Status of data taking

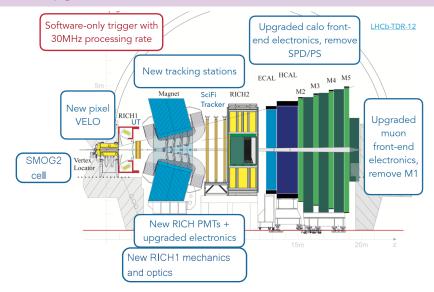
a personal perspective LHCb Germany 2024

Florian Reiß

24.09.2024

MANCHESTER 1824

The University of Manchester


Brief personal introduction

- currently still PostDoc at Manchester
 - ► Freiburg in seven days
- since January coordinator of RTA-WP4 "Alignment & Calibration"

Had the pleasure to spend a large part of the past three years in that chair

LHCb Upgrade detector

Brand new detector requiring intensive commissioning

How we started this year

Throwback Tuesday

Run 3 commissioning

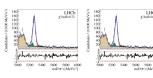
with a focus on alignment, calibration and performance LHCb UK 2024

Florian Reiss

10.01.2024

Successfully transitioned from commissioning to data taking?

Throwback Tuesday


Summary 2023

Last year wasn't exactly easy

- · degraded acceptance and resolution from VELO opening
- · reduced time with pp collisions due to LHC incident
- · running at lower instantaneous luminosity

Still many achievements

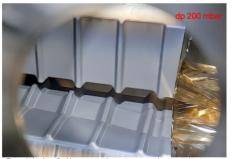
. e.g. "pp collision to nice mass plot" pipeline

This year we need to get to design performance under nominal conditions

Summary

2023 was a challenging year for commissioning

- still many achievements
- many key performance numbers have been evaluated
 - ▶ iterative improvements over time


To achieve this year

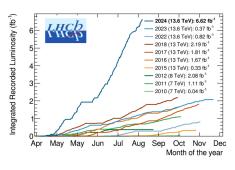
- · stable data-taking at nominal instantaneous luminosity
- fully include UT in data-taking
- reach design performance
- take physics data

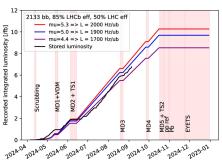
Did we achieve our goals for this year?

A reminder of 2023

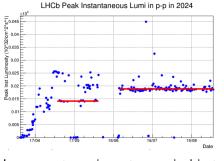
Last year didn't exactly treat us well Deformed RF foil

Couldn't fully reach nominal conditions


- VELO not fully closed
 - ▶ degraded acceptance
- lower instantaneous luminosity
- less time with proton-proton collisions
 - ▶ UT not fully commissioned


LHC incident

2024 from afar


Now all is well?

Smooth data taking exceeding expectations?

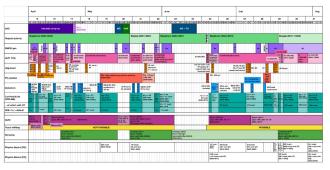
Year roughly divided in two phases

Before June Technical Stop

- UT not included
- roughly half of beam time dedicated to commissioning
- other part data taking at reduced instantaneous luminosity

After June TS

- start including UT
- increase instantaneous luminosity


$$ightharpoonup$$
 currently $\mu = 4.4$

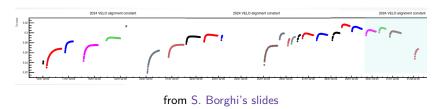
However not running yet a nominal instantaneous luminosity of $\mu=5.3$

2024 up close

2024 up close

On a closer look, the year is much more granular with changing conditions and some surprises

from RC report at LHCb week

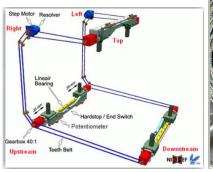

- VELO drift
- alignment improvements
- inclusion of UT in HLT2 and HLT1
- VELO belt replacement
- tuning detector thresholds (see talk by Dhruvanshu later today)

24.09.2024 LHCb Germany 2024 Status Of Data Taking Florian Reiß

VELO drift

Suffered this year (again) from VELO drift

- one half of VELO is moving over time after closing
- degraded performance if not addressed

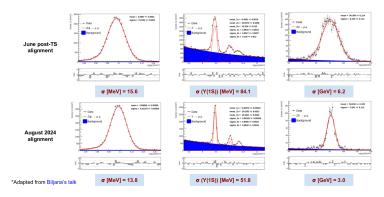

Mitigation

- hardware side: "overclosing" to reduce effect
- software: frequent alignment of VELO halves

Residual impact expected to be small for (most) analyses

VELO belt incident

Belt in VELO motion system lost a tooth

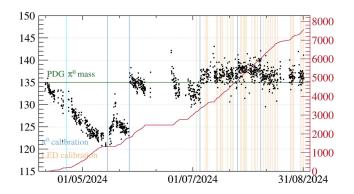


- VELO couldn't close properly any more
- belt replaced when LHC had some downtime
- some knock-on effect on VELO position and alignment

Unexpected issues can be appear and need some additional effort to address

Tracker alignment

Tremendous amount of work to improve tracker alignment


• see also Miguel's talk later today

Huge improvement in mass resolution

ECAL calibration

Calibrate ECAL using LED system and reconstructed $\pi^0\!\to\gamma\gamma$ decays

counteracts ECAL ageing

More stable π^0 mass thanks to regular calibrations

A more powerful trigger

HLT1 Compute Power Upgrade

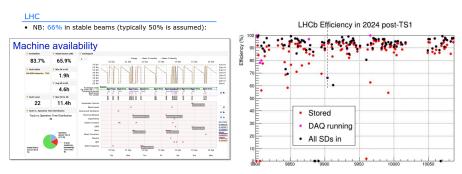
Success!

- 163 GPUs installed in two days
- Zero DAQ issues after intervention
- New GPUs currently being tested and prepared for production use

HLT2 Compute Power Upgrade

Success!

- Upgrading older CPUs (8 cores) to more powerful ones (14 cores)
- 4400 CPUs replaced in two weeks in 2200 servers
- Increased total cores by >50%
- Installation faster than supply


taken from Online report

See Alessandro's talk to learn what we can do with it

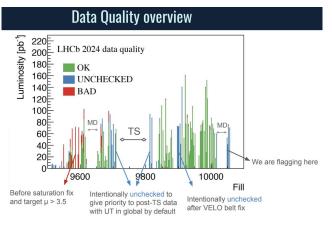
Status data taking

Data taking efficiency

Recently achieved stable conditions running with $\mu=$ 4.4

- LHC very efficient recently
- LHCb running stably and efficiently as well

Data taking efficiency



- Reminder: target from early 2024:
 - 7 fb⁻¹ (assuming 50% LHC and 85% LHCb efficiency)
 - 7/0.85 ~ 8.5 fb⁻¹ delivered
 - Extra 4 weeks in 2024 were not taken into account

from RC report at last TM

Data quality

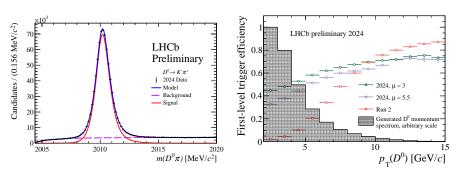
Is the data we are taking actually good?

from OC report at last LHCb week

Yes!

P.S. Offline data quality shifters are in high demand

24.09.2024 LHCb Germany 2024 Status Of Data Taking Florian Reiß

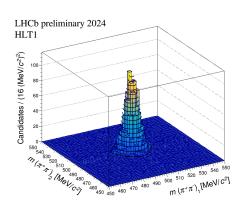

Signal yields

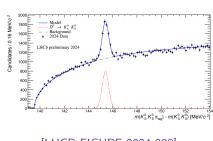
Hardware-level trigger limiting factor for hadronic decay modes in Run 1+2

removed in Upgrade I

Fully software-based trigger processing events at 30 MHz

• first stage on GPUs


[LHCB-FIGURE-2024-006]

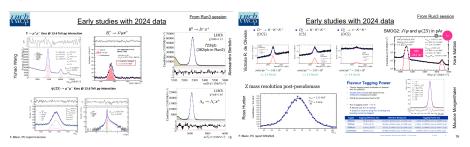

Improvements in trigger efficiency evident

Signal yields

Software trigger allows flexible selections

- single and pair-wise K_S^0 reconstructed and selected in first trigger stage
- already about $\times 3.7$ more $D^0 \to K_S^0 K_S^0$ per pb⁻¹ w.r.t Run 2

[LHCB-FIGURE-2024-008]

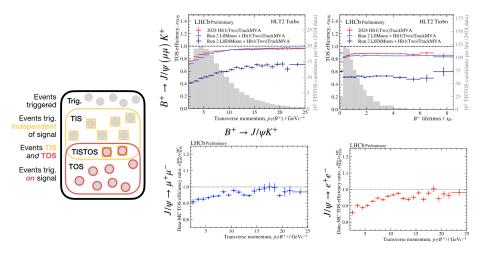

[LHCB-FIGURE-2024-013]

Run 2: $\mathcal{A}^{CP}(D^0 \to K_S^0 K_S^0) = (-3.1 \pm 1.2 \pm 0.4 \pm 0.2)\%$ [PRD 104, 031102 (2021)]

24.09.2024 LHCb Germany 2024 Status Of Data Taking

Early studies

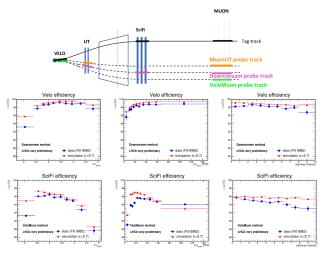
A plethora of studies of 2024 data


from PC report at last LHCb week

So we're taking a lot of good quality data to perform analysis with. But how well do we actually understand the detector?

Performances

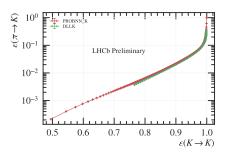
Performance - trigger efficiencies

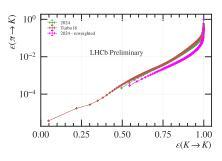

Determining HLT1 efficiencies with TISTOS method

from Jamie's talk at last LHCb week

Performance - tracking efficiencies

Determining track reconstruction efficiencies with tag-and-probe method

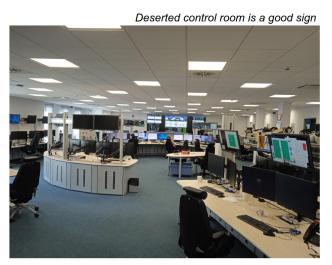



from Rowina's talk at last LHCb week

• still some features and data-MC agreement to be understood

24.09.2024 LHCb Germany 2024 Status Of Data Taking Florian Reiß

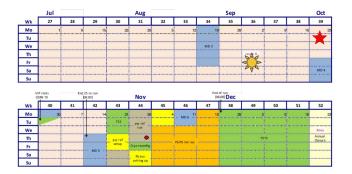
Determining PID (mis-)identification efficiencies

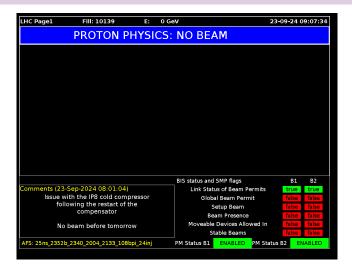

 better performance w.r.t Run 2 when kinematic distributions weighted to match

Outlook & Summary

24.09.2024 LHCb Germany 2024 Status Of Data Taking Florian Reiß

Outlook


It has become noticeable quieter in the control room


which is a good indication of stability

Another 4 weeks of proton-proton collisions

- plan to go to nominal instantaneous luminosity in October ($\mu = 5.3$)
 - optimisation of UT stability and efficiency ongoing
 - optimisation of HLT bandwidth ongoing

Then pp reference runs and heavy ion

"You have power over your mind - not outside events. Realize this, and you will find strength." - Marcus Aurelius, Meditations

Summary

Successfully transitioned from commissioning to data taking?

Yes!

Did we achieve our goals for this year?

• Nearly there

We bounced back from a challenging year 2023 reaching stable conditions and approaching nominal luminosity

Summary

We achieved stable data taking of good quality data thanks to the tireless commitment of many people

Thank you!

Backup