
Juraj Smieško () as part of the FCC Software team

Prague, CZ

27 September 2024

FCC Physics Software
CERN

Future Colliders for Early-Career Researchers: CZ/SK Edition

1

https://hep-fcc.github.io/
https://home.cern/
https://indico.cern.ch/event/1428748/
https://hep-fcc.github.io/
https://home.cern/
https://indico.cern.ch/event/1428748/

Future Circular Collider
Energy and luminosity upgrade in an integrated program

• FCC-ee (Z, WW, H, ttbar):
Highest luminosities at Z, W, ZH among
proposed Higgs and EW factories with
indirect discovery potential up to ~ 70 TeV

• FCC-hh (~100 TeV):
Direct exploration of next energy frontier (~ x10 LHC) and
unparalleled measurements

• Feasibility Status Report in 2025
• More than 150 institutes from 30 countries already involved

source: FCC Layout — Aerial View

2

https://fcc.web.cern.ch/fcc-layout-aerial-view
https://fcc.web.cern.ch/fcc-layout-aerial-view

Ingredients of FCC Physics Software

3

Set of common software packages, tools, and standards for different Detector/Collider Concepts

• Common effort from FCC, CLIC/ILC, EIC, CEPC, …
▪ Preserves and adapts existing functionanlity from iLCSoft, FCCSW,

CEPCSW, …

• Individual participants adjust their stack to their needs
• Main ingredients:

▪ Event data model:
▪ Data processing framework:
▪ Detector description:
▪ Software distribution:

• Bi-weekly meetings
▪ Tuesday, 9:00 AM GVA;

Key4hep

EDM4hep
Gaudi

DD4hep
Spack

Indico category

4

https://key4hep.github.io/key4hep-doc/
https://edm4hep.web.cern.ch/
https://gaudi.web.cern.ch/gaudi/
https://dd4hep.web.cern.ch/dd4hep/
https://spack.io/
https://indico.cern.ch/category/11461/
https://key4hep.github.io/key4hep-doc/
https://edm4hep.web.cern.ch/
https://gaudi.web.cern.ch/gaudi/
https://dd4hep.web.cern.ch/dd4hep/
https://spack.io/
https://indico.cern.ch/category/11461/

 I.
Describes event data with the set of standard objects

• Specification in a single YAML file
• Generated with the help of

EDM4hep

Podio

5

https://edm4hep.web.cern.ch/
https://github.com/AIDASoft/podio
https://edm4hep.web.cern.ch/
https://github.com/AIDASoft/podio

 II.
Example object:

• Current version: v0.99.0
▪ Approaching version 1.0
▪ Backward compatibility

• Objects can be extended / new created
• Bi-weekly discussion:

▪ Tuesday, 9:00 AM GVA;

EDM4hep
#------------- CalorimeterHit
edm4hep::CalorimeterHit:
Description: "Calorimeter hit"
Author: "EDM4hep authors"
Members:

- uint64_t cellID // detector specific (geometrical) cell id
- float energy [GeV] // energy of the hit
- float energyError [GeV] // error of the hit energy
- float time [ns] // time of the hit
- edm4hep::Vector3f position [mm] // position of the hit in world coordinates
- int32_t type // type of hit

1
2
3
4
5
6
7
8
9
10
11

Indico

6

https://edm4hep.web.cern.ch/
https://indico.cern.ch/category/11461/
https://edm4hep.web.cern.ch/
https://indico.cern.ch/category/11461/

Generates Event Data Model and serves as I/O Layer

• Generates EDM from YAML files
• Employs plain-old-data (POD) data structures
• I/O machinery consists of three layers

▪ POD Layer - actual data structures
▪ Object Layer - helps resolve the relations
▪ User Layer - full fledged EDM objects

• Supports multiple backends:
▪ ROOT, SIO, ...

• Current version: 1.0.1

Podio

7

https://github.com/AIDASoft/podio
https://github.com/AIDASoft/podio

Podio Reader
Constructs the EDM4hep objects for the user

Example usage of Podio Reader in Pyhton:

To inspect contents of the EDM4hep file use: podio-dump

from podio.root_io import Reader
reader = Reader("one or many input files")
for event in reader.get("events"):
 hits = store.get("hits")

for hit in hits:
...

1
2
3
4
5
6

8

Battle tested event processing framework

• Job of an event processing framework
▪ Stitches and steers various algorithms together
▪ Controls event loop
▪ Manages transient storage and I/O

• Used by current experiments: ATLAS, LHCb
• New developments: Gaudi::Functional
• Key4hep started life by attempting to reuse algorithms already developed
• Need for converters/wrappers:

k4MarlinWrapper, k4CLUE, k4GaudiPandora, …
• Selected over Marlin due to MT support

Hello World in Gaudi:

Source:

Gaudi

from Gaudi.Configuration import *
from Configurables import HelloWorldEx

alg = HelloWorldEx()

ApplicationMgr(
 EvtMax = 10,
 EvtSel = 'NONE',
 HistogramPersistency = 'NONE',
 TopAlg = [alg],
)

1
2
3
4
5
6
7
8
9

10
11

Gaudi

9

https://gaudi.web.cern.ch/gaudi/
https://gitlab.cern.ch/gaudi/Gaudi/
https://gaudi.web.cern.ch/gaudi/
https://gitlab.cern.ch/gaudi/Gaudi/

k4FWCore
Package with Key4hep Gaudi components

• Provides input and output of files, but also among algorithms
▪ IOSvc, DataHandle, MetaDataHandle

• Main program to run Gaudi steering: k4run
• Gaudi Functional allows proper multithreading

#include "Gaudi/Property.h"
#include "edm4hep/MCParticleCollection.h"
#include "k4FWCore/Consumer.h"
#include <stdexcept>
#include <string>

struct ExampleFunctionalConsumer final : k4FWCore::Consumer<void(const edm4hep::MCParticleCollection& input
 // The pair in KeyValues can be changed from python and it corresponds
 // to the name of the input collection
 ExampleFunctionalConsumer(const std::string& name, ISvcLocator* svcLoc)
 : Consumer(name, svcLoc, KeyValues("InputCollection", {"MCParticles"})) {}

 // This is the function that will be called to transform the data
 // Note that the function has to be const, as well as the collections
 // we get from the input
 void operator()(const edm4hep::MCParticleCollection& input) const override {

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

10

LCIO ↔ EDM4hep Converters
Integration of tools developed by linear collider community

• wraps Marlin processor in a Gaudi algorithm and allows to run them unchanged
• LCIO ↔ EDM4hep converters do the conversion on the fly

k4MarlinWrapper

11

https://github.com/key4hep/k4MarlinWrapper
https://github.com/key4hep/k4MarlinWrapper

Detector description
The detector is completely described with the help of

• The description itself done by C++ builder and XML compact file(s)
▪ Every sub-detector needs specialized C++ builder class
▪ The XML compact files are organized in tree structure, which allows Plug-and-Play

• XML Schema defined by
• Specialized data can be attached to each sub-detector at runtime
• Simulation for FCC-ee done with ddsim — standalone simulation executable
• All FCC-ee (sub)detectors collected in repository in /FCCee
• FCC-hh baseline detector stayed in repository

DD4hep

LCSim

k4geo
FCCDetectors

12

https://dd4hep.web.cern.ch/dd4hep/
http://www.lcsim.org/schemas/
https://github.com/key4hep/k4geo
https://github.com/HEP-FCC/FCCDetectors
https://dd4hep.web.cern.ch/dd4hep/
http://www.lcsim.org/schemas/
https://github.com/key4hep/k4geo
https://github.com/HEP-FCC/FCCDetectors

 @
Visualizing FCC events in the browser.

ALLEGRO

o1_v03

Explore events in the FCC-ee

ALLEGRO detector concept.

Detailed detector visualization

Show

CLD

o2_v07

Explore events in the FCC-ee CLD

detector concept.

Detailed detector visualization

Show

CLD

o3_v01

Explore events in the FCC-ee CLD

detector concept.

Detailed detector visualization

Show

CLD

o4_v05

Explore events in the FCC-ee CLD

detector concept.

Detailed detector visualization

Show

IDEA

o1_v03

Explore events in the FCC-ee

IDEA detector concept.

Detailed detector visualization

Show

FCC-hh Baseline

Explore events in the FCC-hh

Baseline detector concept.

Detailed detector visualization

Show

Phoenix@FCC
13

https://fccsw.web.cern.ch/fccsw/phoenix/
https://fccsw.web.cern.ch/fccsw/phoenix/

Spack in Key4hep
Package management for supercomputing centers

• Distributes software in source form
• Every package can have multiple versions and configuration options
• Strives to not depend on the underlying OS as much as possible
• Peace of software is packaged by creating a recipe script
• The packages are stored in two repositories

▪ Main Spack
▪ Specialized Key4hep

• Compiled packages are published on CVMFS
▪ source /cvmfs/sw.hsf.org/key4hep/setup.sh
▪ source /cvmfs/sw-nightlies.hsf.org/key4hep/setup.sh
▪ source /cvmfs/fcc.cern.ch/sw/latest/setup.sh

source:

repository
repository

T. Madlener

14

https://github.com/spack/spack
https://github.com/key4hep/key4hep-spack
https://indico.cern.ch/event/1369601/contributions/5883605/attachments/2855728/4994561/key4hep_wlcg_hsf_140524.pdf
https://github.com/spack/spack
https://github.com/key4hep/key4hep-spack
https://indico.cern.ch/event/1369601/contributions/5883605/attachments/2855728/4994561/key4hep_wlcg_hsf_140524.pdf

Event Processing Workflow

15

Event Processing Workflow

source: G. Ganis

16

https://indico.cern.ch/event/1307378/contributions/5729657/attachments/2790624/4866694/FCC-SnC-Resources-Annecy-2024.pdf
https://indico.cern.ch/event/1307378/contributions/5729657/attachments/2790624/4866694/FCC-SnC-Resources-Annecy-2024.pdf

Generation
Theoretical efforts for ee generators is rumping up

• Most of the generators already packaged in Key4hep
▪ MadGraph5_aMC@NLO, Pythia6/8, Herwig3, Whizard, BabaYaga, KKMCee, Guinea-Pig, Sherpa, EvtGen, …

• Set of Gaudi algorithms and helpers packaged in
▪ Particle gun, particle filters, vertex smearing, …

• New effort for unified generator configuration packaged in
▪ Integrated: BabaYaga, KKMC, MadGraph, Pythia, Sherpa, Whizard

• Any generator outputting established format (HepMC2/3, hepevt, stdhep, …) can be input for Geant4 simulation with
ddsim

• Prefered formats: HepMC3 and EDM4hep
▪ Ongoing effort to make EDM4hep more suitable for generators

• Open topics include: ISR treatment, accuracy, Beam Energy Spread, crossing angle (+ spread), effect of the beams on
final state

k4Gen

k4GeneratorsConfig

17

https://github.com/HEP-FCC/k4Gen
https://github.com/key4hep/k4GeneratorsConfig/
https://github.com/HEP-FCC/k4Gen
https://github.com/key4hep/k4GeneratorsConfig/

Simulation
Propagation of particles or decay products through detector

• Full simulation for FCC-ee detectors using ddsim (part of DD4hep)
• Fast simulation handled by
• Framework integration with and Gaussino on back

burner
• Ongoing work on three FCCee detector concepts IDEA, CLD and

ALLEGRO almost complete
▪ Effort now shifting from detector description towards Digitization and

Reconstruction
▪ Bi-weekly meeting, Wed 11:00 AM GVA:

k4SimDelphes
k4SimGeant4

Indico category

18

https://github.com/key4hep/k4SimDelphes
https://github.com/HEP-FCC/k4SimGeant4
https://indico.cern.ch/category/16938/
https://github.com/key4hep/k4SimDelphes
https://github.com/HEP-FCC/k4SimGeant4
https://indico.cern.ch/category/16938/

Reconstruction

Pandora and Key4hep wrapper

• Efforts are packaged per sub-detector type, for example
▪ : Reconstruction of Noble Liquid based calorimeter
▪ : vertex and tracker reconstruction as well as tracking

• Or per reconstruction solution, e.g.
▪ : Wrapping of the Particle flow framework
▪ : Clustering algorithm from HGCAL

• Some of the ongoing efforts also include
▪ with Array of RICH Cells (ARC)
▪ Integration of into Key4hep
▪ Machine learning based

kRecCalorimeter
k4RecTracker

k4GaudiPandora
k4Clue

Particle identification
ACTS tracking

flavor tagging

19

https://github.com/HEP-FCC/k4RecCalorimeter
https://github.com/key4hep/k4RecTracker
https://github.com/key4hep/k4GaudiPandora
https://github.com/key4hep/k4Clue
https://indico.cern.ch/event/1307378/timetable/?view=standard#125-particle-identification-wi
https://indico.cern.ch/event/1307378/timetable/?view=standard#126-acts-in-key4hep
https://indico.cern.ch/event/1307378/timetable/?view=standard#68-updates-on-tagger-and-ml-re
https://github.com/HEP-FCC/k4RecCalorimeter
https://github.com/key4hep/k4RecTracker
https://github.com/key4hep/k4GaudiPandora
https://github.com/key4hep/k4Clue
https://indico.cern.ch/event/1307378/timetable/?view=standard#125-particle-identification-wi
https://indico.cern.ch/event/1307378/timetable/?view=standard#126-acts-in-key4hep
https://indico.cern.ch/event/1307378/timetable/?view=standard#68-updates-on-tagger-and-ml-re

Analysis with FCCAnalyses
Analysis framework build on top of ROOT RDataFrame
with input from EDM4hep

• Dependent on Key4hep Stack
• Manages input samples
• Has standard library of functions/functors
• Runs the dataframe
• Helps with histograms/plots
• Analyses Catalog:

▪

▪

• Bi-weekly meeting: Wed 4:00 PM GVA
▪

FCCeePhysicsPerformance
FCChhPhysicsPerformance

Indico category

20

https://hep-fcc.github.io/FCCeePhysicsPerformance/
https://hep-fcc.github.io/FCChhPhysicsPerformance/
https://indico.cern.ch/category/16938/
https://hep-fcc.github.io/FCCeePhysicsPerformance/
https://hep-fcc.github.io/FCChhPhysicsPerformance/
https://indico.cern.ch/category/16938/

ROOT RDataFrame

• Describes processing of data as actions on table columns
▪ Defines of new columns
▪ Filter rules
▪ Result definitions (histogram, graph)

• The actions are lazily evaluated
• Multi threading is available out of the box
• Optimized for bulk processing
• Allows integration of existing C++ libraries

21

Developing Key4hep / FCC Software
Access to CVMFS is crucial

Start by sourcing Key4hep stack from CVMFS

Usually, the packages are build with CMake

To make your local version visible in your current shell, run

source /cvmfs/sw.hsf.org/key4hep/setup.sh
or
source /cvmfs/sw-nightlies.hsf.org/key4hep/setup.sh

1
2
3

mkdir build install
cd build
cmake -DCMAKE_INSTALL_PREFIX=install ..
make -j4
make install
cd ..

1
2
3
4
5
6

k4_local_repo1

22

Documentation
• : Main page with signpost
• : Tutorials on how to get started with FCC Software
• : Growing documentation of the Key4hep and its components.
• : FCC-ee detectors implementation, simulation and reconstruction documentation
• : A glossary of HEP and FCC-specific terms and concepts.
• : Resurrecting ALEPH data in EDM4hep format (CERN log-in required).

FCC Software
FCC Tutorials
Key4hep Documentation
FCC-ee Detector Full Sim
FCC Software Glossary
ALEPH Documentation

23

https://hep-fcc.github.io/fcc-tutorials/
https://hep-fcc.github.io/fcc-tutorials/
https://cern.ch/key4hep/
https://fcc-ee-detector-full-sim.docs.cern.ch/
https://hep-fcc.github.io/glossary/
https://aleph-new.docs.cern.ch/
https://hep-fcc.github.io/fcc-tutorials/
https://hep-fcc.github.io/fcc-tutorials/
https://cern.ch/key4hep/
https://fcc-ee-detector-full-sim.docs.cern.ch/
https://hep-fcc.github.io/glossary/
https://aleph-new.docs.cern.ch/

Conclusions
• FCC is main stakeholder in the Key4hep stack project, which is

becoming established stack delivering physics results
• Strive for integration and/or interoperability continues
• EDM4hep reached version 1.0 — backwards compatibility from this release
• Functional Gaudi on the way
• Simulation, FullSim and Recontruction far from complete
• Plenty of work ahead of us and You can join our meetings

▪

▪

FCC Software Indico Category
Key4hep Indico Category

24

https://indico.cern.ch/category/5666/
https://indico.cern.ch/category/11461/
https://indico.cern.ch/category/5666/
https://indico.cern.ch/category/11461/

