Joint LHCb-Belle II global Wilson Coefficient fit to $b \rightarrow c \tau^- \overline{\nu}_{\tau}$ decays.

LHCb: Biljana Mitreska, Johannes Albrecht, Marco Colonna Belle II: Florian Bernlochner, Ilias Tsaklidis, Markus Prim

> FSP Meeting, Bochum September 23, 2024

M.Colonna Joint LHCb-Belle II global Wilson Coefficient fit to $b \rightarrow c \tau^- \overline{\nu}_{\tau}$ decays.

Semileptonic decays can be used to study the Lepton Flavor Universality (LFU).

Motivation

► 3.31σ tension in R(D) and R(D*) measurement with Standard Model (SM) predictions:

$$R(D^*) = \frac{BR(B^0 \to D^* \tau \nu)}{BR(B^0 \to D^* \mu \nu)}$$

- New Physics (NP) could effect these ratios:
 - it is possible to measure dircetly the NP effects using Effective Field Theory (EFT).

3

Introduction to the EFTs

Effective field theory (EFT)

- evaluate model independent NP effects;
- embed NP and SM contributions in the effective operators O_i

$$H_{eff} = rac{G_F}{\sqrt{2}} V_{cb} \sum_i C_i O_i$$

• Wilson coefficients describes the magintude of the vertex $C_i = C_i^{SM} + C_i^{NP}$

The Hammer interface [2002.00020] is used to weight template histograms.

Current	Label	Wilson Coefficient, \boldsymbol{c}_{XY}	Operator
$_{\rm SM}$	SM	1	$\left[\bar{c}\gamma^{\mu}P_{L}b\right]\left[\bar{\ell}\gamma_{\mu}P_{L}\nu\right]$
Vector	V_qL1L	V_{qLlL}	$\left[\bar{c}\gamma^{\mu}P_{L}b\right]\left[\bar{\ell}\gamma_{\mu}P_{L}\nu\right]$
	V_qR1L	V_{qRlL}	$\left[\bar{c}\gamma^{\mu}P_{R}b\right]\left[\bar{\ell}\gamma_{\mu}P_{L}\nu\right]$
	V_qL1R	V_{qLlR}	$\left[\bar{c}\gamma^{\mu}P_{L}b\right]\left[\bar{\ell}\gamma_{\mu}P_{R}\nu\right]$
	V_qR1R	V_{qRlR}	$\left[\bar{c}\gamma^{\mu}P_{R}b\right]\left[\bar{\ell}\gamma_{\mu}P_{R}\nu\right]$
Scalar	S_qL1L	S_{qLlL}	$\left[\bar{c}P_Lb\right]\left[\bar{\ell}P_L\nu\right]$
	S_qR1L	S_{qRlL}	$\left[\bar{c}P_Rb\right]\left[\bar{\ell}P_L\nu\right]$
	S_qL1R	S_{qLlR}	$\left[\bar{c}P_L b\right]\left[\bar{\ell}P_R \nu\right]$
	S_qR1R	S_{qRlR}	$\left[\bar{c}P_Rb\right]\left[\bar{\ell}P_R\nu\right]$
Tensor	T_qL1L	T_{qLlL}	$\left[\bar{c}\sigma^{\mu\nu}P_{L}b\right]\left[\bar{\ell}\sigma_{\mu\nu}P_{L}\nu\right]$
	T_qR1R	T_{qRlR}	$\left[\bar{c}\sigma^{\mu\nu}P_Rb\right]\left[\bar{\ell}\sigma_{\mu\nu}P_R\nu\right]$

It is possible to:

- change Form Factor parametrization;
- fit the Form Factor parameters for a given parametrization;
- include NP models in the templates;
- use it as an interface in the fit to measure directly the WCs.

In the following we will closer look to the **NP WCs excluding right-handed neutrinos** $(S_qL/L, V_qR/L, T_qL/L)$.

(ロ) (周) (ヨ) (ヨ) (ヨ) ヨ の(で 4/13)

Different channels have different sensitivity to NP operators:

- ▶ $B \rightarrow D\tau\nu$ are more sensitive to scalar operators;
- ► $B \to D^* \tau \nu$, $B_c \to J/\psi \tau \nu$ and $\Lambda_b \to \Lambda_c \tau \nu$ are sensitive to vector and tensor operators.

We include different analyses looking at different decay modes:

- Preliminary sensitivity studies:
 - R(D*) tau-muonic decay: LHCb-PAPER-2015-025;
 - R(D*) tau-hadronic decay: LHCb-PAPER-2022-052;
- > We build a set of templates from the simulations used in the analyses:
 - Hammer reweighting we can vary the WCs and the FFs parameters;
 - we can use them as free parameters in the fit.

イロト (周) (ヨ) (ヨ) (ヨ) ヨー のへで 5/13

Analysis strategy (2): WC template shapes

Example of different values of $T_{-}qLlL$ injected in a $B^0 \rightarrow D^*\tau (\rightarrow \mu\nu_{\mu}\nu_{\tau})\nu_{\tau}$ template:

かへで 6/13

Analysis strategy (3): Gammacombo phase-space scans

We use Gammacombo to apply a phase-space scans:

multiple template fits in different phase-space regions.

Profile likelihood method:

We define:

$$\chi^2\left(\vec{\alpha}\right) = -2\ln L(\vec{\alpha})$$

over the $\vec{\alpha}$ phase space.

The confidence interval (Gaussian assumption):

$$1 - \mathsf{CL} = rac{1}{\sqrt{2} \Gamma(1/2)} \int_{\Delta \chi 2}^{\infty} e^{-1/2} t^{-1/2} \mathrm{d} t$$

Gammacombo combines all the included analysis sharing parameters among each other. Very time consuming: runtime scales with the granularity and N_{dof} .

Parallelize the different regions of the phase-space.

Model from $R(D^*)$ tau-muonic analysis

The template is composed by the weighted simulations used in the previous analysis. The signal mode $(B^0 \rightarrow D^{+*} \tau^- \overline{\nu}_{\tau})$:

▶ Form Factor weighting: $(BD^*, ISGW2) \rightarrow (BD^*, BLPRXP)$.

The control mode $(B^0 \rightarrow D^{+*} \mu^- \overline{\nu}_{\mu})$

Form Factor weighting: $(BD^*, BLPR) \rightarrow (BD^*, BLPRXP)$.

Other background contributions have been excluded in these preliminary studies.

(日本)(日本)(日本)(日本)

のへで 8/13

WCs sensitivity of $R(D^*)$ tau-muonic analysis

We apply a Asimov scan in the signal+control configuration to study the sensitivity.

- Each scan considers 1 of the WCs;
- the control mode is always considered to be purely SM;
- ▶ the SM contribution is shared among the signal-control to parametrize the yields.

	Scalar (qLlL)	Vector (qRIL)	Tensor (qLIL)
Uncertainty on the Real part (1-D)	0.180	0.041	0.008
Uncertainty on the Imaginary part (1-D)	1.104	0.203	0.052

Model from $R(D^*)$ tau-hadronic analysis

The signal mode $(B^0 \rightarrow D^{+*} \tau^- \overline{\nu}_{\tau})$:

► Form Factor weighting: (*BD*^{*}, ISGW2; $\tau\pi\pi\pi$, RCT) \rightarrow (*BD*^{*}, BLPRXP; $\tau\pi\pi\pi$, RCT). A proxy background component ($B \rightarrow D^*D_sX$):

is not Hammer weighted (yield is a free parameter).

The signal simulation is produced **using TAUOLA** for the τ^- -decay.

- TAUOLA is not the model used in the Hammer calibration of RCT;
- **TAUOLA** has been validated by compating the kinematic with RCT-nominal model.

10/13

WCs sensitivity of $R(D^*)$ tau-hadronic analysis

We apply a Asimov scan in the signal+background configuration to study the sensitivity.

- Each scan considers 1 of the WCs;
- ▶ We have a good constraint of the WCs' imaginary part.

	Scalar (qLIL)	Vector (qRIL)	Tensor (qLIL)
Uncertainty on the Real part (1-D)	0.250	0.154	0.014
Uncertainty on the Imaginary part (1-D)	0.334	0.162	0.018

WCs sensitivity of the combination

The two modes give complementary results:

- the NP and SM Wilson Coefficients are shared among the tow modes;
- the Muonic mode constraints the Real part of the WCs (higher statistic, ...);
- ▶ the Hadronic mode constraints the Imaginary part of the WCs (τ -vertex weight, ...)

	Scalar (qLIL)	Vector (qRIL)	Tensor (qLIL)
Uncertainty on the Real part (1-D)	0.173	0.039	0.007
Uncertainty on the Imaginary part (1-D)	0.289	0.142	0.016

Conclusions

- We are working on a combined WCs fit in $b \rightarrow c \tau \nu_{\tau}$ decays using several LHCb + Belle II analyses.
- Currently setting up the framework and studying sensitivity of the WCs.
- ▶ The framework (GammaCombo + Hammer) allows to combine multiple analysis.
- Sensitivity studies have been done using **2 LHCb** analysis:
 - R(D*) measurement with τ -hadronic decay.
 - R(D*) measurement with τ-muonic decay.

Outlook

- Full description of the background for the analyses.
- Include other LHCb analysis:
 - we will study the LHCb combination first.
- Setup a combined measurement with Belle once all the inputs are confirmed.

<ロ> <同> <同> < 注> < 注> < 注 > うへで 13/13