

Bundesministerium

Multi-baryonic Λ_h^0 Decays

Yibo Zhu **RWTH** Aachen

> FSP meeting **Bochum** 23/09/2024

He production in $\overline{\Lambda}_b^0$ decays

PHYSICAL REVIEW LETTERS 126, 101101 (2021)

Several He candidates of unknown origin have been reported by the AMS-02 experiment

S. Ting CERN colloquium

Dark Matter Annihilation Can Produce a Detectable Antihelium Flux through $\bar{\Lambda}_b$ Decays

Martin Wolfgang Winkler^{®*} and Tim Linden^{®†} Stockholm University and The Oskar Klein Centre for Cosmoparticle Physics, Alba Nova, 10691 Stockholm, Sweden

- LHCb ideal for studying Λ_b^0 decays
- No helium identification in LHCb before
- ✓ Developed by the RWTH Aachen group in Run 2

Helium identification

- Use energy-loss information in VELO, TT, and IT •
- Further separation from RICH, isolation, calorimeters and OT information
- Achieve excellent separation between helium and Z=1 particles

Candidates / 2 MeV 09 09

20

0

• Validated in the antihypertriton analysis

Anti-helium BF in $\overline{\Lambda}_b^0$ decays

Multi-baryonic Λ_b^0 decays

- Helium production in Λ_b^0 requires:
 - 1. 5-baryon production
 - 2. coalescence of 3 baryons
- Coalescence has received many attention but the 5-baryon production needs more exploration
- 5-baryon production can be studied in isolation by measuring multi-baryonic decays
- My analysis will investigate the BF of
 - $\Lambda^0_b \to p \overline{p} p \pi^-$
 - $\Lambda^0_b \to p\overline{p}pK^-$
 - $\Lambda_b^0 \rightarrow p \overline{p} p p \overline{p} \pi^$ in LHCb Run 2 & 3 data

Analysis structure

Mass fits for $\Lambda_b^0 \to \Lambda_c^+ (\to pK^-\pi^+)\pi^-$ with Run 2 data

First observation of the decay modes $\Lambda_b^0 \rightarrow p\bar{p}p\pi^-$ and $\Lambda_b^0 \rightarrow p\bar{p}pK^$ using LHCb Run 2 data

- Above 5σ significance for both signals
- Expect BR to be a factor of $\mathcal{O}(10)$ times smaller for the 5-proton mode
- →Observation will only be possible with full Run 3 statistics

First look to Run 3 data

- Following example from XueTing Yang's analysis
- Sprucing24c1 output (up to May)
- Fill no. 9485-9708
- RunNumber: 289213-297124
- Analysis Production: bnoc_lb2p3h_sprucelines /sprucepass24c1_validation_bnoc_spruce_lbtopppippi mpim
- LFN:/lhcb/LHCb/Collision24/SPRUCEPASS24C1_SPRU CE_LBTOPPIPPIMPIM.ROOT/00226703/0000/
- Use basically same selection as for run2, except ProbNNp>0.2 \rightarrow PIDp>5
- Use run2 simulation

 $\mu = 5605.6 \pm 0.10 \ \sigma = 36.23 \pm 0.38$ First look into 2024 data in $\Lambda_b^0 \rightarrow p3h$ decays

Mass fits for $\Lambda_h^0 \to \Lambda_c^+ (\to pK^-\pi^+)\pi^-$ with Run 3 data

- Estimation of yield/luminosity 187 per pb^{-1} relative to 97.2 per pb^{-1} in Run 2, increase by **a factor of** ~2
- By the end of Run 3, signal yields are expected to be increase by **a factor** ~12 compared to Run 2

Summary

- First results for the control mode $\Lambda_b^0 \to \Lambda_c^+ (\to pK^-\pi^+)\pi^$ and 3-proton modes $\Lambda_b^0 \to p\bar{p}p\pi^-$ and $\Lambda_b^0 \to p\bar{p}pK^-$ have been shown
- In Run 3 data, the signal yield per pb^{-1} for the mode $\Lambda_b^0 \rightarrow \Lambda_c^+ (\rightarrow pK^-\pi^+)\pi^-$ increases by a factor of ~2
- We expect $\mathcal{O}(10^3) \Lambda_b^0$ decays for the 3-proton modes and $\mathcal{O}(10^2)$ decays for the 5-proton mode with the full Run 3 statistics

Next steps:

- Analysis production on sprucing 24c2 data
- Simulation request
- Validation mode fits, BDT training,..
- Target for the publication of the 3-proton modes in 2025

Thanks for your attention!

Appendix

D & He Identification in Run 5 & 6: Summary

Schematic side-view of the Upgrade II detector

- The combination of Mighty-SciFi, RICH and TORCH should allow to identify D, He-3 and He-4 over a wide energy range.
- In Run 2 the largest separation power comes from VELO and the dominant background are therefore photon-conversions. Mighty-SciFi and TORCH provide the measurements downstream the magnet, i.e. background from photon-conversions is here not a issue.
- The independent light nuclei identification by several sub-detectors allows to determine efficiencies from data and to cross-calibrate the PID performances.
- This opens a rich physics program relevant for QCD and astrophysics for LHCb for Run 5 & 6.

Control mode $\Lambda_b^0 \to \Lambda_c^+ (\to pK^-\pi^+)\pi^-$ and validation modes $\Lambda_b^0 \to p\pi^-\pi^+\pi^-$ and $\Lambda_b^0 \to p\pi^-\pi^+\pi^-\pi^+\pi^-$

- High statistics for control mode
- Λ_c^+ easy to isolate for control mode
- BR of $\Lambda_b^0 \rightarrow p \pi^- \pi^+ \pi^-$ already measured
- Same stripping line output (Xb2phhh)
- \rightarrow Cancelation to first order of stripping efficiency in the efficiency calculation
- Similar decay topology to the 3-proton modes
- → Partial cancelation of systematics in proton PID efficiencies
- Same BDT
- \rightarrow Cancelation of systematics in BDT efficiency

3-proton modes $\Lambda_b^0 \to p\bar{p}ph$ selection

Extra selection			
HLT	HIt1TrackMVADecision_TOS or HIt1TwoTrackMVADecision_TOS		
	Hlt2Topo{2,3,or 4}BodyDecision_TOS		
Vertex	$\ln(\arccos(\text{DIRA})) < -5$ $\ln(\chi^2_{\text{IP}}) < 2$ $\ln(\chi^2_{\text{FD}}) > 4.5$ $\chi^2_{\text{vtx}}/\text{ndf} < 2$		
Track	p > 3 GeV ProbNNghost < 0.5 $\chi^2_{\text{match}} < 30$ $\chi^2_{\text{track}}/\text{ndf} < 3$! isMuon		
proton	ProbNNp > 0.9		
Mass veto	$m(p\pi^-) > 1150 \text{ MeV}$ $m(pK^-) > 1700 \text{ MeV}$ $m(p\bar{p}) < 2850 \text{ MeV}$		

Outlook on Run 3 data

C. M. Benito RTA report

	Since April	> May MD	> June TS	> Aug MD	> Sept MD
Moore	v55r7p3	v55r8p1	v55r11 (v55r10p1)	v55r12p2	v55r13pX
Features	First reco and selections	New selections, ProbNN* info	UT in tracking, downstream, GhostProb retuned (r11)	New selections	New selections
Lumi [fb ⁻¹]	0.22 (100%)	0.75 (100%)	4.1 (100%)	0.44 (67%)	To be collected

	post-June TS, MagUp	post-June TS, MagUp	Alignment update	post-Aug MD, MagUp	
Fills	9911-9943	9945-9978	9982 - 10056	> 10059	
HLT1	q/p adjustments	new BW division, no UT (0x1000106F)		new BW div with UT (0x1001075)	
Alignment	N-1(after Velo belt rep	lacement)	Latest, stable		
HLT2	Moore v55r11	Moore v55r12p2			
Lumi [fb ⁻¹]	0.9 (100%)	0.6 (100%)	1.2 (100%)	0.44 (67%)	

- UT: better ghost tracks
 identification and better
 momentum resolution
- Alignment update: improve on the mass shift issues seen in the previous data
- The 0.44 fb⁻¹ has now reached 1.9
- Expecting $\sim 35 fb^{-1}$ by the end of Run 3 (2026)