Status of tracker alignment

Miguel Ruiz Díaz

Jahrestreffen der deutschen LHCb-Gruppen in Bochum

September 24th, 2024

UNIVERSITÄT HEIDELBERG ZUKUNFT SEIT 1386

IMPRS for Precision Tests of Fundamental Symmetries INTERNATIONAL MAX PLANCK RESEARCH SCHOOL

Why do we need alignment?

Even small O(10-100 μ m) misalignments can have an impact for physics precision measurements

Track-based alignment in short

Employ reconstructed tracks to extract information about the detector geometry and determine the position and orientation of the detector elements

The basic transformations on the detector components are called **alignment constants**. We find their optimal values by minimizing the **global track** χ^2 :

$$\chi^{2}(\mathbf{x}_{1},...,\mathbf{x}_{n_{tracks}},\alpha) = \sum_{i}^{n_{tracks}} \chi^{2}_{i}(\mathbf{x}_{i},\alpha)$$
$$\chi^{2}_{i}(\mathbf{x}_{i},\alpha) = \mathbf{r}(\mathbf{x}_{i},\alpha)^{T} V^{-1} \mathbf{r}(\mathbf{x}_{i},\alpha)$$

x_i: vector of track parameters for track i

 α : set of alignment constants

V: covariance matrix of the track residuals

- Tracks need to cover the full detector acceptance and have good quality
 - VELO: VELO tracks covering the full VELO acceptance
 - UT and SciFi: long tracks
- We use mass and vertex constraints to improve the alignment quality and remove weak modes
 - Weak modes are misaligned configurations with no impact on the track residuals
 - The new update combines D⁰ and J/ ψ mass constraints
- **Survey constraints and lagrange constraints** guide the algorithm to find the right minimum (survey) and avoid unphysical configurations (lagrange)

Tracker alignment at the start of 2024

- Followed strategy from 2022 -> Sub-detectors aligned independently and on top of each other
- Mat-end contraction calibration successfully applied to improve SciFi residuals
- Automatic alignment of the VELO right-half almost completely mitigated the impact of the drift
- Observed a global translation of the SciFi in x and a "zig-zag" pattern between stereo-layers

June post-TS alignment

Realistic-2024 simulation

- Mass resolution steadily improving with alignment updates but still worse than in simulation
- New magnetic field map deployed to reduce mass shifts wrt their PDG values → Slides from A. Venkateswaran
- Residual mass asymmetry between positively and negatively charged particles

Heidelberg University

Key finding: mass splitting between quadrants

The position of the Y(1S) mass peak varied by 70-120 MeV between detector quadrants!

Heidelberg University

11

11

New global alignment in August 2024

New major alignment update deployed on 06.08.2024 and picked up online from fill 9982

More details and dof in Biljana's presentation

Improvement on mass resolutions

Heidelberg University

Comparison with simulation and Run 1/2

Realistic-2024 simulation

- mean = 3.09651 +/- 0.00009 2200 E sigma = 0.01107 +/- 0.00008 2000 1800 - MC 1600 $J/\psi \rightarrow \mu\mu$ 1400 1200 800 F 600 400 200 F 3.04 3.06 3.1 3.12 3.14 3.16 m(μμ) [GeV/c²] 3.08
- Different **simulation conditions** depending on availability:
 - **Realistic 2024:** D^0 , J/ψ , and Z^0
 - Expected 2024: Y(1S)

•

•

٠

- **Compatible with simulation for D**⁰ candidates but some discrepancy is still observed for high masses
- Simulation might be too optimistic → Study of the hit resolution and DetDesc vs DD4Hep on-going
- Already close to Run 2 performance → Expected improvements from momentum scale calibration

	σ(D⁰) [MeV]	σ(<i>J</i> /ψ) [MeV]	σ(<i>J/ψ</i>) [MeV] 2015	σ(Y(1S)) [MeV]	σ(Y(1S)) [MeV] 2018	σ(Z⁰) [GeV]	σ(Ζ ⁰) [GeV] 2010
Data	7.23	13.8	14.4	51.8	44.6	3.0	3.0
Simulation	7.37	11.1	13.3	33.9	39.1	1.6	-

*Run 1 and run 2 selections and fit models are different

Mass profiles

40

0 20

60 80 100 p_-p_[GeV/c]

Decay plane ${oldsymbol {arPhi}}$

Decay plane angle wrt magnetic field

phiMatt [rad]

Trends in mass profiles reduced after the alignment update

More **symmetric performance** across the phase space reduces the mass splitting and improves the resolution

Data with new alignment

• Data with old alignment

Heidelberg University

-100

-80

-60 -40 -20

phi [rad]

Summary and outlook

- After a summer of intensive work we managed to identify and fix the main issues with the alignment of the LHCb tracker
- We performed for the first time in Run 3 an alignment job combining dof from all the trackers
- We are getting close to expectations from simulation in terms of mass resolution
 - Already compatible for D⁰ candidates and much closer for higher mass particles
 - A perfect agreement will require work from both sides
- Mass profiles as a function of kinematic variables are much flatter and phase space dependencies on the mass distributions have been reduced
- Next steps:
 - Perform a detailed study to understand what caused the mass splitting and asymmetries in previous alignment versions
 - Understand the correlation between the new alignment and the magnetic field description
 - This is still an effective alignment → Imperfections on the magnetic field description are absorbed in the alignment constants
 - Establish a strategy to automatize the alignment of UT and SciFi in 2025 to run them online together with the VELO alignment
 - We need to compute the thresholds to trigger alignment updates → Study in MC on-going

Thank you!

Backup

Alignment in Run 3

- Alignment algorithm heavily relies on the software developed and applied during Run 2 (gitlab)
 - Some work needed to make the code compatible with the new DD4Hep geometry
- First alignment results on 2022 demonstrated the impact on data quality
- Alignment in 2023 was challenging → limited geometrical acceptance of long tracks due to open VELO
 - Time to polish the strategy and learn about the new detector
 - Found that SciFi alignment was sensitive to temperature changes → Mat-end contraction calibration tested and deployed
- Alignment scenario at the start of 2024:
 - VELO module + sensor alignment and RICH mirror alignment from 2022
 - SciFi alignment starting from design geometry and running cold
 - CFrames had been opened and closed and there were known biases in 2022 alignment
 - **UT** started to run in global during some fills
 - Needed to develop a procedure to align it
 - **VELO reinstalled** → Possible change in global position and orientation
 - Drift of the VELO right half during fills → Noticed a the start of data taking (slides from S.Borghi and F.Reiss)

- The starting point were the alignment conditions employed online before this update:
 - SciFi v20 computed following the same strategy as in the post-TS alignment but employing the new magnetic field map
 - UT Layers v4, Staves v4, and Modules v5 computed on top of SciFi v20
- During the magnet-off alignment the last SciFi layer was fixed in z with a lagrange constraint
 - If tracks are straight and no momentum information is available a global Tz of the whole tracker becomes a weak mode
- The main purpose of the Tz alignment of UT and SciFi layers employing magnet-on data is to improve the track residuals and matching distributions
 - The weak mode affecting Tz is removed with the help of the mass constraints
- The scale factor in the magnetic field map was computed by requiring the reconstructed J/ψ mass to agree with the PDG value
 - Residual shifts for higher mass particles are small and can be fixed after a momentum scale calibration (see later)
- The RICH alignment and calibration has been computed on top of the new constants and the performance is compatible with the previous one
- See logbook entry for more details

Mass splitting between quadrants with new alignment: Y

Heidelberg University

Mass splitting between quadrants before August: J/ψ

Heidelberg University

Mass splitting between quadrants with new alignment: J/ψ

Mass splitting between quadrants before August: Z⁰

Heidelberg University

Mass splitting between quadrants with new alignment: Z⁰

Heidelberg University

Comparison with Run 2

Heidelberg University

Mass distributions in MC: Run 2

Plot by Zhihong Shen

Selection from ANA-2023-056

D⁰ and Y vs simulation

Heidelberg University

Z⁰ vs simulation

Tracking performance and detector geometry

SciFi half-layers

Large improvement in track quality at high momenta but it worsens at low momenta

- Overall tracking performance better with the new alignment
- Worsening at low momenta could stem from issues in scattering corrections or imperfections in the magnetic field description → Under investigation
- The whole detector is stretched by 4-5 mm wrt its design geometry
 - Both UT and SciFi are displaced in z by 4-5 mm away from the VELO
 - Shift in z is incompatible with survey measurements for the SciFi
 - Large correlation between the z scale and the magnetic field map
- Still an effective alignment → Imperfections in the magnetic field description absorbed on the alignment constants

Heidelberg University

Effect of the VELO drift on PV reconstruction

Results from a study of the impact of the VELO drift on the PV reconstruction efficiency and resolution

- Performed on MC simulated data with three different tags: no drift, unmitigated drift, mitigated drift
- **Efficiency** is almost unaffected by the drift
- Unmitigated sample has up to 7% worse PV resolution → Recovered by the mitigation procedure
- Results shown for Allen → Same conclusions for Moore TBLV and PatPV3DFuture
- VELO drift impact on physics analyses also found to be negligible after mitigation

Category	Efficiency [%]	Fake rate [%]
Ideal	94.09	1.38
Unmitigated	93.93	1.46
Mitigated	94.09	1.38

Heidelberg University