Detector concepts for FCC-ee Future Colliders for Early-Career Researchers: CZ/SK Edition

Co-funded by the European Union Filomena Sopkova, 27.9.2024

The ECFA and ECR Panel

- ECFA European Committee for Future Accelerators
 - Iong-range planning of European high-energy facilities
 - the European countries which are Member States of CERN participate in ECFA
- Since 2020 an Early Career Researcher (ECR) Panel exists
 - advisory role to ECFA
- ECFA released in 2011 a full roadmap (200 pages) based on a community-driven effort
 - Overview of future facilities (ILC, CLIC, FCC-ee/hh, Muon collider) or major upgrades (ALICE, LHC-b) and timelines, Ten "General Strategic Recommendations"
 - The most urgent R&D topics identified as Detector R&D Themes
 - Approved by CERN in fall 2022

CERN will host DRD collaborations

- Gaseous Detectors (DRD1) [ex RD51] • Liquid Detectors (DRD2) • Photodetectors & Particle ID (DRD4)

- Calorimetry (DRD6)

Fully Approved for an initial period of 3 years by CERN Research Board in December 2023

- Presented at March open DRDC session: https://indico.cern.ch/event/1356910/

```
Both aim for• Quantum Sensors (DRD5)approval now• Electronics (DRD7)
```

Letter of Intent submitted - • Integration (DRD8) Full Proposal to be written by the end of 2024

CERN will host DRD collaborations

• Liquid Detectors (DRD2) in December 2023

Presented at March open DRDC session: https://indico.cern.ch/event/1356910/

Fully Approved for an initial period of 3 years by CERN Research Board

- - approval now

• Gaseous Detectors (DRD1) [ex RD51] Photodetectors & Particle ID (DRD4) Calorimetry (DRD6)

Both aim for _____ • Quantum Sensors (DRD5) approval now _____ • Electronics (DRD7)

Letter of Intent submitted - • Integration (DRD8) Full Proposal to be written by the end of 2024

pp collisions vs. e⁺e⁻ collisions

pp: look for striking signal in large background

- High rates of QCD backgrounds
 - Complex triggering schemes
 - High levels of radiation
- High cross-sections for coloured states
- High-energy circular pp colliders feasible
 - \blacktriangleright Large mass reach \rightarrow direct exploration
- S/B ≈ 10⁻¹⁰ before trigger; S/B ≈ 0.1 after trigger

e⁺e⁻: detect everything; measure precisely

- Clean experimental environment
 - Trigger-less readout
 - Low radiation levels
- Superiour sensitivity for electro-weak states
- Limited direct mass reach
- S/B ≈ 1 → precision measurement
 - Exploration via precision

FCC-ee as Higgs & EW & top factory at highest luminosities

FCC-ee parameters		Z	W+W-	ZH
√s	GeV	91.2	160	240
Luminosity / IP	10 ³⁴ cm ⁻² S ⁻¹	140	20	5.0
Bunch spacing	ns	25	160	680
"Physics" cross section	pb	35,000	10	0.2
Total cross section	pb	70,000	30	10
Event rate	Hz	100,000	6	0.5
"Pile up" parameter [μ]	10 ⁻⁶	2,500	1	1

- 8 surface points:
 - 4 experimental areas
- detector concepts under study
- possibility to specialised detectors to maximise physics output
- FCC integrated project allows seamless continuation of HEP after HL-LHC

Connection tunnels Electrical alcoves Klystron galleries

EW & QCD

- 5×10^{12} Z and 10^8 WW events
 - $m_Z, \Gamma_Z, \Gamma_{inv}, \sin^2 \theta_W, m_W, \Gamma_W,$
- 10^6 tt events
 - m_t, Γ_t , EW coupling
- indirect sensitivity of new physics

Feebly coupled particles BSM

- opportunity to directly observe new feebly interacting particles with masses below m_Z
- axion-like particles, dark photons, heavy neutral leptons
- long lifetime LLPs

FCC-ee

Higgs factory programme

- 1.2×10^6 ZH events at $\sqrt{s} = 240$ GeV
- 75×10^3 WW -> H events at $\sqrt{s} = 365 \text{ GeV}$
- Higgs coupling to fermions
- electron self coupling in s-channel $e^+e^- \rightarrow H$ at $\sqrt{E} = 125$ GeV

Heavy Flavour programme

- 10^{12} bb/cc; $1.7 \times 10^{11} \tau \tau$ produced in clean environment
- CKM matrix, CP measurements flavour anomaly studies, lepton universality

The detector requirements for a Higgs factory have been extensively studied by the Linear collider community

- They need to be revised for FCC-ee:
 - different experimental environment
 - momentum resolution "as good as we can get it"
 - Jet energy resolution of $30 \% / \sqrt{E}$ in multi-jet environment for Z/W separation
 - Excellent π^0/γ separation and measurement for tau physics

Detector requirements

- K/π separation over wide momentum range for *b* and τ physics
- Large decay lengths -> extended detector volume
- Precise timing for velocity (mass) estimate
- Sensitivity to far detached vertices
 - tracking: more layers, continuous tracking
 - calorimeter: granularity, tracking capability

Current Detector Concepts defined by calorimetry

CLD

- well established design
 - ILC -> CLIC detector -> CLD
- Full Si vtx + tracker , study TPC option viability
- CALICE-like calorimetry Si-W granular ECal
- large coil, muon system

- A bit less established design, still ~15y history
- Si vtx detector; ultra light drift chamber with powerful PID; compact, light coil
- monolithic dual readout calorimeter;
 - possibly augmented by crystal ecal
- muon system

IDEA

- Si vtx detector; ultra light drift chamber (or Si)
- High granularity Noble Liquid ecal as core
 - Pb/W+LAr (or denser W+LKr)
- Tile-like hcal
- coil inside same cryostat as LAr, outside ecal
- muon system

0.163

- Measurement of energy and direction of jets and isolated particles, in particular neutrals γ , π^0 , n, K_L^0
 - Sensitivity down to few 100 MeV
- Particle identification: discrimination of e/π , μ/h , γ/π^0

Important characteristics

- Electromagnetic energy resolution
- Hadronic energy resolution
- Jet energy resolution a key benchmark of the e⁺e⁻ detector performance
- Granularity (transverse and longitudinal)
- Two different but complementary approaches considered:
 - High granularity calorimeter Particle Flow algorithm
 - Dual Readout (DRO) calorimeter

ALLEGRC

Noble liquid Calorimetry in ALLEGRO ALLEGRO - A Lepton collider Experiment with Granular calorimetry ReadOut High granular noble liquid ECal - PFlow reconstruction Optimised for full FCC-ee physics program Charles Uni. is involved in the development of the noble liquid calorimeter - Successfully applied in a number of HEP experiments - Excellent energy resolution, linearity, stability, uniformity, good timing properties, easy to calibrate, high granularity

ALLEGRO - A Lepton collider Experiment with Granular calorimetry ReadOut

- High granular noble liquid ECal PFlow reconstruction
- Optimised for full FCC-ee physics program
- Successfully applied in a number of HEP experiments
- Excellent energy resolution, linearity, stability, uniformity, good timing properties, easy to calibrate, high granularity

- Sampling calorimetry relying on ionisation
- Based on alternating layers of absorbers, noble liquid and read-out electrodes voltage applied over noble liquid gap

 - incident particle ionises noble liquid
 - e drift to electrodes for signal pick-up

Noble liquid Calorimetry in ALLEGRO

ECal barrel

- ► 1536 straight inclined (50.4°) 2 mm absorbers
- LKr or LAr active medium
- ► W or Pb absorbers
- Absorbers thicker at outer radius

ECal endcap

- design more complex then barrel
- "turbine design"
- similar to barrel design many thin absorber plates
- symmetric in ϕ

HCalin ALLEGRO

HCal barrel

- Inspired by ATLAS TileCal, implemented in simulation studies
- 5 mm steel absorber plates alternating with 3 mm scintillator plates
- ► 1400 mm deep $(8 9\lambda)$
- Segmentation
 - $\Delta\theta \sim 22 \text{ mrad}$ (grouping 3 4 tiles)
 - ▶ 128 modules in ϕ
- ► 13 radial layers (4×5 cm, 6×10 cm, 3×20 cm)

Start o	of FCC-e	e phys	ics run
	2047 – 🧥 🦨	- 2047	
	2046 –	– 2046	
Start accelerator commissioning	2045 –	- 2045	Start detector commissioning
	2044 –	- 2044	
	2043 –	- 2043	
End of HL-LHC	2042 -	- 2042	Start detector installation
Start accelerator installation	2040 -	- 2040	
	2039 –	– 2039	
	2038 –	– 2038	
	2037 –	– 2037	
Industrialisation and component production	2036 -	- 2036	Detector component production
Technical design & prototyping completed	2035 –	- 2035	Four detector TDRs completed
	2034 –	– 2034	
	2033 –	– 2033	
Start of ground-breaking and CE at IPs	2032 -	- 2032	
	2031 –	- 2031	Detector CDRs (>4) submitted to FC ³
End of ULLUC ungrado, more ATS personnel available	2030 -	- 2030	End of ULLUC ungrado, more detector exports available
ECC Approval: Start of prototyping work	2029 -	- 2029	EC ³ formation call for CDPs, callaboration forming
ree Approval. Start of prototyping work	2020 -	- 2020	FC TOrmation, can for CDRS, conaboration forming
	2026 –	- 2026	European Strategy Update: FCC Recommendation
FCC Feasibility Study Report	2025 -	- 2025	Detector Eol submission by the community
FCC-ee Accelerator	14		FCC-ee Detectors
	кеу с	lates	
		15	

- ✓ Physics on Run3
- ✓ Successful installation & commissioning of HL-LHC

✓ Detector R&D

Postdoc

✓ HL-LHC physics & operations

Experiment - specific detector prototypes for FCC-ee

Faculty&Tenure

✓ Physics on HL-LHC

✓ Build FCC-ee detectors

✓ FCC-ee experimental leadership/project

We have to work to make it happen

makeameme.org

2020 UPDATE OF THE EUROPEAN STRATEGY FOR PARTICLE PHYSICS

FCC-ee

FCC-hh

FUTURE CIRCULAR COLLIDER Feasibility Study "The successful completion of the high-luminosity upgrade of the machine and detectors should remain the focal point of European particle physics, together with continued innovation in experimental techniques."

"The full physics potential of the LHC and the HL-LHC, including the study of flavour physics and the quark-gluon plasma, should be exploited."

"An electron-positron Higgs factory is the highest-priority next collider. For the longer term, the European particle physics community has the ambition to operate a proton-proton collider at the highest achievable energy."

"Europe, together with its international partners, should investigate the technical and financial feasibility of a future hadron collider at CERN with a centre-of-mass energy of at least 100 TeV and with an electron-positron Higgs and electroweak factory as a possible first stage."

"Such a feasibility study of the colliders and related infrastructure should be established as a global endeavour and be completed on the timescale of the next Strategy update."

Source: https://cds.cern.ch/record/2721370

- Interaction region detectors must be integrated with the beam pipe
- Constraints from machine detector interface
 - last focusing quadrupole at ± 2.2 m from IP
 - magnetic field $\leq 2T$ for Z-pole run
 - the mounting of the vertex tracker must be done inside the support tube

Inner Vertex tracker

- Modules $25 \times 25 \mu m^2$ pixel size
- 3 barrel layer at 13.7, 22,7 and 34.8 mm radius
- Challenges : material budget, power & cooling, detector stability
 - Flavour tagging: low mass, small pixel size, close to IP, low power, ...

 - Large number of measurement points along the tracks is crucial for an efficient reconstruction of K, Λ or other LLP

Outer Vertex tracker

- Modules $50 \times 150 \mu m^2$ pixel size
- Intermediate barrel at 13 cm radius
- Outer barrel at 31.5 radius
- 3 disks per side

Tracking: the lighter the better for momentum resolution, angular resolutions needed for control of beam energy spread

Vertex Detector & Tracking

Outer Vertex tracker

- Modules $50 \times 150 \mu m^2$ pixel size
- Intermediate barrel at 13 cm radius
- Outer barrel at 31.5 radius
- 3 disks per side

Inner Vertex tracker

- Modules $25 \times 25 \mu m^2$ pixel size
- 3 barrel layer at 13.7, 22,7 and
 34.8 mm radius

Measuring the rate of Bhabha events at low angles. The well known Bhabha scattering cross section will allow the precise determination of the luminosity of the ILC. Aim to achieve precision 10^{-4}

Extend detector coverage to low polar angles - important for new particle searches with a missing energy signature

Luminosity measurement

