Why do we need a Higgs factory?

Matej Haviernik

Future Colliders for Early-Career Researchers

Prague 2024

27.09.2024

1

I'm not a theoretical physicist Working on ATLAS

Discovery of Higgs

LHC as a "Higgs factory"

Production and decay channels at LHC

Discovery of Higgs

LHC as a "Higgs factory" – what will future Higgs factories bring to the table?

Higgs as a (B)SM probe

- Invisible decay width search for new particles
- Tension with SM in measurements of Higgs EW couplings and self-couplings (nature of Higgs potential, EWPT)

Higgs as a (B)SM probe

- Invisible decay width search for new particles
- Tension with SM in measurements of fermion/IVB couplings and self-couplings (nature of Higgs potential, EWPT)

BUT ALSO:

Electroweak factory

precision in Γ_Z , m_Z , Γ_W , m_W ...

weakly coupled BSM particles

flavour puzzle (CKM matrix, suppressed decay modes, lepton universality)

Higgs as a (B)SM probe

- Invisible decay width search for new particles
- Tension with SM in measurements of fermion/IVB couplings and self-couplings (nature of Higgs potential, EWPT)

BUT ALSO:

Electroweak factory

precision in Γ_Z , m_Z , Γ_W , m_W ...

weakly coupled BSM particles

flavour puzzle (CKM matrix, suppressed decay modes, lepton universality)

Top factory

precision in Γ_t , m_t

top couplings in EW sector

upper bounds on FCNC branching ratios

- SM prediction -> $\Gamma_H^{SM} = 4.1 \text{ MeV}$
 - Too small for detector resolution at LHC
- Off-shell measurements

$$gg \to H^* \longrightarrow H^* \to ZZ \to 4\ell$$

ATLAS Collaboration. Constraints on the off-shell Higgs boson signal strength in the high-mass ZZ and WW final states with the ATLAS detector. Eur. Phys. J. C **75**, 335 (2015) 11

- SM prediction -> $\Gamma_H^{SM} = 4.1 \text{ MeV}$
 - Too small for detector resolution at LHC
- Off-shell measurements

10

ATLAS Collaboration. Constraints on the off-shell Higgs boson signal strength in the high-mass ZZ and WW final states with the ATLAS detector. Eur. Phys. J. C 75, 335 (2015) 12

10^{-′} dơ/dm_{4I} [fb/GeV] • SM prediction -> $\Gamma_H^{SM} = 4.1 \text{ MeV}$ ATLAS Simulation √s = 8 TeV Too small for detector resolution at LHC 10^{-2} $gg \rightarrow H^* \rightarrow ZZ(S)$ Off-shell measurements $gg \rightarrow ZZ (B)$ - gg \rightarrow (H* \rightarrow) ZZ •• gg \rightarrow (H* \rightarrow) ZZ ($\mu_{\text{off-shell}}$ =10) 10^{-3} $gg \to H^*$ • $H^* \to ZZ \to 4\ell$ 10-4 Enhanced production at around $2m_{7}$ 10⁻⁵ 10⁻⁶ $\frac{\sigma_{\rm off-shell}}{\Gamma_H} \propto \Gamma_H$ 200 400 600 800 1000 $\sigma_{\rm on-shell}$ $m_{ZZ}[GeV]$ $2m_7$

ATLAS Collaboration. Constraints on the off-shell Higgs boson signal strength in the high-mass ZZ and WW final states with the ATLAS detector. Eur. Phys. J. C 75, 335 (2015)

ATLAS Collaboration. Evidence of off-shell Higgs boson production from ZZ leptonic decay channels and constraints on its total width with the ATLAS detector. Physics Letters B, 846, 138223. (2023)

Measuring total decay width

Hadron colliders

- Diphoton spectrum peak shape interference effects between S and B (low sensitivity)
- Global fit of *H* couplings
- $H \rightarrow ZZ^*/H^* \rightarrow ZZ$ decay (model-dependent)
- Lepton colliders
 - $e^+e^- \rightarrow ZH$ cross section
 - Recoil mass with $Z \rightarrow \ell^+ \ell^-$ removes need to directly tag H decay
 - Small systematic uncertainties

Measuring total decay width

Hadron colliders

- Diphoton spectrum peak shape interference effects between S and B (low sensitivity)
- Global fit of *H* couplings
- $H \rightarrow ZZ^*/H^* \rightarrow ZZ$ decay (model-dependent)
- Lepton colliders
 - $e^+e^- \rightarrow ZH$ cross section
 - Recoil mass with $Z \rightarrow \ell^+ \ell^-$ removes need to directly tag H decay
 - Small systematic uncertainties

Collider	δΓ _H [%] ^[1]
HL-LHC	20
CEPC	2.8
CLIC ₃₈₀	4.7
CLIC ₁₅₀₀	2.6
CLIC ₃₀₀₀	2.5
FCC-ee ₂₄₀	2.7
FCC-ee ₃₆₅	1.3
ILC ₂₅₀	2.3
ILC ₅₀₀	1.6
ILC ₁₀₀₀	1.4

Precision in Higgs coupling

Expressed in κ-framework

• $\frac{\Gamma_{H \to VV}}{\Gamma_{H \to VV}^{SM}} = \kappa_V^2$, $\frac{\sigma_{ggH}}{\sigma_{ggH}^{SM}} = \kappa_g^2$, ...

Motivation:

Increase precision where κ_i serves as an input

Search for deviations from SM predictions

Higgs potential - EW phase transition

Higgs Boson studies at future particle colliders. Journal of High Energy Physics, 2020(1). arXiv:1905.03764

• Terms responsible for Higgs self-interaction in the SM lagrangian:

•
$$V(H) = \frac{m_H^2}{2}H^2 + \lambda_3 v H^3 + \lambda_4 H^4$$

• In SM:
$$m_H = \sqrt{2\lambda v^2}$$
, $\lambda_3 = \lambda$, $\lambda_4 = \frac{1}{4}\lambda$ $\kappa_3 = \frac{\lambda_3}{\lambda}$

Czodrowski, P., Kobel, M., & Cowan, T. Improvement of a Data-Driven Method for the Simulation of the $\tau\tau$ -Mass Shape in Z $\rightarrow \tau\tau \rightarrow ee + 4\nu$ for ATLAS at the LHC (2009)

Terms responsible for Higgs self-interaction in the SM lagrangian:

•
$$V(H) = \frac{m_H^2}{2}H^2 + \lambda_3 v H^2 + \lambda_4 H^4$$

• In SM:
$$m_H = \sqrt{2\lambda v^2}$$
, $\lambda_3 = \lambda$, $\lambda_4 = \frac{1}{4}\lambda$ $\kappa_3 = \frac{\lambda_3}{\lambda}$

• Low
$$\sqrt{s}$$
 (< 500 GeV) -> indirect measurement

- ZH "Higgsstrahlung"
- *VBF* Vector boson fusion

Di Vita et al. (2018). A global view on the Higgs self-coupling at lepton colliders. *Journal of High Energy Physics, 2018(2).* arXiv: 1711.03978

Terms responsible for Higgs self-interaction in the SM lagrangian:

1

•
$$V(H) = \frac{m_H^2}{2}H^2 + \lambda_3 v H^2 + \lambda_4 H^4$$

• In SM:
$$m_H = \sqrt{2\lambda v^2}$$
, $\lambda_3 = \lambda$, $\lambda_4 = \frac{1}{4}\lambda$ $\kappa_3 = \frac{\lambda_3}{\lambda}$

• Low \sqrt{s} (< 500 GeV) -> indirect measurement

- ZH "Higgsstrahlung"
- VBF Vector boson fusion
- Higher \sqrt{s} -> possibility of direct measurements
 - Double Higgs production

Di Vita et al. (2018). A global view on the Higgs self-coupling at lepton colliders. *Journal of High Energy Physics, 2018(2).* arXiv: 1711.03978 21

Motivation: Higgs potential responsible for mass acquisition through EWSB

- Precise measurements necessary to show potential deviations/departures from SM form
- Behavior of Higgs potential during cooling after Big Bang

STANDARD MODEL OF ELEMENTARY PARTICLES

QUARKS LEPTONS GAUGE BOSONS SCALAR BOSONS

STANDARD MODEL OF ELEMENTARY PARTICLES

HL-LF

- Motivation: Higgs couplings to light fermions out of reach for current colliders
- Light quarks: $H \rightarrow (\rho \varphi \omega) \gamma$
- Electron resonance: $e^+e^- \rightarrow H$

Blas, J. et al. (2020). Higgs Boson studies at future particle colliders. Journal of High Energy Physics, 2020(1). arXiv: 1905.03764 27

Conclusion

- Higgs factory will serve as a EW/top factory as well
 - Large statistic of W, Z bosons, t quarks
- Increased precision in the Higgs sector -> test of the Standard Model
 - Precise measurements of particle properties, upper bounds on suppressed/SM-violating processes
- Increased statistic -> searches for unknown particles

Thank you for your attention!

References

[1]: Blas, J et al. Higgs Boson studies at future particle colliders. *Journal of High Energy Physics, 2020(1).* arXiv: 1905.03764