SciFi Threshold Calibration

Dhruvanshu Parmar Ruhr University Bochum (RUB)

On behalf of the SciFi calibration team Xiaoxue Han, Mikhail Mikhasenko

Jahrestreffen der deutschen LHCb-Gruppen 24 September 2024

Overview of the talk

- □ Threshold calibration procedure
- Current status of LIS calibration
- Alternative calibration method

The SciFi tracker

- The SciFi tracker consists of three stations (T) each with four detection layers (L).
- Each detection layer has parallel rectangular modules (M) housing scintillating fiber mats.
- At the edges of each modules, readout boxes are instrumented to read signals from SiPMs.
- Each is mounted with light injection systems (LIS) for calibration.

Need for calibration

- □ Clustering of channel data from sipms is done using a set of three "comparator" thresholds → Appropriate thresholds required for optimum efficiency
- ❑ Thresholds obtained from fitting Scurves → Determining location of corresponding p.e. peaks in terms of DAC steps.

LIS coarse time alignment

Each LIS needs to be triggered at the correct bunch crossing with respect to expected LHC BX. This is confirmed by checking latencies (BX_{signal} BX_{I HC}). If its off, its corrected using average of SiPMs for halfrob.

LIS fine time alignment

- Fine time alignment is done to ensure within the same BX, maximum signal is integrated.
- A delay threshold scan is taken to find the optimum delay (LIS start phase) based on optimum gain.

Everything seems ok and straightforward ... isn't it?

Classification of sipms from illumination

June 24

- Average illumination calculated using channel fits for sipms.
 This is used to classify sipms using number of channel fits.
- Roughly half of the channels cannot be fitted with current LIS configuration.
- Two reasons for white regions
 - Fits failing to converge
 - □ Fits failing to pass validation cuts

*We partly are responsible for some of them when we tried configuring the LIS settings manually. It improved the illumination ... albeit bit more than the limit (details)

Flag1 (blue) : Illum. > 0.2 p.e , >80% channels (best)

Flag2 (green) : Illum. < 0.2 p.e, >80% channels (surprisingly good)

Flag 3 (yellow) : 50%-80% channels (intermediate)

Flag 4 (red) : Illum < 0.2 p.e., <50% channels (bad)

Flag 5 (dark red) : Illum > 0.2 p.e., <50% channels (surprisingly bad)*

(blank): there is no channel that fit (no idea)

Calibration stability over time

- Significant drop in calibration fits observed over a period of around a year
- □ We suspect that the stability "switch" happened around March 2024.
- □ The exact cause of this drop is under investigation (Alignment? LIS itself?).
 - □ Current hypothesis is messed up fine time alignment ...

Calibration stability over time

- Significant drop in calibration fits observed over a period of around a year
- ❑ We suspect that the stability "switch" happened around March 2024.
- □ The exact cause of this drop is under investigation (Alignment? LIS itself?).
 - Current hypothesis is messed up fine time alignment ... stay tuned until the end of this year for an answer (hopefully);)

Ok, so if LIS is not effective for now, what can be done to get thresholds for all the channels?

Ok, so if LIS is not effective for now, what can be done to get thresholds for all the channels?

There is a way, lets understand it through an example.

Impact of high thresholds

- Around 11% of the sipms (dark blue) observing a drop in the number of hit clusters.
- These sipms can affect the hit efficiencies, hence we considered to update the thresholds for these regions.

Threshold settings

- Threshold settings are generally calculated using pedestals and gain measured from threshold scans
 - \Box PE_{0.5} = Pedestal + 0.5 x Gain₀
 - \square PE_{1.0} = Pedestal + Gain₀
 - \square PE_{1.5} = Pedestal + Gain₀ + 0.5 x Gain₁
- Given thresholds can be calculated by interpolating the known thresholds. For

eg,

- $\Box PE_{1.6} = PE_{1.0} + 0.6 \text{ x } (PE_{2.0} PE_{1.0})$
- Overall, you need only pedestals and suitable gains to calculate respective thresholds.
 - Pedestals can be effectively measured from pedestal scans (Do a scan without triggering the LIS, only fit for the pedestal).
 - Assuming uniformity of gains, a common gain can be considered for sipm from average of fitted channels (Need a LIS threshold scan run for this).
- □ Specific set of "odd" threshold settings were considered : 1.6pe/2.0pe/2.7pe.
 - Tests from RTA showed these settings to be reducing spillover by 30% (Detailed talk by Elisabeth <u>here</u>)

Alternative method for calibration

- For the highlighted areas, thresholds are calculated using
 - Pedestals from a pedestal scan (<u>5374</u>).
 - Average gain for the sipm from June 2024 LIS threshold scan (<u>5105</u>).
- For the white areas, thresholds from database were appropriately modified.

Sipm average considered

Detector average considered

Improved thresholds since September 2024

SciFi LiteClusters/Event per SiPM (Physics routing bit) (Run = 303953)

C-side

M5

M4

M3

M5

M4

A-side

0

6

Module

M1 PHYSICS 162027 SpilloverRecipe UpdatingLowClusterRegions 20240820

MO

MO

M1

M2

M3

M2

Improved thresholds since September 2024

SciFi LiteClusters/Event per SiPM (Physics routing bit) (Run = 303953)

(Overlay: Run300656 - now) (Partially)Excluded halfR@BsExcluded links Known hot links SciFi T3L1Q23 (top) clusters (Run = 3 0.025 Q3 Q1 10 Q3 Q1 Q3 Q1 0.02 LiteClusters 0.015 10³ Layer ID 0.01 0.005 Q3 Q1 Q3 Q1 Q3 Q1 Q3 Q1 0 2 C-side M5 M5 A-side M3 M1 MO MO M1 Μ2 M3 V4 Module Module How to deal with these guys? Follow here for details SciFi LiteClusters/Event per SiPM (Physics routing bit) (Run = 304400) (Partially)Excluded halfR@BsExcluded links Known hot links (Overlay: Run304155 - now) SciFi T3L1Q23 (top) clusters (Run = 3 Q2 Q0 Q2 Q0 Q2 Q0 Q2 Q0 Q2 Q0 Q2 Q0 0.025 Q1 Q3 Q1 Q3 Q1 Q3 Q1 Q3 Q1 \square 10 0.02 LiteClusters 0.015 9 0.01 \sim 0.005 0 6 C-side M5 M5 A-side M4 M3 M2 M1 MO MO M1 M2 M3 M4 Module PHYSICS 162027 SpilloverRecipe UpdatingLowClusterRegions 20240820

Improvement in Efficiency(?)

Summary and next steps

- The procedure of fitting around million channels is a hefty task; this process is incredibly simplified and robust thanks to scurvefit tool developed by Lukas Witola.
- LIS calibration currently failing on account of poor number of fitted channels, mostly pointing towards low light intensity.
- However, thresholds can still be obtained by measuring pedestals and using suitable gain values.
- Currently, SciFi running smoothly with the new set thresholds. We see a uniformity in the hitmaps, which has improved efficiency.
- □ The issue of light intensity is "work in progress".

BACKUP

List of abbreviations

- LIS : Light Injection System
- GBLD : GigaBit Laser Driver
- FEB : Front End Box
- TAE : Time Alignment Event
- FE : Front-End
- TFC : Timing and Fast Commands (Trigger)
- SiPM : Silicon PhotoMultiplier
- ROB : Read-Out Box (sorta another name for FEB)

Gain Uncertainty Map

Magnet effect on hit clusters

- X-layer:
 - Almost symmetric
 - More particles on A-side:
 - Electrons from secondaries

Stereo layer

q < 0

q > 0

A side

V

C side

*Credits : Niels Tuning

SOL40

- Transmission of information from ECS and TFC to FE is controlled via same physical GBT-based link.
- These links are monitored and authenticated by the SOL40 for link robustness.

List of cuts for detector overview maps

Parameter	Acceptable range
Crosstalk (measure of secondary avalanches in SiPMs caused by primary photoelectrons)	(0.0001, 0.1)
Gain _i (i+1 th p.e peak - i th p.e peak)	(0, 20) DAC
Width $_0$ (Gaussian width of 0 pe signal)	(0.8, 2) DAC
Width ₁ (Gaussian width of 1 pe signal)	(0.5,3.5) DAC
χ^2 /NDF (of the Scurve fit)	(0,100)
Pedestal (Comparator baseline)	> 0.0 DAC

- The following cuts were applied while selecting Scurves of SiPM channels to remove bad fits from analysis.
 - > Removes SiPM channels with invalid parameters interfering with average computation during analysis.
 - Ensures SiPMs with poor channel statistics do not show up in the final results (no set value for this, but would expect at least one-third of SiPM channels fitted).

Lower limit for illumination

- Illumination limits are set in a such a way to get at best 5 p.e signal in the spectrum.
- A simple simulation in left of Poisson distribution shows at least 3 p.e signal for µ=0.2 and higher.
- This is roughly half the signal expected from a 5 p.e

- Delay range measured from delay scan lite run for the good mats (620 in total), which includes delays for 80% of max ratio observed.
- Most of the delays estimated from delay scan lite (Delay_Scan) are off by at most 3 ns (465 mats) wrt current DB values (Delay_DB)
- Around 7 mats observed with difference around 18-20 ns

Tuning GBLD modulation current

When CalibC
command is given, it
triggers the GBLD to
turn on, thereby
increasing the current
in the mat.

- This current rise is proportional to light intensity.
- Hence, tuning the GBLD can help increase the light in the FEB.

First GBLD tuning

Layerldx

GBLD Imod current value

- Selected modules had Imod value set to 52 µA (Register value : 180)
- Right plot shows an increase in intensity for around 90% of the tuned GBLDs.

Illumination Difference

Second GBLD tuning

-ayerldx

Q2

Q0

Q2

Q0

Q2

Q0

Q2

Q0

-96

10

GBLD Imod current value

Second tuning happened in two stages:

- ❑ Setting to select T1 FEBs to maximum Imod of 63 µA (Register value : 191)
- Select M0 modules tuned to Imod of 52 µA after corresponding TELL40 upgrade
- Setting to maximum value still didn't affect T1 FEBs T1L2Q2M1 and T1L3Q0M3.

Run 297389 - Run 295883

SiPMs with illumination > 0.2 p.e.	2029 (49.5%)	196586(75.69%)
SiPMs with illumination < 0.2 p.e.	1658 (40.5%)	44867(21.1%)
SiPMs with fit concerns	409 (10%)	
Total number of fitted channels	241453 (46%)	

Illumination Difference

Delay settings update post GBLD tuning

Layerldx LisStart [ns] Q Q1 QO Q3 Q1 QO Q2 Q3 Q1 Q3 Q2 QO Q1 00 QO 6 Q2 00 5 Q2 Q3 00 Q2 Q3 QO 3 Q3 00 QI Q2 0 -96 -80 -64-48 -32 -1616 32 48 64 80 96 Sipmldx

LisStart_PulseWidth_20ns

Fine time alignment performed to find the best settings for LIS start phase using delay scan with 20 ns pulse width

- Removed the illumination cut (0.2 p.e.) to adjust as many FEBs as possible.
- For most of the halfrobs, the LIS start phase is changed by roughly 1 ns.

Post delay settings update (width+fine time alignment)

Illumination Difference

June 24 runs - Run 297389

SiPMs with illumination > 0.2 p.e.	1940 (47.4%)	157159(63.28%)
SiPMs with illumination < 0.2 p.e.	1930 (47.1%)	83470(33.78%)
SiPMs with fit concerns	226 (5.5%)	
Total number of fitted channels	240629 (45.8%)	

Classification of sipms from illumination

- Attempts have been made to improve the light intensity of the LIS:
 - Manually tuning the GBLD drivers for around 12% of the FEBs
 - Raising pulse width to 20ns and appropriately changing LIS start and stop phases for most of detector
- The map to the left shows the average illumination after all of the above attempts. Green to yellow colored regions are good, blue and white are bad.
- □ Two reasons for white regions:
 - □ Fits failing to converge
 - □ Fits failing to pass validation cuts
- Q : What is the channel distribution of acceptable fits across the detector?

Illumination flags

June 24

- □ Sipms are classified based on number of fitted channels and corresponding average illumination.
- Roughly half of the channels cannot be fitted with current LIS configuration

Flag1 (blue) : Illum. > 0.2 p.e , >80% channels (best)

Flag2 (green) : Illum. < 0.2 p.e, >80% channels (surprisingly good)

Flag 3 (yellow) : 50%-80% channels (intermediate)

Flag 4 (red) : Illum < 0.2 p.e., <50% channels (bad)

Flag 5 (dark red) : Illum > 0.2 p.e., <50% channels (surprisingly bad)

(blank): there is no channel that fit (no idea)

Illumination flag	<u># of Sipms</u>	<u># of channels</u>
1	1769	216021 (95.4%)
2	193	21502 (87.04%)
3	<mark>630</mark>	52515 (65.12%)
4	1234	30888 (19.55%)
5	76	1763 (18.12%)
6	194	0

LIS coarse time alignment

Each LIS needs to be triggered at the correct bunch crossing with respect to expected LHC BX. This is confirmed by checking latencies (BX_{signal} BX_{I HC}). If its off, its corrected using average of SiPMs for halfrob.