Flavour Phenomenology and Unitarity of Light Dark Vectors

Jordi Folch Eguren w/ E. Stamou, M. Tabet (TU Dortmund), R. Ziegler (KIT) arXiv:2405.00108

LHCb meeting 2024

Part I

Beyond the Standard Model, Flavour and Light Dark Vectors

Beyond the Standard Model (BSM) and Flavour

Beyond the Standard Model (BSM) and Flavour

Beyond the Standard Model (BSM) and Flavour

FCNCs are a good probe for BSM physics

u, c, t

Light Dark Vectors (LDV) with FCNCs

- \bullet Consider adding a **massive neutral spin-1** vector boson V'_{μ} to the SM
- We focus on FCNC interactions between SM matter and the LDV

$$\mathcal{L}_{D} = \frac{1}{\Lambda} \overline{q}_{i} \sigma^{\mu\nu} \left(\mathbb{C}_{ij}^{D} + i\gamma_{5} \mathbb{C}_{ij}^{5D} \right) q_{j} F'_{\mu\nu} \quad \text{Dipole (dim-5)}$$

$$\mathcal{L}_{V} = \left(\frac{m_{V'}}{\Lambda} \right) \overline{q}_{i} \gamma^{\mu} \left(\mathbb{C}_{ij} + \gamma_{5} \mathbb{C}_{ij}^{5} \right) q_{j} V'_{\mu} \quad \text{Vector (dim-4)}$$

Light Dark Vectors (LDV) with FCNCs

- Consider adding a **massive neutral spin-1** vector boson V'_{μ} to the SM
- We focus on FCNC interactions between SM matter and the LDV

$$\begin{aligned} \mathcal{L}_{D} &= \frac{1}{\Lambda} \overline{q}_{i} \sigma^{\mu\nu} \left(\mathbb{C}_{ij}^{D} + i \gamma_{5} \mathbb{C}_{ij}^{5D} \right) q_{j} F'_{\mu\nu} & \text{Dipole (dim-5)} \\ \mathcal{L}_{V} &= \left(\frac{m_{V'}}{\Lambda} \right) \overline{q}_{i} \gamma^{\mu} \left(\mathbb{C}_{ij} + \gamma_{5} \mathbb{C}_{ij}^{5} \right) q_{j} V'_{\mu} & \text{Vector (dim-4)} \end{aligned}$$

Objective: Constrain $\{\mathbb{C}_{ij}^{D}, \mathbb{C}_{ij}^{5D}, \mathbb{C}_{ij}, \mathbb{C}_{ij}^{5}\}$ for $i \neq j$ via 2-body decays with experimental limits and with unitarity

Part II Phenomenology

LDV Searches

- $\bullet~$ Rich phenomenology with experimental searches with siganture SM \rightarrow SM + invisible
 - Belle II ($B \rightarrow \rho + inv$)
 - NA62 ($K \rightarrow \pi + inv$)
 - BaBar $(B \rightarrow \pi + inv)$
 - ...

- Future upgrades and searches: KOTO, BESIII, ...
 - \Rightarrow Potential discovery via FCNCs
- Constrain couplings via 2-body decays+experimental bounds on BR

2-body decays

 $P^{(\prime)} \equiv pseudoscalar, V \equiv vector, B^{(\prime)} \equiv baryon, I^{(\prime)} \equiv lepton$

- Two relevant elements
 - Form factors for hadronic decays, which depend on the LDV mass, $F(m_{V'}^2) \rightarrow$ typically computed on the lattice
 - Recast of experimental data for 2-body decays \rightarrow BaBar, Belle II, CLEO

Analysis

Quark Transition	Hadronic Process	Form Factors	Experimental Limit
s ightarrow d	$K^+ \to \pi^+ + V'$	[60, 61]	NA62 [17, 33, 34]
	$\Sigma^+ \to p + V'$	[32, 62-64]	BES III [65], Lifetime _r [22, 58]
	$\Xi^- \to \Sigma^- + V'$	[32, 62-64]	$Lifetime_r[22, 58]$
	$\Xi^0 \to \Sigma^0 + V'$	[32, 62-64]	$Lifetime_r[22, 58]$
	$\Xi^0 ightarrow \Lambda + V'$	[32, 62-64]	$Lifetime_r[22, 58]$
	$\Lambda \to n+V'$	[32, 62-64]	$Lifetime_r[22, 58]$
$b \rightarrow s$	$B^+ \to K^+ + V'$	[66, 66]	BaBar _r [36], Belle II _r [39, 57]
	$B \to K^* + V'$	[66, 66]	BaBar _r [36, 57]
	$\Lambda_b \to \Lambda + V'$	[67, 67]	$Lifetime_r[22, 58]$
$b \rightarrow d$	$B^+ \to \pi^+ + V'$	[66, 68]	BaBar _r [35]
	B ightarrow ho + V'	[66, 66]	LEP_r [55, 56]
	$\Lambda_b \to n + V'$	[67, 69]	Lifetime $_r$ [22, 58]
$c \rightarrow u$	$D^+ \to \pi^+ + V'$	[70, 71]	CLEO _r [22, 37]
	$\Lambda_c \to p + V'$	[72, 72]	BES III [40], Lifetime _r [22, 58]
	LEV Transition	Experimental Limit	

LFV Transition	Experimental Limit	
$\mu ightarrow e$	TWIST [41], Jodidio _r [18, 73]	
$\tau \to e$	Belle II [38]	
$\tau \to \mu$	Belle II [38]	

Constraints sd sector

Part III (in progress) Unitarity

Part III (in progress) Unitarity

Derivation of gauge invariance from high-energy unitarity bounds on the S matrix^{*}

John M. Cornwall,[†] David N. Levin, and George Tiktopoulos Department of Physics, University of California at Los Angeles, Los Angeles, California 90024 (Received 21 March 1974)

Weak interactions at very high energies: The role of the Higgs-boson mass

Benjamin W. Lee,* C. Quigg,[†] and H. B. Thacker Fermi National Accelerator Laboratory, [‡] Batavia, Illinois 60510 (Received 20 April 1977)

Part III (in progress) Unitarity

Derivation of gauge invariance from high-energy unitarity bounds on the S matrix*

John M. Cornwall,[†] David N. Levin, and George Tiktopoulos Department of Physics, University of California at Los Angeles, Los Angeles, California 90024 (Received 21 March 1974)

Weak interactions at very high energies: The role of the Higgs-boson mass

Benjamin W. Lee, * C. Quigg,[†] and H. B. Thacker Fermi National Accelerator Laboratory, [‡] Batavia, Illinois 60510 (Received 20 April 1977)

Improved unitarity constraints in Two-Higgs-Doublet-Models

Mark D. Goodsell $^{1,\,*}$ and Florian $\mathrm{Staub}^{2,\,3,\,\dagger}$

Perturbative Unitarity Constraints on a Supersymmetric Higgs Portal

Kassahun Betre, Sonia El Hedri and Devin G. E. Walker SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, U.S.A.

Unitarity Constraints on Dimension-Six Operators

Tyler Corbett*

Unitarity with FCNCs from $2 \rightarrow 2$ helicity partial waves

$$\begin{array}{ccc} f_i f_j \to f_i f_j & i \\ \lambda_f = \{\pm 1/2\} \\ j & +1/2 + 1/2 \\ \end{array} \right) \begin{array}{c} i \\ V' \\ V' \\ +1/2 + 1/2 \\ j \end{array} = \mathcal{T}_{++}^{++} \\ j \end{array}$$

Unitarity with FCNCs from $2 \rightarrow 2$ helicity partial waves

$$\begin{array}{ccc} f_i f_j \to f_i f_j & i \\ \lambda_f = \{\pm 1/2\} \\ j & +1/2 + 1/2 \\ j \end{array} \right) \xrightarrow{I + 1/2 + 1/2} \int_{j}^{i} \mathcal{T}_{++}^{++} \\ \mathcal{T}_{++}^{++} & -1/2 \\ j & -1/2 \\ j$$

• Given the helicity amplitudes $\mathcal{T}_{\lambda_1\lambda_2}^{\lambda_3\lambda_4}$ compute their partial waves

$$\mathcal{T}_{\lambda_1\lambda_2}^{\lambda_3\lambda_4,l} \propto \int_0^{\pi} d\theta \sin \theta \underbrace{d_{\lambda_i\lambda_f}^{l}}_{\text{Wigner d}} (\theta) \mathcal{T}_{\lambda_1\lambda_2}^{\lambda_3\lambda_4}(s,\theta)$$

Unitarity with FCNCs from $2 \rightarrow 2$ helicity partial waves

$$\begin{array}{ccc} f_i f_j \to f_i f_j & i \\ \lambda_f = \{\pm 1/2\} \\ j & +1/2 + 1/2 \\ j \end{array} \right) \xrightarrow{I + 1/2 + 1/2} \int_{j}^{i} \mathcal{T}_{++}^{++} \\ \mathcal{T}_{++}^{++} & -1/2 \\ j & -1/2 \\ j$$

• Given the helicity amplitudes $\mathcal{T}_{\lambda_1\lambda_2}^{\lambda_3\lambda_4}$ compute their partial waves

$$\mathcal{T}_{\lambda_1\lambda_2}^{\lambda_3\lambda_4,l} \propto \int_0^{\pi} d\theta \sin \theta \underbrace{d_{\lambda_i\lambda_f}^{\prime}}_{\text{Wigner d}} (\theta) \mathcal{T}_{\lambda_1\lambda_2}^{\lambda_3\lambda_4}(s,\theta)$$

• Unitarity implies $|\mathcal{T}_{\lambda_1\lambda_2}^{\lambda_3\lambda_4,l}|\leq 1$

$$\{ff o ff, V'f o V'f, V'V' o \overline{f}f, Af o V'f, AV' o \overline{f}f\}$$

Constraints sd sector at high energy $\sqrt{s} = 10$ TeV $ff \to ff, V'f \to V'f, V'V' \to \overline{f}f, Af \to V'f, AV' \to \overline{f}f$ $\Lambda/\mathbb{C}^{D}_{sd}$ $\Lambda/\mathbb{C}^{D5}_{sd}$ \times TeV $\times \,\mathrm{TeV}$ 55 0.500.500.10 0.100.050.050.00 0.050.10 $0.15 \quad 0.20$ 0.25 0.30 0.00 0.050.10 0.15 0.20 0.250.30 m_V in GeV m_V in GeV $\times 10^{-1}$ GeV $\Lambda/\mathbb{C}^V_{sd}$ $\times 10^{-1} \text{GeV}$ $\Lambda/\mathbb{C}^{V5}_{ed}$ 100100 10101 0.100.100.010.01 $0.15 \quad 0.20 \quad 0.25 \quad 0.30$ 0.000.050.00 0.050.10 0.15 0.20 0.25 0.300.10 m_V in GeV m_V in GeV

- LDV is a minimal extension of the SM and a DM candidate
- Flavour gives us a guide; potential of discovery with current (and future) searches
- Constrained FCNC couplings via
 - 2-body decays with experimental limits
 - Unitarity of $2 \rightarrow 2 \mbox{ scattering}$
- Baryon decays are the least constraining but sometimes the only available
- Phenomenology bounds are much stronger than unitarity bounds (but have kinematical endpoint)
- Unitarity→ much to learn about high energy behaviour, role of FCNCs (masses), Stückelberg mechanism and GBET

Backup slides

SM, FCNCs and BSM

FCNC processes are very suppressed in the SM:

- Arise at loop level $(\sim 1/16\pi^2)$
- Smallness of CKM elements ($V_{ij} \ll 1, i \neq j$)
- GIM mechanism $\left(\sim \left(m_u m_c \right)^2 / M_W^2; V_{td}, V_{ts} \ll 1 \right)$

FCNCs are a good probe for BSM physics

LDV mass

$${\cal L} = -rac{1}{4} F'_{\mu
u} F'^{\mu
u} + rac{m^2_{V'}}{2} V'_{\mu} V'^{\mu}$$
 Proca theory (1)

Is not (explicitly) gauge invariant. Use Stückelberg trick:

$$V'_{\mu}
ightarrow X_{\mu} - rac{\partial_{\mu}\pi}{m_{V'}} \Rightarrow \mathcal{L}_{\mathrm{St}} = -rac{1}{4}X_{\mu
u}X^{\mu
u} + rac{m_{V'}^2}{2}\left(X_{\mu} - rac{\partial_{\mu}\pi}{m_{V'}}
ight)^2$$
. (2)

The Lagrangian is now manifestly U(1) gauge invariant under

$$X_{\mu} \to X_{\mu} + \partial_{\mu} \alpha(x) ,$$

$$\pi \to \pi + m_{V'} \alpha(x)$$
(3)

Stückelberg is nothing else than the **affine Higgs mechanism** (i.e. Higgs is decoupled)

LDV can get mass through a U(1)' Dark Higgs

LDV with kinetic mixing

Consider adding a **neutral spin 1** field (V'_{μ}) to QED (A_{μ})

$$\mathcal{L} = -rac{1}{4}F_{\mu
u}^2 - rac{1}{4}F_{\mu
u}'^2 + eJ_\mu A^\mu + e'J_\mu' V'^\mu + rac{m_{V'}^2}{2}V_\mu' V'^\mu$$

 J_{μ} SM matter J'_{μ} dark sector (DS) matter

We can also write a kinetic mixing term!

$${\cal L}_{{\cal K}{\cal M}}=-rac{\epsilon}{2}{\cal F}^{\mu
u}{\cal F}'_{\mu
u},\quad\epsilon\ll 1$$

Due to kinetic mixing the LDV can interact with SM matter

LDV and SM matter

Minimal model with kinetic mixing and no flavour-changing couplings

Kinetic mixing with SM hypercharge boson

$$\mathcal{L} = \mathcal{L}_{EW} + \mathcal{L}_{Higgs} + \mathcal{L}_{KM}$$

Kinetic mixing term for LDV and SM $U(1)_Y$ boson

$${\cal L}_{KM}=-rac{\epsilon}{2}B^{\mu
u}F_{\mu
u}^{\prime}$$

Diagonalisation+SSB+gauge mass basis

$$\begin{pmatrix} B_{\mu} \\ W_{\mu}^{3} \\ V_{\mu}' \end{pmatrix} = \begin{pmatrix} 1 & 0 & -\epsilon t \\ 0 & 1 & 0 \\ 0 & 0 & t \end{pmatrix} \begin{pmatrix} c_{W} & -s_{W}c_{\xi} & s_{W}s_{\xi} \\ s_{W} & c_{W}c_{\xi} & c_{W}s_{\xi} \\ 0 & s_{\xi} & c_{\xi} \end{pmatrix} \begin{pmatrix} A_{\mu} \\ Z_{\mu} \\ V_{\mu}' \end{pmatrix}$$

$$\tan 2\xi = -\frac{2\eta s_W}{1 - s_w^2 \eta^2 - \delta} \quad \text{with} \quad t = 1/\sqrt{1 - \epsilon^2}, \quad \eta = \epsilon t, \quad \delta = m_{V'}^2/m_Z^2$$

Constraints on kinetic mixing

Di-lepton searches (LHCb, NA48, BaBar, etc); Beam dump (NA64, E774 at Fermilab, etc); Supernova (1987A)

Origin of flavour violating couplings

• \mathcal{L}_V comes from the interaction $V'_{\mu}J^{\mu}$ $J^{\mu} = \sum_{ij} \bar{Q}^i Y^{\prime ij}_Q \gamma^{\mu} Q^j + \sum_{ij} \bar{u}^i_R Y^{\prime ij}_u \gamma^{\mu} u^j_R + \sum_{ij} \bar{d}^i_R Y^{\prime ij}_d \gamma^{\mu} d^j_R$

Going to the Yukawa mass basis we infer:

FV couplings are induced if the hypercharges Y'_{x} are **not** universal

• \mathcal{L}_D comes from the interaction $\frac{1}{\Lambda^2} F'_{\mu\nu} J^{\mu\nu}$ $J^{\mu\nu} = \sum_{ij} \bar{Q}^i \tilde{H} C^{ij}_u \sigma^{\mu\nu} u^j_R + \sum_{ij} \bar{Q}^i H C^{ij}_d \sigma^{\mu\nu} d^j_R + \text{h.c}$

Going to the Yukawa mass basis we infer:

FV couplings are induced if couplings C_x are **not** aligned with SM Yukawas

Flavour-changing couplings from RGEs

FCNCs can be induced from the couplings RGEs (1310.4838v3)

Taking into account 1-loop Yukawa corrections we find

Starting with flavour-diagonal interactions at a high scale Λ FCNCs are induced at the low scale μ

Top contributions yield

$$C_{ij}(\mu) \sim \delta_{ij} C_{ij}(\Lambda) + m_t^2 \mathsf{V}_{tj} \mathsf{V}_{ti}^{\star} \log\left(\frac{\mu}{\Lambda}\right)$$

Constraints bs sector

Constraints bd sector

Constraints cu sector

Constraints $e\mu$ sector

Constraints $au o \mu/e$ sector

Unitarity with FCNCs from $2 \rightarrow 2$ partial waves

$$\begin{array}{c} f_i f_j \to f_i f_j \\ \lambda_f = \{\pm 1/2\} \\ j \end{array} \xrightarrow{i} + 1/2 + 1/2 \\ + 1/2 + 1/2 \\ j \end{array} \xrightarrow{i} + 1/2 + 1/2 \\ j \end{array}$$

• Given the helicity amplitudes $\mathcal{T}_{\lambda_1\lambda_2}^{\lambda_3\lambda_4}$ compute their partial waves

$$\begin{aligned} \mathcal{T}_{\lambda_{1}\lambda_{2}}^{\lambda_{3}\lambda_{4},l} \propto \int_{0}^{\pi} d\theta \sin \theta \underbrace{d_{\lambda_{j}\lambda_{f}}^{l}}_{\text{Wigner d}}(\theta) \mathcal{T}_{\lambda_{1}\lambda_{2}}^{\lambda_{3}\lambda_{4}}(s,\theta) \xrightarrow{\text{Unitarity}} |\mathcal{T}_{\lambda_{1}\lambda_{2}}^{\lambda_{3}\lambda_{4},l}| &\leq 1 \\ \{ff \to ff, V'f \to V'f, V'V' \to \bar{f}f, Af \to V'f, AV' \to \bar{f}f \} \\ \bullet \ \mathcal{T}_{\lambda_{1}\lambda_{2}}^{\lambda_{3}\lambda_{4},l} \text{ are matrices in flavour (and helicity) space} \to \text{diagonalise} \\ & \text{In flavour space} \\ \frac{f_{i}f_{j} \quad f_{i}f_{j} \quad f_{i}f_{j} \quad f_{i}\bar{f}_{j} \quad f_{i}\bar{f}_{j}}{f_{i}f_{j} \quad 4 \times 4 \quad 4 \times 4} \\ & f_{i}\bar{f}_{j} \quad 4 \times 4 \quad 4 \times 4 \\ & f_{i}\bar{f}_{i} \quad 4 \times 4 \quad 4 \times 4 \end{aligned} \qquad \begin{pmatrix} \mathcal{T}_{++}^{++} \quad \mathcal{T}_{+-}^{+-} \quad \mathcal{T}_{+-}^{-+} \\ \mathcal{T}_{++}^{+-} \quad \mathcal{T}_{+-}^{+-} \quad \mathcal{T}_{+-}^{-+} \\ \mathcal{T}_{++}^{++} \quad \mathcal{T}_{+-}^{+-} \quad \mathcal{T}_{+-}^{-+} \\ \mathcal{T}_{++}^{++} \quad \mathcal{T}_{+-}^{+-} \quad \mathcal{T}_{-+}^{-+} \\ \mathcal{T}_{++}^{++} \quad \mathcal{T}_{+-}^{--} \quad \mathcal{T}_{-+}^{-+} \\ \mathcal{T}_{++}^{+-} \quad \mathcal{T}_{-+}^{--} \quad \mathcal{T}_{-+}^{--} \\ \mathcal{T}_{++}^{+-} \quad \mathcal{T}_{-+}^{--} \\ \mathcal{T}_{++}^{+-} \quad \mathcal{T}_{-+}^{--} \quad \mathcal{T}_{-+}^{--} \\ \mathcal{T}_{++}^{+-} \quad \mathcal{T}_{-+}^{--} \\ \mathcal{T}_{++}^{+-} \quad \mathcal{T}_{-+}^{--} \quad \mathcal{T}_{-+}^{--} \\ \mathcal{T}_{++}^{+-} \quad \mathcal{T}_{-+}^{+-} \quad \mathcal{T}_{-+}^{--} \\ \mathcal{T}_{++}^{+-} \quad \mathcal{T}_{+-}^{--} \quad \mathcal{T}_{-+}^{--} \\ \mathcal{T}_{++}^{+-} \quad \mathcal{T}_{+-}^{--} \\ \mathcal{T}_{++}^{+-} \quad \mathcal{T}_{+-}^{+-} \\ \mathcal{T}_{++}^{+-}$$

LHCb meeting 2024 15 / 16

- From Ward identities, we find that the processes with \mathcal{L}_V vertices violating unitarity are $V'V' \rightarrow \overline{f}f$, $V'f \rightarrow V'f$, i.e., $\mathcal{T}_{\lambda_1\lambda_2}^{\lambda_3\lambda_4} \propto s^{\alpha}$ with $\alpha > 0$
- For \mathcal{L}_D amplitudes grow with energy because it is a dim-5 operator in the EFT.
- At high energies $s \gg m_i^2 \quad \forall i$, scattering longitudinal V' is equivalent to scattering scalars
- Stückelberg decomposition is equivalent to GBET, $(V'_{\mu})_{
 m longitudinal} \propto -\partial_{\mu}\pi$
 - $(\mathcal{L}_V)_{\text{longitudinal}} = i \frac{\pi}{\Lambda} \bar{f}_i \left(\mathbb{C}_{ij}^V \left(m_i m_j \right) + \gamma_5 \mathbb{C}_{ij}^{V5} \left(m_i + m_j \right) \right) f_j \rightarrow \text{masses!}$
 - $(\mathcal{L}_D)_{\text{longitudinal}} = 0$