

Germany in LHCb Upgrade 2: The Mighty Tracker

B. Leverington,Universität Heidelberg,On behalf of the Mighty Tracker group.

NIVERSITÄT EIDELBERG JKUNFT

HC

Forward Flavour Physics Detectors

HICP

UNIVERSITÄT

Forward Flavour Physics Detectors

at hadron colliders

HERA-B

DESY

(Outer Tracker) Dortmund, Heidelberg, Humbolt (Berlin), Rostock (Vertex) MPIK Heidelberg, MPIP München German involvements in Inner Tracker, Trigger and RICH as well

German involvement in LHCb Detectors

MT = Pixel + SciFi

(Integrated) Luminosity

FSP LHCb Erforschung von Universum und Materie

HICP

JNIVERSITÄT HEIDELBERG ZUKUNFT SEIT 1386

4

Tracking in increased Pile-up

mu=25-35 visible interactions per BX in Upgrade 2
2000 charged particles within the LHCb acceptance

Requirements:

- Upgrade 1: Higher Spatial Granularity to prevent overlapping hits in the same channel in all trackers
- Upgrade 2:
 - VELO: adding sub-bx timing granularity (50 ps per hit) to match tracks and vertices
 - UT: increased spatial granularity with pixels instead of strip detectors (only BX timing)
 - T : pixels in the inner region, still scintillating fibres in the outer regions behind the magnet (only BX timing planned for Tracks)
 - Timing for downstream tracks will be provided by the particle identification systems.

S

Τ

LHCb

orschung von iversum und Materie

New tracking detectors!

• VELO Pixels with Timing (TV)

- nu = 42 (left) with no timing, (right) with 30ps time window
- 150 μm thick sensors with 10 μm spatial resolution.
- 28 nm pixel technology.

3D sensors are promising

FSP LHCb

NIVERSITÄT

VELO in the Scoping Document

- Middle scenario:
 - Same geometry and construction
 - fewer data links from the lower luminosity
- Low scenario:
 - by removing the first two and last two stations, by adopting a more conservative corrugated design for the RF shield, with 150 μm thickness,
 - by using a heavier cooling substrate, increasing by **a factor of two** the material of the detector modules.

Upstream Pixel Tracker in the Scoping Doc.

- four planes of silicon pixels based on DMAPS technology
- New baseline (red box)
- Middle scenario saves cost with fewer data links from the lower luminosity
- Lower cost (green outline) removes the lower occupancy regions

Could likely to be a flavor of the same DMAPS technology as the Mighty-Pixel

The Mighty Tracker in the Scoping Doc.

Mighty-SciFi: scintillating fibres for the majority of the area Mighty-Pixel: a high-granularity silicon (DMAPS) pixel detector around the beampipe

HICO

INIVERSITÄT IEIDELBERG

Occupancy

Pixels are nice, great performance, but expensive. Put fibres where they can do the job.

Figure 63: Single hit (cluster) occupancy distribution for the Mighty-SciFi for the Baseline scenario of the Mighty-Pixel, labelled as Med in figure, at peak luminosity 1.3 and 1.5×10^{34} cm⁻²s⁻¹, and for the Middle/Low scenarios, labelled as Low. The Upgrade I SciFi occupancy is also shown for comparison.

Don't forget to add spillover cluster/hits from late particles in the previous BX (detector also creates a hit in the next BX). The plot above underestimates the real occupancy.

S

Τ

LHC

õ

forschung von iversum und Materie

Relative Scoping Performances

Channel	Relative acceptance %		
	Middle	Low	
$B_s^0 \rightarrow \mu^+ \mu^-$	99.3 ± 0.1	95.3 ± 0.1	
$B^0_s \to \phi(\to K^+K^-)\phi(\to K^+K^-)$	99.4 ± 0.1	90.6 ± 0.2	
$D^0 \rightarrow K^0_{\rm S}(\rightarrow \pi^+\pi^-)\pi^+\pi^-$	99.7 ± 0.1	84.8 ± 0.8	

Largely an effect of removing the outer SciFi modules

HHC

NIVERSITÄT

More about the Mighty Tracker

What, when, and where.

14

U2 Installation in LS4

Shown in the LHCb Tuesday meeting

Sept 17, 2024 (not official)

Mighty-SciFi Production Plan

HO

We'll take an Everything-as-Early-as-Possible philosophy (EEP!).

The schedule can only get delayed. If enough components are available, start the next

step. Provide enough dummies or prototypes for testing and commissioning assemblies.

Production of the Mighty-SciFi

- Winding of ~1080 Fibre Mats +spares
- Baseline is Kuraray 78MJ like in U1
 - Fibre QA machine needs to be supported at CERN or moved
- Winding centres
 - Aachen
 - Dortmund
 - EPFL
 - ? (needs a new winding machine)
- Serial Production:
 - Order fibre Q1 2027 (directly after the TDR is accepted)
 - Mats in Q3 2027
 - Q1 2030

Production of the Mighty-SciFi

- Production of 256 modules +spares
 - 4 different lengths (~2.4m long)
 - "Cut-out" removes the extra material in the pixel region
 - Shorter modules should be easier to handle and produce.
 - Vacuum-tight interface at one end for the cold box
- Similar production schedule as the mats
 - At least 2 assembly sites with 1 or more in Germany

476

Honeycombcarbon fibre composite panels with fibres in the middle

S

Τ

LHCb

orschung von iversum und Materie

HCD

Production of the Mighty-SciFi

Cryo Cold-boxes

- Prototypes in development by Aachen and EPFL
- Slight bend out of plane in Z to accommodate the cryo cooling bar
- Introduces a module overlap to remove gaps between modules
- Introduces a vacuum tightness requirement on the module interface and box.
- Production Q3 2027 to Q1 2030

HICP

υ

Ξ

2

Materie

Production of the Mighty-SciFi

- SiPM developments at EPFL
 - Microlenses show gains in light yield of 10-30% depending on the overvoltage
 - Production needed in time to add to the cold-boxes and fix to the modules.
 - 2028-2029
- PACIFIC++ and the Front-end electronics (Poland, Brazil, Spain, Costa Rica,++)
 - Digital parts can be tested in an FPGA, but need to be baked into the (an) ASIC because of the higher radiation levels
 - Likely to have additions of a TDC and ADC .
 - Analog parts will need to be tuned to a cryo-sipm
 - Q4 2029 Q4 2030
- Light-injection System for SiPM Calibration
 - Optical parts need to be included in the module+cold-box (2028-2029)

- It's a fresh technology for LHCb with all the teething problems and learning curve to go with it.
 - And we want to build 12.6m² of it.
- MightyPix1 and TelePix show the technology seems viable for MT.
- Take the experience from ALICE and some Atlas/Mu3e developments as input for production estimates of DMAPS detectors.

- MightyPix2 to be submitted in Q1-Q2 2025 to AMS Foundry
 - will qualify LFoundry-150nm as an alternative foundry
- MightyPix3 in hand for an EDR in 2027
- MightyPix4 for Production in Q2 2028

Talks on Tuesday from Hannah Schmitz and Lucas Dittmann on MightyPix status

 Maintain Left-Right symmetry for LHCb

Move material away from the beamline (Y=0cm)

- Some more secondaries in SciFi...
- Modular structure to accommodate chip size, assembly, and maintenance.

Production Chain

We need 34k Sensors for the baseline option \rightarrow 100k sensors to be ordered (assume 40% pass)

This means 2.5k wafers.

We estimated (so far) that we would have 2 sites doing the wafer probing in 1.5 years with 200 workdays per year \rightarrow 4.2 wafers per day

UNIVERSITÄT HEIDELBERG ZUKUNFT SEIT 1386

Material borrowed from Klaas Padeken 23

Pixel Modules 3D CAD Design - Exploded View

Still in conceptual design:

Longer "stave" like design than previous design iterations

Alex Bitadze On behalf of the MT Mechanics & Modules team.

IDELBERG

Material Budget

Figure 3: Cross-section of the module design, highlighting its different components.

1.75% XO average per module; Includes insulated box and electronics (internal note in progress)

UNIVERSITÄT HEIDELBERG ZUKUNFT SEIT 1386

FSP

LHCb

Ertorschung von Universum und Materie

Radiation Damage and Maintenance

- Remember that Recorded Luminosity is lower than Delivered Luminosity (~85-90%)
 - End-of-life means +10-15% more than that
- ~2/3rds of the particle hits in the MT will come from secondaries from material interactions upstream [LHCb-PUB-2022-003]
 - Upstream material budgets will have an effect here , but also the beampipe flange.

- Like the SciFi in U1, little redundancy means high requirements on detector performance: in hit efficiency and operational efficiency.
 - Difficult to replace components during operation (once per year for major operations)
 - The pixel tracker will be next to a beryllium beam pipe under vacuum.
 - Understand how the detector ages, and how components and systems behave in edge cases, what happens when they fail.
 - Test early and at scale with installation-like prototypes or production

Ionising Radiation Dose (J/kg = Gy)

FSP

LHCb

JNIVERSITÄT HEIDELBERG

ionising dose map 780-785cm / kGy

Find the boundary limits for hit <u>efficiency and</u> <u>occupancy</u> / cm

≻

Peak Dose is reduced for SciFi, but the average dose is higher outside in U2

Non-Ionising Energy Loss (NIEL) Fluence

Hich

Fluence cm-2 1 MeV equivalent for 300 fb-1

RP recommends to take x2 as safety factor.

FSP

LHCb

Ertorschung von Universum und Materie

Neutron Shielding

Required to have a SciFi in U2

Might also benefit the	(2016 FLUKA)		(2024 FLUKA*)		
RICH 2 if they use SiPMs.		No Shielding (1 MeV n.eq. 10 ¹²) T3	Shielding (1 MeV n.eq. 10 ¹²) T3	No Shielding (1 MeV n.eq. 10 ¹²) T3	Shielding (1 MeV n.eq. 10 ¹²) T3
	Upgrade 1 (50 fb-1)	1.4	0.4	2.1	0.6
Low-lumi	Upgrade 2 (284 fb-1)	8.0	2.4	12.0	3.6
Stated as high end	Upgrade 2 (350 fb-1)	9.8	2.9	14.7	4.4
	I've put 2024 FLUKA as 1.5x 2016 FLUKA Fluences.				

No Upgrade2 geometries like tungsten ECAL yet...

JNIVERSITÄT IEIDELBERG

FSP LHCb Erforschung von Universum und Materie

Conclusion

- The Mighty-SciFi and the Mighty-Pixel will perform as a tandem tracking system, sharing a common envelope
- The fibre part of SciFi is still waiting for the results from Run 3, but the production is understood. The system is running well in 2024.
 - The cryo-cooling will be critical for Run 5. See the talk from Thomas tomorrow.
- The pixel development is well underway to be one of the largest pixel trackers ever built.
 - For more details, stay tuned for talks on Tuesday from Hannah and Lucas

9/23/2024

