$B^0_{(s)} ightarrow \mu^+ \mu^-$ in Run 3 at the LHCb Experiment

Studies and Preparations

Johannes Albrecht, Biljana Mitreska, Jan Wagner

TU Dortmund University

September 24, 2024

Motivation

- → $\mathcal{B}(B^0_{(s)} \to \mu^+ \mu^-)$ are key measurements of the LHCb experiment [1]
- → In 2024 the LHCb experiment recorded already an integrated luminosity of more than 8.3 fb^{-1} at $\sqrt{s} = 13.6 \text{ TeV}$
- → Throughout the year data and simulation conditions varied significantly
- → Studies on control and normalisation channels of the $B^0_{(s)} \rightarrow \mu^+ \mu^$ measurements help to verify performance of the detector

[1]R. Aaij et al. (LHCb), Phys. Rev. D **105**, 012010 (2022)

- → *Detector performance* studies comparing on 2018 and 2024 data:
 - → Trigger studies on $B^+ \to K^+ J/\!\psi(\to \mu^+ \mu^-)$ and $B^0 \to K^{*0}(\to K^+ \pi^-) J/\!\psi(\to \mu^+ \mu^-)$
 - → Yield per luminosity measurements on $B^+ \to K^+ J/\psi(\to \mu^+ \mu^-)$ and $B^0 \to K^{*0}(\to K^+ \pi^-) J/\psi(\to \mu^+ \mu^-)$
- → Detector performance studies throughout 2024 data:
 - $\rightarrow~B^0_s\rightarrow K^+K^-$ mass value for varying PID
 - → Dimuon mass resolution with $J\!/\psi$, $\psi(2S)$, $\Upsilon(1S)$, $\Upsilon(2S)$, $\Upsilon(3S)$ decays
- \rightarrow Absolute branching fraction measurements of $B^0_{(s)} \rightarrow h^+ h'^-$ modes

[1]triggercalib.docs.cern.ch [2]LHCb-PUB-2014-039

Trigger Studies - The TISTOS Method

 \rightarrow Trigger efficiency is in general

$\varepsilon_{\text{Trig}}^{\text{True}} =$

 \rightarrow On data N_{All} is not known, **TOS** efficiency can therefore be found with

$$\varepsilon_{\rm Trig.}^{\rm approx.}\approx\varepsilon_{\rm TOS\,ITIS}=\frac{N_{\rm TISTOS}}{N_{\rm TIS}}$$

→ Measurements are performed with new TriggerCalib tool [1], more details on method in Ref. [2]

Events 1

Trigger Studies

- → $B^+ \to K^+ J/\psi(\to \mu^+ \mu^-)$ (left) and $B^0 \to K^{*0}(\to K^+ \pi^-) J/\psi(\to \mu^+ \mu^-)$ (right) channel
- → 2024 HLT1(Two)TrackMVA compared to Run 2 L0(Di)Muon + HLT1(Two)TrackMVA
- $ightarrow arepsilon_{ ext{TOS}}$ in 2024 data consistently above Run 2 efficiencies

J. Gooding

Yields/Luminosity Studies - Selection

- → Following results from Ref. [1]
- → HLT1 Trigger:
 - \rightarrow Hlt1(Two)TrackMVA_TOS
 - \rightarrow Hlt1TrackMuonMVA_TOS
- → Clone cut removal: $\theta_{t_1,t_2} > 1 \text{ mrad}$
- → Two $q^2 = m(\mu^+\mu^-)$ regions: → $q^2 \in (1.1, 6) \text{ GeV}^2$ → $\left|\sqrt{q^2} - 3096.9\right| < 100 \text{ MeV}^2$
- → Additional BDT:

[1]LHCB-FIGURE-2024-022

Yields/Luminosity Studies

→ Invariant mass fits in the region $\left|\sqrt{q^2} - 3096.9\right| < 100 \, {\rm MeV}^2$

$$\begin{array}{c|c} B^+ \to K^+ J\!/\!\psi(\to \mu^+ \mu^-) & B^0 \to K^{*0}(\to K^+ \pi^-) J\!/\!\psi(\to \mu^+ \mu^-) \\ \\ \hline 382\,821 \pm 640 & 104\,729 \pm 340 \end{array}$$

M. Atzeni, R. Quagliani, E. A. Smith

Detector Performance

Yields/Luminosity Studies

→ Invariant mass fits in the region $q^2 \in (1.1, 6) \, {\rm GeV}^2$

$B^+ \to K^+ \mu^+ \mu^-$	$B^0 \rightarrow K^{*0} (\rightarrow K^+ \pi^-) \mu^+ \mu^-$
523 ± 31	157 ± 18

M. Atzeni, R. Quagliani, E. A. Smith

Detector Performance

- → Comparison with results from R_X Analysis [1]
- \rightarrow No attempt to align the results have been made, purity is qualitatively similar
- → 2024 results provide a lower bound, not all data has been processed for these results

Region	2024 Yield/fb $^{-1}$		2018 Yield/fb $^{-1}$	
	$B^+ \to K^+ \mu^+ \mu^-$	$B^0 \to K^{*0} \mu^+ \mu^-$	$B^+ \to K^+ \mu^+ \mu^-$	$B^0 \to K^{*0} \mu^+ \mu^-$
central- q^2	0.57 ± 0.04	0.27 ± 0.03	0.59 ± 0.01	0.23 ± 0.01
J/ψ - q^2	471 ± 1	181.1 ± 0.6	377.3 ± 0.3	125.2 ± 0.2

[1]R. Aaij et al. (LHCb), Phys. Rev. D 108, 032002 (2023), LHCb-ANA-2020-069

2024 Data - Mean of Mass vs. PID

- → Mean of $B_s^0 \to K^+ K^-$ mass peak for different values of $\epsilon_{\rm PID}$ with PID_K > $\epsilon_{\rm PID}$
- \rightarrow Huge improvements of B^0_s mass mean between different fill ranges in 2024 data
- → Good agreement with PDG values in latest fills

J. Mainusch, J. Wagner

Detector Performance

2024 Data - Mass Resolution

- rtes tu
- ightarrow Comparison of mass resolution for different 2024 data conditions
- $\rightarrow\,$ Comparison with values from 2018 and B^0_s mass resolution from simulation
- ightarrow With latest detector alignment, conditions comparable with 2018 detector were seen

J. Mainusch, J. Wagner

$\mathcal{B}(B \to h^+ h^-)$ Strategy

→ Analysis strategy:

- → Understand and correct data/simulation discrepancies
- → Kinematic and PID Multivariate Analysis (MVA) to extract signal candidates in data

$$\rightarrow \ \mathcal{B}(B^0_{(s)} \rightarrow h^+ h'^-) = \frac{N(B^0_{(s)} \rightarrow h^+ h'^-)}{2\mathcal{L}_{\mathrm{int}} \sigma_b \overline{b} \overline{f}_{d(s)} \varepsilon_{h^+ h'^-}}$$

→ $N(B^0_{(s)} \to h^+ h'^-)$ is the signal yield, measured from invariant mass fits

- → L_{int} is the integrated Luminosity, calculated from LHCb's Run Database
- → $\sigma_{b\overline{b}}$ and $f_{d(s)}$ are the $b\overline{b}$ production cross section and hadronization fraction [1], [2]
- → $\varepsilon_{h^+h'^-}$ is the total selection efficiency, estimated on simulation
- $\begin{array}{l} \rightarrow \ \varepsilon_{h^+h'^-} = \varepsilon_{\rm geo} \times \varepsilon_{\rm rec,trig|geo} \times \varepsilon_{\rm loose|rec,trig} \times \\ \varepsilon_{\rm MVA+PID|loose} \end{array}$

[1]R. Aaij et al. (LHCb), JHEP **10**, [Erratum: JHEP 05, 063 (2017)], 172 (2015) [2]Y. Amhis et al. (HFLAV), Eur. Phys. J. C **77**, 895 (2017)

C. Cotirlan, J. Wagner

Invariant Mass Fits

Invariant Mass Fits

Invariant Mass Fits

Decay	Efficiency (%)				
	$arepsilon_{geo}$	$arepsilon_{rec,trig geo}$	$arepsilon_{ ext{loose}}$ loose rec,trig	$arepsilon_{MVA+PID}$ loose	$arepsilon_{total}$
$B^0 \to K^+ \pi^-$	19.77 ± 0.06	0.921 ± 0.009	67.05 ± 0.58	89.52 ± 0.47	0.109 ± 0.002
$B^0 \to \pi^+\pi^-$	19.50 ± 0.06	0.957 ± 0.009	68.78 ± 0.54	93.48 ± 0.35	0.119 ± 0.002
$B^0_s \to K^-\pi^+$	19.98 ± 0.06	0.921 ± 0.009	67.56 ± 0.58	87.63 ± 0.49	0.107 ± 0.002
$B^0_s \to K^+ K^-$	19.77 ± 0.06	0.897 ± 0.009	70.35 ± 0.61	94.37 ± 0.36	0.119 ± 0.002

External Inputs

- → $\sigma(pp \rightarrow b\overline{b}) = (519 \pm 57) \, \mu b$
 - → Extrapolated at Center of Mass energy √s = 13.6 TeV from next-to-next-to leading order (NNLO) quantum chromodynamics (QCD) simulation [1] and previous measurements [2]
- → Hadronization fractions
 - $f_{\rm d} = 0.404 \pm 0.006$ and $f_{\rm s} = 0.102 \pm 0.005$ [3]
- → $\mathcal{L}_{int} = 2.1 \, \text{fb}^{-1}$, calculated from LHCb's Run Database

[1]S. Catani et al., JHEP 03, 029 (2021)
[2]R. Aaij et al. (LHCb), JHEP 10, [Erratum: JHEP 05, 063 (2017)], 172 (2015)
[3]Y. Amhis et al. (HFLAV), Eur. Phys. J. C 77, 895 (2017)

C. Cotirlan, J. Wagner

Branching ratio measurements

→ The results were produced in a 2.5 month summer project, many things need to be understood and hard approximations were made, but first results look promising

Branching ratio	Signal yield	Measured Value	PDG value [1]
$\mathcal{B}(B^0\to K^+\pi^-)$	15515 ± 264	$(1.610\pm0.182)\cdot10^{-5}$	$(2.00\pm0.04)\cdot10^{-5}$
$\mathcal{B}(B^0\to\pi^+\pi^-)$	5661 ± 84	$(5.351\pm0.604)\cdot10^{-6}$	$(5.37\pm 0.20)\cdot 10^{-6}$
$\mathcal{B}(B^0_s\to K^-\pi^+)$	1241 ± 51	$(5.194 \pm 0.665) \cdot 10^{-6}$	$(5.90\pm0.70)\cdot10^{-6}$
$\mathcal{B}(B^0_s \to K^+K^-)$	7100 ± 161	$(2.680 \pm 0.331) \cdot 10^{-5}$	$(2.72\pm0.23)\cdot10^{-5}$

Relative Branching ratio	Measured Value	PDG value
$\frac{\mathcal{B}(B^0_s{\rightarrow}K^+K^-)}{\mathcal{B}(B^0{\rightarrow}\pi^+\pi^-)}$	(5.009 ± 0.306)	(5.065 ± 0.485)
$\frac{\mathcal{B}(B^0\!\rightarrow\!K^+\pi^-)}{\mathcal{B}(B^0_s\!\rightarrow\!K^-\pi^+)}$	(3.099 ± 0.219)	(3.389 ± 0.408)

[1]S. Navas et al. (Particle Data Group), Phys. Rev. D 110, 030001 (2024)

C. Cotirlan, J. Wagner

Conclusion and Outlook

- → Many studies on the quality of 2024 data were performed from a rare decay perspective
 - → Trigger
 - → Yields/Luminosity
 - → Mass Mean/Resolution
 - → Preliminary absolute branching fraction measurements
- → LHCb's 2024 data looks very promising showing at least data quality of Run 2 or even beyond

- → The $B^0_{(s)} \to \mu^+ \mu^-$ group grows steadily in Dortmund and within the LHCb collaboration
- → More and even better quality data will follow in 2025 and beyond
- → Continuous feedback from rare decays group will enhance data and simulation quality even further
- → Keep tuned for more!

- → Reproducible data and simulation samples in LHCb's Rare Decays group with Analysis Production tool
- → Trigger studies:
 - → Fills: 9982-10056 $(1.2\,\mathrm{fb}^{-1})$
 - → Trigger lines: HLT1TrackMVA, HLT1TwoTrackMVA
 - → Dimuon lines: Hlt2RD_BuToKpJpsi_JpsiToMuMu, Hlt2RD_BOToKpPimMuMu
 - \rightarrow Run 2 data: from Ref. [1]
- → Yield/Lumi studies:
 - → Run numbers: 303091-304144, 303091-303994
 - → lines: Hlt2RD_BuToHpMuMu_Incl, Hlt2RD_BOToKpPimMuMu

^[1]R. Aaij et al. (LHCb), JINST **14**, P04013 (2019)

Used Data Samples

- → Reproducible data and simulation samples in LHCb's Rare Decays group with Analysis Production tool
- → $B^0_{(s)}$ → $h^+h'^-$ mass mean vs PID: → Fill range: 9708-10012
- → Dimuon mass resolution studies:
 - → Fill range: 9708-10012
 - → Simulation: 2024-expected
- → $B^0_{(s)}$ → $h^+h'^-$ branching fraction measurements:
 - → Fill range: 9911-10012
 - → Simulation: $B^0_{(s)} \to h^+ h'^-$ 2024-expected, $B^0 \to K^{*0}(\to K^+\pi^-) J/\psi(\to \mu^+\mu^-)$ expected-2024.Q1.2

Details on Yield/Lumi Study

Details on Yield/Lumi Study

Backup

Mean vs PID

→ Invariant Mass Fit of $B_s^0 \to K^+ K^-$ at PID_K greater 5

Backup

Mean vs PID

→ Invariant Mass Fit of $B_s^0 \rightarrow K^+K^-$ at PID_K greater 10

Backup

Mass Fits for Dimuon Mass Resolution

→ Invariant mass fit of $J\!/\psi \rightarrow \mu^+\mu^-$

Mass Fits for Dimuon Mass Resolution

 $\rightarrow\,$ Invariant mass fit of $\psi(2S)\rightarrow\mu^+\mu^-$

Mass Fits for Dimuon Mass Resolution

→ Invariant mass fit of $\Upsilon(1S) \rightarrow \mu^+\mu^-$, $\Upsilon(2S) \rightarrow \mu^+\mu^-$, $\Upsilon(3S) \rightarrow \mu^+\mu^-$

Details on Branching Fraction Measurement

- → See more information in B2MuMu Meeting, September 10 2024
- → See more information in GP Meeting, September 16 2024

LHC