

Availability and Luminosity in the Future Circular Electron-Positron Collider (FCC-ee)

Jack Heron, Milosz Blaszkiewicz, Lukas Felsberger, Daniel Wollmann, Jan Uythoven

jack.heron@cern.ch

22nd May 2024

Large Hadron Collider (LHC) 27km

Future Circular Collider (FCC) 91km

FCC Timeline

FCC-ee (electron-positrons)

Availability $A = \frac{\text{Up time}}{\text{Total physics time}}$

Total physics time T = 185 days

Efficiency $E = \frac{\text{Stable Beams time}}{\text{Total physics time}}$

Nominal Luminosity L

Integrated Luminosity $L_{int} = ETL$

To reach targets

Availability $A = \frac{\text{Up time}}{\text{Total physics time}} = 80\%$

Total physics time T = 185 days

Efficiency $E = \frac{\text{Stable Beams time}}{\text{Total physics time}} = A - 5\% = 75\%$ Nominal Luminosity L

Integrated Luminosity $L_{int} = ETL$

B. Auchmann *et al.*, "Future Circular Collider Midterm Report," CERN, Geneva, Switzerland, Tech. Rep., 2024, <u>https://new-cds.cern.ch/records/zh1gz-52t41</u>.

A. Abada *et al.*, "FCC-ee: The Lepton Collider: Future Circular Collider Conceptual Design Report Volume 2," *European Physical Journal: Special Topics*, vol. 228, no. 2, pp. 261–623, 2019. doi:10.1140/epjst/e2019-900045-4

Large Hadron Collider (LHC) Availability

Three-step approach

1. Targets

• FCC-ee availability targets

J. W. Heron, L. Felsberger, D. Wollmann, J. Uythoven and F. Rodriguez-Mateos, "Availability targets scaled according to assurance complexity in the FCC-ee," Engineering; Accelerators and Storage Rings, 2023, <u>https://cds.cern.ch/record/2880189</u>

More info

M. Blaszkiewicz *et al.*, "Availsim4 – an open-source frame- work for availability and reliability simulations," in *Advances in Reliability, Safety and Security. ESREL Contributions*, 2024.

jack.heron@cern.ch

2. Forecasts

FCC-ee Operation Cycle

<u>Z,W</u>

FCC-ee Operation Cycle

FCC-ee Operation Cycle

Two fault types:

Remote Repair Faults

- Repair achieved from the control room
- E.g. by resetting components

Human Repair Faults

- Requires human intervention
- Add approach time to the repair duration

https://www.istockphoto.com/vector/isometric-control-center-gm164401684-15526568 https://www.flaticon.com/free-icon/technician_6342684

2. Forecasts

Approach Time

20 min – 1h+

CERN

22 May 2024

Inputs Required for each System

- Probability distributions:
 - Fault rate (MTBF)
 - Repair time (MTTR)
- Approach time
 - Based on location around the ring
- Redundancy:
 - "Can continue without 1 in 10 of these components"

Only completed for RF system so far!

faults

For remote and

human repair

22 May 2024

2. Forecasts

2. Forecasts

RF System

Z, W

- High current, beam loading
- 136-320 cavities

Originally:

 RF trip => beam dump (0% redundancy)

Latest analysis:

 10% redundancy is the theoretical limit

Energy Mode	Z		$oldsymbol{W}$		H		$tar{t}$	
	$45.6 {\rm GeV}$		$80 {\rm GeV}$		$120 {\rm GeV}$		$182.5~{\rm GeV}$	
	main^*	booster	main [*]	booster	main [†]	booster	main [†]	booster
Voltage (MV)	80	140	1050	1050	2100	2100	9200 [‡]	11300
Cavity voltage (MV)	1.43	5.83	7.95	18.75	7.95	18.75	18.85	18.83
Gradient (MV/m)	3.81	6.23	10.61	20.01	10.61	20.01	20.12	20.10
Beam current (mA)	1280	128	135	13.5	53.4	3	10	0.5
# Cells / cavity	- 1	5	2	5	2	5	5	5
# Cavities	56	24	132	56	264	112	752 [‡]	600

Table 1: RF configurations in FCC-ee [50]*Per beam; [†]Both beams; [‡]Includes cavities from H mode

H, tt

- Low current, high voltage
- 376-1352 cavities
- 10% voltage redundancy

J. W. Heron *et al.*, "Machine protection and availability in the FCC-ee," *Engineering; Accelerators and Storage Rings*, 2023, <u>https://cds.cern.ch/record/2880188</u>

Ivan Karpov, "Status of the RF study on the 2-cell cavity for Z operation", 181st FCC-ee Optics Design Meeting & 52nd FCCIS WP2.2 Meeting, 21st March 2024, <u>https://indico.cern.ch/event/1392548/</u>

All other systems

FCC-ee System Availability Targets A_s

For system s:

- MTTR_s consistent with similar systems
- Drive time t_{ds} added according to system's location around the ring

2. Forecasts

• Exponential distributions used

$$MTBF_s = \frac{A_s}{1 - A_s} \left(MTTR_s + t_{ds} \right)$$

J.W. Heron, L. Felsberger, D. Wollmann, J. Uythoven and F. Rodriguez-Mateos, "Availability targets scaled according to assurance complexity in the FCC-ee," *Engineering; Accelerators and Storage Rings*, 2023, https://cds.cern.ch/record/2880189.

Repair Schedules

https://www.istockholot.com/vector/isometric-control-center-gm164401684-15526 https://www.flaticon.com/free-icon/technician 6342684 https://www.flaticon.com/free-icon/driving 7481812

Repair Schedules

https://www.istockbhoto.com/vector/isometric-control-center-em164401684-1552656 https://www.flaticon.com/free-icon/technician_6342684 https://www.flaticon.com/free-icon/frivine_7481812

<u>"Realistic"</u> Repair Timeline:

2. Forecasts

2. Forecasts

Availability

2. Forecasts

Integrated Luminosity

CERN

Two R&D Opportunities

(1) Indefinite physics

Pilot bunch lifetime > natural polarization time

Two R&D Opportunities

(2) Pre-Polarised Bunch Injections (PPBI)

Inject already-polarized bunches

Gain over the baseline configuration

CERN

Four and two IPs

Conclusions

- Simulation to formalize relationship between availability and integrated luminosity
- RF system
 - Z mode minimum redundancy at 4%
- Significant shortfall in integrated luminosity for W mode.
 - Expected to get even worse as more systems are modelled in detail
- Pre-Polarised Bunch Injection may be extremely valuable to boost luminosity:
 - 15-40 % gain over the baseline configuration
 - Positive effect becomes even more relevant for increasing fault rate.
- Outlook
 - Continuation of bespoke modelling of systems (like for the RF)
 - Identify shortfalls and assess impact of solutions on accelerator performance
- The best time to model availability is now

Fault rate of all systems (faults per hour)

22 May 2024

home.cern

Instantaneous Luminosity

- **4IPs:** Mid Term Configuration, 2024
- **2IPs:** CDR Configuration, 2019

	Number of IPs	Z	W	Н	tī
Luminosity <i>L</i> per IP $(10^{34}cm^{-2}s^{-1})$	2	230	28	8.5	1.55
	4	141	20	5	1.25

Instantaneous Luminosity

