)}{(s - q_0^2)(s - q^2 - i\epsilon)} \right) \Big]
$$

$$
|A_{DV\pi}| = \left(\frac{8\pi BR(D^+\to V\pi^+)}{\tau(B)G_F^2 |V_{cs}|^2 |V_{ud}|^2 m_D^3 + \lambda_{D^+V\pi^+}^3} \right)^{1/2}
$$

Spectral density : too complicated to be parametrized

,

 $k_{\rho} = 1/\sqrt{2}$, $k_{\omega} = 1/(3\sqrt{2})$, $k_{\phi} = -1/3$: Follow from the valence quark content of V

- LCSR can provide estimates only in the spacelike region.
- The dispersion relation is valid for all values of q^2

$$
(D^+\to\pi^+\gamma^*)(q^2) = \mathcal{A}^{(D^+\to\pi^+\gamma^*)}(q_0^2) + (q^2 - q_0^2) \Big| \sum_{V=\rho,\omega,\phi} \frac{\kappa_V J V V^2}{(m_V^2 - q_0^2)(m_V^2)}
$$

$$
|A_{D V \pi}| = \left(\frac{8\pi BR(D^+\to V\pi^+)}{\tau(B)G_F^2|V_{cs}|^2|V_{ud}|^2 m_D^2 \lambda_D^{3/2} V_{\pi^+}}\right)^{1/2}
$$

 $k_{\rho} = 1/\sqrt{2}$, $k_{\omega} = 1/(3\sqrt{2})$, $k_{\phi} = -1/3$: Follow from the valence quark content of V

Spectral density : too complicated to be parametrized
\n
$$
\frac{\kappa_V f_V |A_{DV\pi}| e^{i\varphi_V}}{q_0^2)(m_V^2 - q^2 - im_V \Gamma_V^{tot})} + \left(\begin{array}{c} \infty & \rho_h(s) \\ ds & (s - q_0^2)(s - q^2 - ie) \end{array}\right)
$$
\ncan be parametrized using **z-parametrization**
\n
$$
\text{canh below } s_{th}
$$
\n
$$
\int_{s_{th}}^{\infty} ds \frac{\rho_h(s)}{(s - q_0^2)(s - q^2 - ie)} = \sum_{k=0}^{K} a_k [z(q^2)]^k
$$
\nwith,
\n
$$
z(q^2) = \frac{\sqrt{s_{th} - q^2} - \sqrt{s_{th}}}{\sqrt{s_{th} - q^2} + \sqrt{s_{th}}} \qquad a_k = \text{Complex coefficients}
$$

- LCSR can provide estimates only in the spacelike region.
- The dispersion relation is valid for all values of q^2

$$
\mathcal{A}^{(D^+\to\pi^+\gamma^*)}(q^2) = \mathcal{A}^{(D^+\to\pi^+\gamma^*)}(q_0^2) + (q^2 - q_0^2) \left[\sum_{V=\rho,\omega,\phi} \frac{\kappa_V}{(m_V^2 - q_0^2)} \right]
$$

$$
|A_{DV\pi}| = \left(\frac{8\pi BR(D^+\to V\pi^+)}{\tau(B)G_F^2|V_{cs}|^2|V_{ud}|^2 m_D^2 \lambda_D^{3/2} |\gamma_{\pi^+}|} \right)^{1/2}
$$

 $k_{\rho} = 1/\sqrt{2}$, $k_{\omega} = 1/(3\sqrt{2})$, $k_{\phi} = -1/3$: Follow from the valence quark content of V

For $K = 2$, **9 unknown parameters**: $\phi_{\rho}, \phi_{\omega}, \phi_{\phi}, a_0, a_1, a_2$.

- LCSR can provide estimates only in the spacelike region.
- The dispersion relation is valid for all values of q^2

$$
(D^+\to\pi^+\gamma^*)(q^2) = \mathcal{A}^{(D^+\to\pi^+\gamma^*)}(q_0^2) + (q^2 - q_0^2) \Big| \sum_{V=\rho,\omega,\phi} \frac{\kappa_{VJV}}{(m_V^2 - q_0^2)(m_V^2)} \Big|
$$

$$
|A_{DV\pi}| = \left(\frac{8\pi BR(D^+\to V\pi^+)}{\tau(B)G_F^2|V_{cs}|^2|V_{ud}|^2 m_D^3 \lambda_D^{3/2} V_{\pi^+}}\right)^{1/2}
$$

 $k_{\rho} = 1/\sqrt{2}$, $k_{\omega} = 1/(3\sqrt{2})$, $k_{\phi} = -1/3$: Follow from the valence quark content of V

For $K = 2$, **9 unknown parameters**: ϕ_{ρ} , ϕ_{ω} , ϕ_{ϕ} , a_0 , a_1 , a_2 .

M**ain idea :**

<u>Step-1</u>: Compute $\mathscr{A}^{(D^+\to \pi^+\gamma^*)}(q^2)$ using Light Cone Sum Rules (valid only for $q^2 < 0$) <u>Step-2</u>: Write the hadronic dispersion relation in terms of unknown phases and z-parameters (valid for all values of q^2). <u>Step-3</u>: Match the LCSR results with the dispersion relation at $q^2 < 0$ and estimate the unknown parameters. Step-4: Estimate $\mathscr{A}^{(D^+\to \pi^+\gamma^*)}(q^2)$ in the physical region using dispersion relation.

Spectral density : too complicated to be parametrized
\n
$$
\frac{\kappa_V f_V |A_{D_v}e^{i\varphi_V}}{q_0^2)(m_V^2 - q^2 - im_V \Gamma_V^{tot})} + \left(\int_{s_0^h}^{\infty} ds \frac{\rho_h(s)}{(s - q_0^2)(s - q^2 - i\epsilon)}\right)
$$
\ncan be parametrized using **z-parametrization**
\nvalid below s_{th})
\nthen to V
$$
\int_{s_{th}}^{\infty} ds \frac{\rho_h(s)}{(s - q_0^2)(s - q^2 - i\epsilon)} = \sum_{k=0}^{K} a_k [z(q^2)]^k
$$
\nwith,
\n $z(q^2) = \frac{\sqrt{s_{th} - q^2} - \sqrt{s_{th}}}{\sqrt{s_{th} - q^2} + \sqrt{s_{th}}}}$ $a_k = \text{Complex coefficients}$

 $\sqrt{s_{th} - q^2} + \sqrt{s_{th}}$

- LCSR can provide estimates only in the spacelike region.
- The dispersion relation is valid for all values of q^2

$$
(D^+\to\pi^+\gamma^*)(q^2) = \mathcal{A}^{(D^+\to\pi^+\gamma^*)(q^2_0) + (q^2 - q^2_0) \Big[\sum_{V=\rho,\omega,\phi} \frac{\kappa_V J_V \Gamma^2 D_V \pi^2 e^{-\gamma}}{(m_V^2 - q^2_0)(m_V^2 - q^2 - im_V \Gamma_V^{tot})}
$$

$$
|A_{D_V\pi}| = \left(\frac{8\pi BR(D^+\to V\pi^+)}{\tau(B)G_F^2 |V_{cs}|^2 |V_{ud}|^2 m_D^3 \lambda_D^{3/2} V_{\pi^+}}\right)^{1/2}
$$
 can be para

 $k_{\rho} = 1/\sqrt{2}$, $k_{\omega} = 1/(3\sqrt{2})$, $k_{\phi} = -1/3$: Follow from the valence quark content of V

For $K = 2$, **9 unknown parameters**: ϕ_{ρ} , ϕ_{ω} , ϕ_{ϕ} , a_0 , a_1 , a_2 .

$z(q^2) = \frac{v}{\sqrt{1-v^2}}$ (valid below s_{th}) $s_{th} - q^2 - \sqrt{s_{th}}$ $s_{th} - q^2 + \sqrt{s_{th}}$ ∞ *sth ds* $\rho_h(s)$ $(s - q_0^2)(s - q^2 - i\epsilon)$ = *K* ∑ *k*=0 $a_k[z(q^2)]^k$ with, $a_k = \text{Complex}$ coefficients

 $\rho_h(s)$

 $\sqrt{(s-q_0^2)(s-q^2-i\epsilon)}$

can be parametrized using **z-parametrization**

M**ain idea :**

<u>Step-1</u>: Compute $\mathscr{A}^{(D^+\to \pi^+\gamma^*)}(q^2)$ using Light Cone Sum Rules (valid only for $q^2 < 0$) <u>Step-2</u>: Write the hadronic dispersion relation in terms of unknown phases and z-parameters (valid for all values of q^2). <u>Step-3</u>: Match the LCSR results with the dispersion relation at $q^2 < 0$ and estimate the unknown parameters. Step-4: Estimate $\mathscr{A}^{(D^+\to \pi^+\gamma^*)}(q^2)$ in the physical region using dispersion relation.

(Resembling partly the analysis of nonlocal effects in $B \to K^* \ell^+ \ell^-$)

Spectral density : too complicated to be parametrized

∞

ds

sh 0

+ ∫

[A. Khodjamirian, T. Mannel, A. Pivovarov, Y. Wang, 1211.0234]

[A. Khodjamirian, A. V. Rusov, 1703.04765] , N. Gubernari, M. Rebound, D. van Dyk, J. Virto, 2011.09813

∫

 $\kappa_V f_V |A_{DV\pi}| e^{i\phi_V}$

TOOLS TO DERIVE LCSR

Light cone OPE (Computing correlation function as a product of perturbatively calculated Hard scattering kernel and pion DAs)

TOOLS TO DERIVE LCSR

Light cone OPE (Computing correlation function as a product of perturbatively calculated Hard scattering kernel and pion DAs)

Dispersion Relation in D-meson channel

(Enables to relate the calculated correlation function to the sum over $D \to \pi \gamma^*$ hadronic matrix elements.)

TOOLS TO DERIVE LCSR

Light cone OPE (Computing correlation function as a product of perturbatively calculated Hard scattering kernel and pion DAs)

Dispersion Relation in D-meson channel

(Enables to relate the calculated correlation function to the sum over $D \to \pi \gamma^*$ hadronic matrix elements.)

Quark Hadron Duality

(Relates ground state hadronic matrix element in D-meson channel to the integral over perturbatively calculated correlation function)

Dispersion Relation in D-meson channel (Enables to relate the calculated correlation function to the sum over $D \to \pi \gamma^*$ hadronic matrix elements.) **Quark Hadron Duality Light cone OPE** (Computing correlation function as a product of perturbatively calculated Hard scattering kernel and pion DAs) **TOOLS TO DERIVE LCSR**

(Relates ground state hadronic matrix element in D-meson channel to the integral over perturbatively calculated correlation function)

Borel Transformation

(To suppress the effect of continuum and higher resonances to reduce the uncertainty due to duality approximation)

Weak Annihilation from LCSR

The correlation function: ☀

$$
F_{\mu}(p,q,k) = -C_1 \int d^4x \, e^{iq \cdot x} \int d^4y \, e^{-i(p+q)\cdot y} \langle \pi^+(p-k) \, | \, T\{J_{\mu}^{em}(x)(\bar{u}_L \gamma_\nu d_L)(\bar{d}_L \gamma^\nu c_L)(0)J_5^D(y)\} \, | \, 0 \rangle
$$
\n
$$
\sum_{q=u,d,c} Q_q \bar{q}(x) \gamma_\mu q(x) \qquad \lim_{c \bar{c}(y) \gamma_5 d(y)} \langle \gamma \rangle
$$

Only O_1^d contributes. The O_2 contribution vanishes after Fierz transformation.

Diagrams in terms of pion DAs

Weak Annihilation from LCSR

The correlation function:

$$
F_{\mu}(p,q,k) = -C_1 \int d^4x \, e^{iq \cdot x} \int d^4y \, e^{-i(p+q)\cdot y} \langle \pi^+(p-k) | T\{J_{\mu}^{em}(x)(\bar{u}_L \gamma_\nu d_L)(\bar{d}_L \gamma^\nu c_L)(0) J_5^D(y) \} | 0 \rangle
$$
\n
$$
\sum_{q=u,d,c} Q_q \bar{q}(x) \gamma_\mu q(x) \qquad \lim_{c \bar{c}(y) \gamma_5 d(y)} \langle \gamma \rangle
$$

Only O_1^d contributes. The O_2 contribution vanishes after Fierz transformation.

The artificial momentum *k* is introduced at the four vertex to avoid parasitic contributions in the dispersion (Used before in LCSR analysis of $B \to 2\pi$ and $D \to 2\pi$, $K\bar{K}$) relation.

[A. Khodjamirian, arXiv: hep-ph/0012271]

[A. Khodjamirian, M. Melcher, B. Melic, arXiv: hep-ph/0304179, hep-ph/0509049]

[A. Khodjamirian, A. A. Petrov, arXiv: 1706.07780]

Diagrams in terms of pion DAs

Weak Annihilation from LCSR

The correlation function:

$$
F_{\mu}(p,q,k) = -C_1 \int d^4x \, e^{iq \cdot x} \int d^4y \, e^{-i(p+q)\cdot y} \langle \pi^+(p-k) | T\{J_{\mu}^{em}(x)(\bar{u}_L \gamma_{\nu} d_L)(\bar{d}_L \gamma^{\nu} c_L)(0) J_5^D(y) \} | 0 \rangle
$$

$$
\sum_{q=u,d,c} Q_q \bar{q}(x) \gamma_{\mu} q(x) \qquad im_c \bar{c}(y) \gamma_5 d(y)
$$

Only O_1^d contributes. The O_2 contribution vanishes after Fierz transformation.

The artificial momentum *k* is introduced at the four vertex to avoid parasitic contributions in the dispersion (Used before in LCSR analysis of $B \to 2\pi$ and $D \to 2\pi$, $K\bar{K}$) relation.

[A. Khodjamirian, arXiv: hep-ph/0012271]

[A. Khodjamirian, M. Melcher, B. Melic, arXiv: hep-ph/0304179, hep-ph/0509049]

[A. Khodjamirian, A. A. Petrov, arXiv: 1706.07780]

The correlation function reads as:

$$
\mathcal{F}_{\mu}^{(L)}(p,q,k) = -\left[(p\cdot q)q_{\mu} - q^2p_{\mu}\right] \frac{1}{9} \left(C_1 + \frac{4}{3}C_2\right) \Pi^{(d-s)}(q^2) G((p+q)^2, q^2, P^2)
$$

The correlation function reads as:

$$
\mathcal{F}_{\mu}^{(L)}(p,q,k) = -\left[(p \cdot q)q_{\mu} - q^2 p_{\mu} \right] \frac{1}{9} \left(C_1 + \frac{4}{3} C_2 \right) \Pi^{(d-s)}(q^2) G((p+q)^2, q^2, P^2)
$$

$$
\Pi^{d}(q^{2}) - \Pi^{s}(q^{2}) \equiv \Pi^{(d-s)}(q^{2}) = \frac{3}{4\pi^{2}} \int_{0}^{1} dx \, x \, (1-x) \log\left(\frac{m_{s}^{2} - q^{2}x(1-x)}{m_{d}^{2} - q^{2}x(1-x)}\right)
$$

The correlation function reads as:

$$
\mathcal{F}_{\mu}^{(L)}(p,q,k) = -\left[(p \cdot q)q_{\mu} - q^2 p_{\mu} \right] \frac{1}{9} \left(C_1 + \frac{4}{3} C_2 \right) \Pi^{(d-s)}(q^2) G((p+q)^2, q^2, P^2)
$$

$$
\Pi^{d}(q^2) - \Pi^{s}(q^2) \equiv \Pi^{(d-s)}(q^2) = \frac{3}{4\pi^2} \int_0^1 dx \, x \, (1-x) \log \left(\frac{m_s^2 - q^2 x (1-x)}{m_d^2 - q^2 x (1-x)} \right)
$$

$$
G_{\rho}(p,q,k) = i \int d^4 y \, e^{-i(p+q) \cdot y} \langle \pi^+(p-k) | T \left\{ \left(\bar{u}_L(0) \gamma_{\rho} c_L(0) \right) j_S^D(y) \right\} | 0 \rangle
$$

The correlation function reads as: ☀

$$
\mathcal{F}_{\mu}^{(L)}(p,q,k) = -\left[(p \cdot q)q_{\mu} - q^2 p_{\mu} \right] \frac{1}{9} \left(C_1 + \frac{4}{3} C_2 \right) \Pi^{(d-s)}(q^2) G((p+q)^2, q^2, P^2)
$$

$$
\Pi^{d}(q^2) - \Pi^{s}(q^2) \equiv \Pi^{(d-s)}(q^2) = \frac{3}{4\pi^2} \int_0^1 dx \, x \, (1-x) \log \left(\frac{m_s^2 - q^2 x (1-x)}{m_d^2 - q^2 x (1-x)} \right)
$$

$$
G_{\rho}(p,q,k) = i \int_0^1 d^4 y \, e^{-i(p+q) \cdot y} \left(\pi^+(p-k) \right) T \left\{ \left(\bar{u}_L(0) \gamma_\rho c_L(0) \right) j_5^D(y) \right\} |0 \right\}
$$

- Both WCs $(C_1$ and C_2) contribute in this case.
- The contribution is small due to GIM suppression.

LCSR Results

• The final sum rule read as (for $q^2 < 0$):

$$
m_D^2 f_D \mathscr{A}^{(D^+ \to \pi^+ \gamma^*)}(q^2) e^{-m_D^2 / M^2} = \frac{1}{\pi} \int_{m_c^2}^{s_0^D} ds e^{-s / M^2} \text{Im}(F^{(OPE)}(s, q^2, m_D^2))
$$

• M^2 (Borel parameter) and s_0^D (effective threshold) are the sum rule parameters taken to be:

> $M^2 = (4.5 \pm 1.0)$ GeV² $s_0^D = (4.95 \pm 0.35)$ GeV²

LCSR Results

• The final sum rule read as (for $q^2 < 0$):

$$
m_D^2 f_D \mathcal{A}^{(D^+ \to \pi^+ \gamma^*)}(q^2) e^{-m_D^2 / M^2} = \frac{1}{\pi} \int_{m_c^2}^{s_0^D} ds e^{-s / M^2} \text{Im}(F^{(OPE)}(s, q^2, m_D^2))
$$

• M^2 (Borel parameter) and s_0^D (effective threshold) are the sum rule parameters taken to be:

$$
M^2 = (4.5 \pm 1.0) \text{ GeV}^2
$$

$$
s_0^D = (4.95 \pm 0.35) \text{ GeV}^2
$$

- F^{OPE} include contribution from twist-2 distribution amplitude (DA) of pion (using 2 Gegenbauer moments).
- The major source of calculated LCSR uncertainties are the uncertainties in s_0^D and the DA parameters.

LCSR Results

• The final sum rule read as (for $q^2 < 0$):

$$
m_D^2 f_D \mathcal{A}^{(D^+ \to \pi^+ \gamma^*)}(q^2) e^{-m_D^2 / M^2} = \frac{1}{\pi} \int_{m_c^2}^{s_0^D} ds e^{-s / M^2} \text{Im}(F^{(OPE)}(s, q^2, m_D^2))
$$

• M^2 (Borel parameter) and s_0^D (effective threshold) are the sum rule parameters taken to be:

$$
M^2 = (4.5 \pm 1.0) \text{ GeV}^2
$$

$$
s_0^D = (4.95 \pm 0.35) \text{ GeV}^2
$$

- F^{OPE} include contribution from twist-2 distribution amplitude (DA) of pion (using 2 Gegenbauer moments).
- The major source of calculated LCSR uncertainties are the uncertainties in s_0^D and the DA parameters.

• The contribution to the decay amplitude from O_9 varies from $\sim 1.5 \times 10^{-6}$ to $\sim 7.5 \times 10^{-6}$ at $0 < q^2 < (m_D - m_\pi)^2$: at least three order of magnitudes smaller than the main amplitude

Final Results

Figure: The results for the differential branching fraction using the dispersion relation with the fitted parameters

• The low q^2 region is generated by the "tail" of the resonances, the intermediate and high q^2 region is influenced by excited states.

Final Results

Figure: The results for the differential branching fraction using the dispersion relation with the fitted parameters

- The low q^2 region is generated by the "tail" of the resonances, the intermediate and high q^2 region is influenced by excited states.
- The low q^2 region ($(0.250)^2 \le q^2 \le (0.525)^2$), integrated branching fraction $\sim 5.5 \times 10^{-9}$ (\sim 2 times the QCDf predictions). [A. Bharucha, D. Boito, C. Méaux, JHEP 04 (2021) 158]

- In this work, we study the long distance effects in $D^+ \to \pi^+ \ell^+ \ell^-$ decays using LCSR supported dispersion relation.
- ❖ We found that the amplitude is mainly dominated by the weak annihilation topologies (loop and short distance contributions are tiny).
- We present the preliminary results for the differential decay width for $D^+ \to \pi^+ \ell^+ \ell^-$ decays.
- \bullet In low q^2 region ($(0.250)^2 \le q^2 \le (0.525)^2$) (in GeV²), integrated branching fraction is $\sim 5.5 \times 10^{-9}$ (preliminary).

- In this work, we study the long distance effects in $D^+ \to \pi^+ \ell^+ \ell^-$ decays using LCSR supported dispersion relation.
- ❖ We found that the amplitude is mainly dominated by the weak annihilation topologies (loop and short distance contributions are tiny).
- We present the preliminary results for the differential decay width for $D^+ \to \pi^+ \ell^+ \ell^-$ decays.
- \bullet In low q^2 region ($(0.250)^2 \le q^2 \le (0.525)^2$) (in GeV²), integrated branching fraction is $\sim 5.5 \times 10^{-9}$ (preliminary).
- Work yet to be done:
	- ❖ Compute uncertainties in the branching fraction estimates.
	- **◆ Prediction for \$D_s** \to \pi \ell^+\ell^-\$ (CF) modes as a byproduct by setting $m_s \neq 0$

- In this work, we study the long distance effects in $D^+ \to \pi^+ \ell^+ \ell^-$ decays using LCSR supported dispersion relation.
- ❖ We found that the amplitude is mainly dominated by the weak annihilation topologies (loop and short distance contributions are tiny).
- We present the preliminary results for the differential decay width for $D^+ \to \pi^+ \ell^+ \ell^-$ decays.
- \bullet In low q^2 region ($(0.250)^2 \le q^2 \le (0.525)^2$) (in GeV²), integrated branching fraction is $\sim 5.5 \times 10^{-9}$ (preliminary).
- Work yet to be done:
	- ❖ Compute uncertainties in the branching fraction estimates.
	- **◆ Prediction for \$D_s** \to \pi \ell^+\ell^-\$ (CF) modes as a byproduct by setting $m_s \neq 0$
- Future perspectives:
	- ❖ Perturbative and Soft-gluon corrections to annihilation.
	- ❖ Estimates for other CF and SCS modes.
	- \bullet Varying resonance ansatz in the dispersion relation (including ρ', ω', ϕ').

- In this work, we study the long distance effects in $D^+ \to \pi^+ \ell^+ \ell^-$ decays using LCSR supported dispersion relation.
- ❖ We found that the amplitude is mainly dominated by the weak annihilation topologies (loop and short distance contributions are tiny).
- We present the preliminary results for the differential decay width for $D^+ \to \pi^+ \ell^+ \ell^-$ decays.
- \bullet In low q^2 region ($(0.250)^2 \le q^2 \le (0.525)^2$) (in GeV²), integrated branching fraction is $\sim 5.5 \times 10^{-9}$ (preliminary).
- Work yet to be done:
	- ❖ Compute uncertainties in the branching fraction estimates.
	- **◆ Prediction for \$D_s** \to \pi \ell^+\ell^-\$ (CF) modes as a byproduct by setting $m_s \neq 0$
- Future perspectives:
	- ❖ Perturbative and Soft-gluon corrections to annihilation.
	- ❖ Estimates for other CF and SCS modes.
	- \bullet Varying resonance ansatz in the dispersion relation (including ρ', ω', ϕ').
- Important message for experimental analysis:

There is no way to isolate long distance effects in $D_{(s)} \to P \ell^+ \ell^-$ decays by simply vetoing resonances, one need measurements of the differential decay rates in the whole q^2 region.

I'hank you for your attention !!

I'hank you for your attention !!

Back up!

What do we already know from theory: QCD factorization?

- The method was originally suggested for $B \to K^* \ell^+ \ell^-$.
- First use for charm decays in $D \to \rho \ell^+ \ell^-$:

The loop topology diagram modified to include resonances. : Shifman model of loop-resonance duality

• Later, a similar method applied to $D \to \pi \ell^+ \ell^-$ (with the main focus on new physics).

$$
\mathcal{B}(D^+ \to \pi^+ \mu^+ \mu^-)\Big|_{\text{low }q^2}^{\text{SM}} = (8.1^{+5.9}_{-6.1}) \times 10^{-9},
$$

$$
\mathcal{B}(D^+ \to \pi^+ \mu^+ \mu^-)\Big|_{\text{high }q^2}^{\text{SM}} = (2.7^{+4.0}_{-2.6}) \times 10^{-9},
$$

• Major missing:

- Includes only one of the four annihilation diagrams (emission from the initial d-quark) :
	- ✴ Other three diagrams turns out to be important.
- $\frac{1}{\epsilon}$ corrections eg. from the use of D-meson distribution amplitudes: 1 m_c^2
	- ✴ Expected to be large (atleast compared to the B-meson case).

Therefore, with the experimental bounds approaching theory predictions, it is important to revisit it within the Standard Model.