

and

Search for $\chi_{c1}(3872)$ in $B^+ \to p\overline{p}K^+$ Pentaquark Searches in $\Lambda_b \to \Lambda_c \overline{D}^0 K$

Kai Habermann¹, Sebastian Neubert¹, Jascha Grabowski¹ 23.09.2024

1. University of Bonn (Germany)

Search for $\chi_{c1}(3872) \rightarrow p\overline{p}$

- • $\chi_{c1}(3872)$ found by Belle in 2003 is the first confirmed non $q\overline{q}$ state
- The exact nature of $\chi_{c1}(3872)$ is yet unknown
- Molecular models appear favorable due to the proximity to the $D^0\overline{D}^{*0}$ threshold
- The Form of the lineshape gives insight into the nature of the state

Kai Habermann

A sideview of the PANDA detector https:// panda.gsi.de /article/ pandadetectoroverview

- • $\chi_{c1}(3872)$ decaying to $p\overline{p}$ shows the possibility of production in $p\overline{p}$ collisions
- With input from LHCb the possibility of a precise scan of the $\chi_{c1}(3872)$ line shape from $p\overline{p}$ experiments such as PANDA can be explored
- Search for $\chi_{c1}(3872) \rightarrow p\overline{p}$ at LHCb

Mass Fit

- Possible interference from low mass Λ^* / Σ^* states \rightarrow amplitude analysis might be necessary for higher statistics
- Otherwise rejection cut
- Low mass $p\overline{p}$ enhancements can be cut away

- Good description with only charmonia states included
- One dimensional Fit
- No PWA

Further Analysis Strategy

Lineshape Parameters

- Of interest: $\eta_c(1S)$ and $\eta_c(2S)$
- Parameters from lineshape fit
- Systematic and statistical uncertainties from Likelihood Scan

Likelihood Scan

- Relatively simple approach to estimate uncertainties/confidence intervals Idea: shape and value of Likelihood can be translated to confidence intervals Issue: Altering parameter of interest (POI) neglects correlations
- Solution:
 - Alter POI and re-optimize
 - Report likelihood value
 - Determine confidence intervals based on resulting Likelihood Parabola Handle systematic uncertainties via combination of parabolas for different Models like different descriptions of resolution

Branching fractions

- • $\chi_{c1}(3872) \rightarrow p\overline{p} \text{ and } \psi(3770) \rightarrow p\overline{p}$
- Limit setting or significance taken from Likelihood Scan

Measurement of η_c states

Uncertainty

- Use likelihood scan to compare the resolution models
- More sophisticated model is better
- \rightarrow No systematic uncertainty from resolution model
- \rightarrow Bootstrap errors are used

$$M_{\eta_c}$$
 Γ_{η_c}
 M

$$VI_{\eta_c}$$

 $_{lc(1S)} = 2984.6^{+0.3}_{-0.4}$ (stat) MeV $_{e(1S)} = 32.9^{+0.7}_{-0.7}$ (stat) MeV $n_{c(2S)} = 3635.7^{+2.0}_{-1.7}(\text{stat}) \text{ MeV}$ $\Gamma_{\eta_c(2S)} = 9.7^{+2.5}_{-2.6}$ (stat) MeV

Limit Setting on the $\chi_{c1}(3872)$

$$_{\rm Run1} = 0.25 \times 10^{-2}$$

Search for the $\psi(3770)$

Significant contribution from $\psi(3770)$ when interference with S-Wave is taken into account

Pentaquark Searches in $\Lambda_c D^0$

- First pentaguark observations from LHCb in 2015
- More precise Run2 study finds 3 states

• $P_c(4312), P_c(4440)$ and $P_c(4457)$

• All states appear close to meson-baryon thresholds

 \rightarrow Molecular states?

- Models predict coupling to other channels such as $P_c \to \Lambda_c \overline{D}^{0(*)}$
- Measurement of $\mathscr{B}\left(P_{c} \to \Lambda_{c}\overline{D}^{0(*)}\right)$ helpful

https://lhcb-outreach.web.cern.ch/2019/03/26/observation-of-new-pentaquarks/

Mass Fit and Dalitz Plot

Understanding the non-exotic spectra

- $\Lambda_c K$ spectrum not well understood
- Many Ξ_c states may couple

Kai Habermann

• Good description of $\overline{D}^0 K$ mass spectrum with K-Matrix of $D_{\rm s}^*(2700)$ and $D_{\rm s}^*(2860)$

Fit

Understanding the non-exotic Spectra

- $\Lambda_c K$ spectrum not well understood
- Many Ξ_c states may couple

- Ξ_c can contribute significantly to the Region of Interest
- **Good description is necessary!**

Overview

Analysis of $B^+ \to p \overline{p} K^+$

- 97000 events in Run 2 (27000 in Run 1)
- Fit model able to describe Charmonium Spectrum
- First results for Lineshape parameters of $\eta_c(1S)$ and $\eta_c(2S)$
- Measurement of the branching ration for $\psi(3770) \rightarrow p\overline{p}$
- Updated limit on the branching fraction $\chi_{c1}(3872) \rightarrow p\overline{p}$

Analysis of $\Lambda_b \to \Lambda_c \overline{D}{}^0 K$

- 5300 events in Run 2
- Full amplitude analysis necessary
- Good description of $\overline{D}{}^0K$ mass spectrum
- $\Lambda_c K$ still not fully understood • Run 3 data may help here
- Once $\Lambda_c K$ is well described limit setting on the branching fractions of $P_c \to \Lambda_c \overline{D}{}^0$ is possible

Backup

Resolution

Modelled as $\alpha \cdot G(\mu_1, \sigma_1) + (1 - \alpha) \cdot G(\mu_2, \sigma_2)$

With $G(\mu, \sigma)$ a Gaussian, $\sigma_{1/2} = a_{1/2} + b_{1/2} \cdot m_{p\overline{p}}^2$, $\mu_{1/2} = 0$ and α , $a_{1/2}$, $b_{1/2}$ floating

Construction of the Likelihood

 $-\mathscr{L}(\omega) = -\frac{\sum_{k} w_{k}^{s}}{\sum_{l} (w_{l}^{s})^{2}} \sum_{i} \log\left(\frac{|A|}{w_{l}^{s}}\right)^{2}$

Effective Sample Size based on the sWeights

Standard Log Likelihood

 $N_{\omega} = \sum_{i} |A_{i}|$ $\mathscr{L}(\omega) = \frac{\sum_{k} w_{k}^{s}}{\sum_{l} (w_{l}^{s})^{2}} \left(N_{\omega} - \sum_{i} (1 + \sum_{j} w_{k}^{s})^{2} \right)^{2} \left(N_{\omega} - \sum_{i} (1 + \sum_{j} w_{k}^{s})^{2} \right)^{2} \left(N_{\omega} - \sum_{i} (1 + \sum_{j} w_{k}^{s})^{2} \right)^{2} \left(N_{\omega} - \sum_{i} (1 + \sum_{j} w_{k}^{s})^{2} \right)^{2} \left(N_{\omega} - \sum_{i} (1 + \sum_{j} w_{k}^{s})^{2} \right)^{2} \left(N_{\omega} - \sum_{i} (1 + \sum_{j} w_{k}^{s})^{2} \right)^{2} \left(N_{\omega} - \sum_{i} (1 + \sum_{j} w_{k}^{s})^{2} \right)^{2} \left(N_{\omega} - \sum_{i} (1 + \sum_{j} w_{k}^{s})^{2} \right)^{2} \left(N_{\omega} - \sum_{i} (1 + \sum_{j} w_{k}^{s})^{2} \right)^{2} \left(N_{\omega} - \sum_{i} (1 + \sum_{i} w_{k}^{s})^{2} \right)^{2} \left(N_{\omega} - \sum_{i} (1 + \sum_{i} w_{k}^{s})^{2} \right)^{2} \left(N_{\omega} - \sum_{i} (1 + \sum_{i} w_{k}^{s})^{2} \right)^{2} \left(N_{\omega} - \sum_{i} (1 + \sum_{i} w_{k}^{s})^{2} \right)^{2} \left(N_{\omega} - \sum_{i} (1 + \sum_{i} w_{k}^{s})^{2} \right)^{2} \left(N_{\omega} - \sum_{i} (1 + \sum_{i} w_{k}^{s})^{2} \right)^{2} \left(N_{\omega} - \sum_{i} (1 + \sum_{i} w_{k}^{s})^{2} \right)^{2} \left(N_{\omega} - \sum_{i} (1 + \sum_{i} w_{k}^{s})^{2} \right)^{2} \left(N_{\omega} - \sum_{i} (1 + \sum_{i} w_{k}^{s})^{2} \right)^{2} \left(N_{\omega} - \sum_{i} (1 + \sum_{i} w_{k}^{s})^{2} \right)^{2} \left(N_{\omega} - \sum_{i} w_{k}^{s} \right)^{2} \right)^{2} \left(N_{\omega} - \sum_{i} (1 + \sum_{i} w_{k}^{s})^{2} \right)^{2} \left(N_{\omega} - \sum_{i} w_{k}^{s} \right)^{2}$

Kai Habermann

$$\frac{A|^2(x_i,\omega)}{N_{\omega}}\right) \cdot w_i^s \times \log(P_{\text{Poisson}}(N,N_{\omega}))$$

Extension with Poisson distribution

$$A|^2(\xi_i,\omega)\cdot w_j^{\mathrm{MC}}$$

Monte Carlo integral using phase space simulation

$$-w_i^s) \cdot \log(N_\omega) - \sum_j w_j^s |A|^2(x_j, \omega) \right)$$

Limit Setting on $\chi_{c1}(3872)$

Kai Habermann

Likelihood Profile

- Fix parameter of interest $\mathscr{F}(\chi_{c1}(3872))$ to multiple values and re-optimize
- Interpolate between points of

$(\mathcal{F}(\chi_{c1}(3872)), \Delta \log(\mathcal{L}))$

- Assumption: Posterior is gaussian distribution
- Get 95% Confidence from gaussian intervals (1.65σ)

Limit Setting → Profile Likelihood (Run2) UNIVERSITÄT BONN Events per 6 MeV 30 -24609.36 -24605.39 50 -24613.39 -24607.47 30 -24617.42 -24609.55 20 20 -24621.44 -24611.63 10 10 0 0 -24625.47 -24613.71 3800 3900 3800 3900 3700 3700 $M_{p\overline{p}}$ [MeV]

 $\mathscr{R}_{\text{Run2}} < 1.16 \cdot 10^{-2}$

Kai Habermann

 $\mathcal{R}_{\rm Run2} < 0.93 \cdot 10^{-2}$

Mass Fit (Run2)

- Partially reconstructed background Signal - Misidentified background Combinatorial
 - background

