FCC Physics Software

Juraj Smieško (CERN) as part of the FCC Software team

Future Colliders for Early-Career Researchers: CZ/SK Edition

Prague, CZ

27 September 2024

Future Circular Collider

Energy and luminosity upgrade in an integrated program

- FCC-ee (Z, WW, H, ttbar): Highest luminosities at Z, W, ZH among proposed Higgs and EW factories with indirect discovery potential up to ~ 70 TeV
- FCC-hh (~100 TeV): Direct exploration of next energy frontier (~ x10 LHC) and unparalleled measurements
- Feasibility Status Report in 2025
- More than 150 institutes from 30 countries already involved

source: FCC Layout — Aerial View

Ingredients of FCC Physics Software

Set of common software packages, tools, and standards for different Detector/Collider Concepts

- Common effort from FCC, CLIC/ILC, EIC, CEPC, ...
 - Preserves and adapts existing functionanlity from iLCSoft, FCCSW, CEPCSW, ...
- Individual participants adjust their stack to their needs
- Main ingredients:
 - Event data model: EDM4hep
 - Data processing framework: Gaudi
 - Detector description: DD4hep
 - Software distribution: Spack
- Bi-weekly meetings
 - Tuesday, 9:00 AM GVA; Indico category

EDM4hep I.

Describes event data with the set of standard objects

- Specification in a single YAML file • Generated with the help of Podio

EDM4hep II.

Example object:

1 #----- CalorimeterHit 2 edm4hep::CalorimeterHit: Description: "Calorimeter hit" 3 Author: "EDM4hep authors" 4 5 Members: - uint64_t cellID // detector specific (geometrical) cell id 6 - float energy [GeV] // energy of the hit 7 - float energyError [GeV] // error of the hit energy 8 - float time [ns] // time of the hit 9 - edm4hep::Vector3f position [mm] // position of the hit in world coordinates 10 - int32_t type // type of hit 11

- Current version: v0.99.0
 - Approaching version 1.0
 - Backward compatibility
- Objects can be extended / new created
- Bi-weekly discussion:
 - Tuesday, 9:00 AM GVA; Indico

Podio

Generates Event Data Model and serves as I/O Layer

- Generates EDM from YAML files
- Employs plain-old-data (POD) data structures
- I/O machinery consists of three layers
 - POD Layer actual data structures
 - Object Layer helps resolve the relations
 - User Layer full fledged EDM objects
- Supports multiple backends:
 - ROOT, SIO, ...
- Current version: 1.0.1

(*podio code generator) <mark>─</mark>+ 蕭 Jinja <mark>lass</mark> MCParticleData int PDG; CParticle: float charge; Members: double mass; - int PDG Vector3d vertex: - float charge - double mass - Vector3d vert .h/.cc YAML

Podio Reader

Constructs the EDM4hep objects for the user

Example usage of Podio Reader in Pyhton:

```
1 from podio.root_io import Reader
2 reader = Reader("one or many input files")
3 for event in reader.get("events"):
4 hits = store.get("hits")
5 for hit in hits:
6 # ...
```

To inspect contents of the EDM4hep file use: podio-dump

Gaudi

Battle tested event processing framework

- Job of an event processing framework
 - Stitches and steers various algorithms together
 - Controls event loop
 - Manages transient storage and I/O
- Used by current experiments: ATLAS, LHCb
- New developments: Gaudi::Functional
- Key4hep started life by attempting to reuse algorithms already developed
- Need for converters/wrappers: k4MarlinWrapper, k4CLUE, k4GaudiPandora, ...
- Selected over Marlin due to MT support

Hello World in Gaudi:

1 2	<pre>from Gaudi.Configuration import * from Configurables import HelloWorldEx</pre>
3 4 5	alg = HelloWorldEx()
6	ApplicationMgr(
7	EvtMax = 10,
8	EvtSel = 'NONE',
9	<pre>HistogramPersistency = 'NONE',</pre>
10	TopAlg = [alg],
11)

Source: Gaudi

k4FWCore

Package with Key4hep Gaudi components

- Provides input and output of files, but also among algorithms
 - IOSvc, DataHandle, MetaDataHandle
- Main program to run Gaudi steering: k4run
- Gaudi Functional allows proper multithreading

```
1 #include "Gaudi/Property.h"
2 #include "edm4hep/MCParticleCollection.h"
3 #include "k4FWCore/Consumer.h"
 4 #include <stdexcept>
 5 #include <string>
 6
7 struct ExampleFunctionalConsumer final : k4FWCore::Consumer<void(const edm4hep::MCParticleCollection& inp
    // The pair in KeyValues can be changed from python and it corresponds
 8
    // to the name of the input collection
9
    ExampleFunctionalConsumer(const std::string& name, ISvcLocator* svcLoc)
10
        : Consumer(name, svcLoc, KeyValues("InputCollection", {"MCParticles"})) {}
11
12
13 // This is the function that will be called to transform the data
14 // Note that the function has to be const, as well as the collections
15 // we get from the input
```

LCIO ↔ EDM4hep Converters

Integration of tools developed by linear collider community

- k4MarlinWrapper wraps Marlin processor in a Gaudi algorithm and allows to run them unchanged
- LCIO ↔ EDM4hep converters do the conversion on the fly

Detector description

The detector is completely described with the help of DD4hep

- The description itself done by C++ builder and XML compact file(s)
 - Every sub-detector needs specialized C++ builder class
 - The XML compact files are organized in tree structure, which allows Plug-and-Play
- XML Schema defined by LCSim
- Specialized data can be attached to each sub-detector at runtime
- Simulation for FCC-ee done with ddsim standalone simulation executable
- All FCC-ee (sub)detectors collected in k4geo repository in /FCCee
- FCC-hh baseline detector stayed in FCCDetectors repository

Visualizing FCC events in the browser.

o2_v07 Explore events in the FCC-ee CLD

detector concept.

Detailed detector visualization

Show

IDEA o1_v03

Explore events in the FCC-ee IDEA detector concept.

Show

o1_v03

Explore events in the FCC-ee

ALLEGRO detector concept.

Detailed detector visualization

Show

CLD 04_v05

Explore events in the FCC-ee CLD detector concept.

Detailed detector visualization

Show

Detailed detector visualization

detector concept.

Detailed detector visualization

Show

FCC-hh Baseline

Explore events in the FCC-hh Baseline detector concept.

Detailed detector visualization

Show

Phoenix@FCC

Spack in Key4hep

Package management for supercomputing centers

- Distributes software in source form
- Every package can have multiple versions and configuration options
- Strives to not depend on the underlying OS as much as possible
- Peace of software is packaged by creating a recipe script
- The packages are stored in two repositories
 - Main Spack repository
 - Specialized Key4hep repository
- Compiled packages are published on CVMFS
 - source /cvmfs/sw.hsf.org/key4hep/setup.sh
 - source /cvmfs/sw-nightlies.hsf.org/key4hep/setup.sh
 - source /cvmfs/fcc.cern.ch/sw/latest/setup.sh

source: T. Madlener

Event Processing Workflow

Event Processing Workflow

Software Infrastructure (Build/Test/Deploy)

source: G. Ganis

Workload and Data Management

Generation

Theoretical efforts for ee generators is rumping up

- Most of the generators already packaged in Key4hep
 - MadGraph5_aMC@NLO, Pythia6/8, Herwig3, Whizard, BabaYaga, KKMCee, Guinea-Pig, Sherpa, EvtGen, ...
- Set of Gaudi algorithms and helpers packaged in k4Gen
 - Particle gun, particle filters, vertex smearing, ...
- New effort for unified generator configuration packaged in k4GeneratorsConfig
 - Integrated: BabaYaga, KKMC, MadGraph, Pythia, Sherpa, Whizard
- Any generator outputting established format (HepMC2/3, hepevt, stdhep, ...) can be input for Geant4 simulation with ddsim
- Prefered formats: HepMC3 and EDM4hep
 - Ongoing effort to make EDM4hep more suitable for generators
- Open topics include: ISR treatment, accuracy, Beam Energy Spread, crossing angle (+ spread), effect of the beams on final state

Simulation

Propagation of particles or decay products through detector

- Full simulation for FCC-ee detectors using ddsim (part of DD4hep)
- Fast simulation handled by k4SimDelphes
- Framework integration with k4SimGeant4 and Gaussino on back burner
- Ongoing work on three FCCee detector concepts IDEA, CLD and ALLEGRO almost complete
 - Effort now shifting from detector description towards Digitization and Reconstruction
 - Bi-weekly meeting, Wed 11:00 AM GVA: Indico category

Reconstruction

Pandora and Key4hep wrapper

• Efforts are packaged per sub-detector type, for example • **kRecCalorimeter**: Reconstruction of Noble Liquid based calorimeter • k4RecTracker: vertex and tracker reconstruction as well as tracking • Or per reconstruction solution, e.g. k4GaudiPandora: Wrapping of the Particle flow framework k4Clue: Clustering algorithm from HGCAL • Some of the ongoing efforts also include Particle identification with Array of RICH Cells (ARC) Integration of ACTS tracking into Key4hep Machine learning based flavor tagging

Analysis with FCCAnalyses

Analysis framework build on top of ROOT RDataFrame with input from EDM4hep

- Dependent on Key4hep Stack
- Manages input samples
- Has standard library of functions/functors
- Runs the dataframe
- Helps with histograms/plots
- Analyses Catalog:
 - FCCeePhysicsPerformance
 - FCChhPhysicsPerformance
- Bi-weekly meeting: Wed 4:00 PM GVA
 - Indico category

Case studies (evolving list)

- 1. Electroweak physics at the Z peak
- 2. Tau Physics
- 3. Flavour physics
- 4. WW threshold
- 5. QCD measurements
- 6. Higgs physics
- 7. Top physics
- 8. Direct searches for new physics

ROOT RDataFrame

auto d2 = d.Filter("x > 0") // make histograms out of it auto hz = d2.Histo1D("z");

- Describes processing of data as actions on table columns
 - Defines of new columns
 - Filter rules
 - Result definitions (histogram, graph)
- The actions are lazily evaluated
- Multi threading is available out of the box
- Optimized for bulk processing
- Allows integration of existing C++ libraries

Developing Key4hep / FCC Software

Access to CVMFS is crucial

Start by sourcing Key4hep stack from CVMFS

1 source /cvmfs/sw.hsf.org/key4hep/setup.sh

2 # or

3 source /cvmfs/sw-nightlies.hsf.org/key4hep/setup.sh

Usually, the packages are build with CMake

1 mkdir build install 2 cd build 3 cmake -DCMAKE_INSTALL_PREFIX=install ... 4 make -j4 5 make install 6 cd ..

To make your local version visible in your current shell, run

1 k4_local_repo

Documentation

- FCC Software: Main page with signpost
- FCC Tutorials: Tutorials on how to get started with FCC Software
- Key4hep Documentation: Growing documentation of the Key4hep and its components.
- FCC-ee Detector Full Sim: FCC-ee detectors implementation, simulation and reconstruction documentation
- FCC Software Glossary: A glossary of HEP and FCC-specific terms and concepts.
- ALEPH Documentation: Resurrecting ALEPH data in EDM4hep format (CERN log-in required).

Conclusions

- FCC is main stakeholder in the Key4hep stack project, which is becoming established stack delivering physics results
- Strive for integration and/or interoperability continues
- EDM4hep reached version 1.0 backwards compatibility from this release
- Functional Gaudi on the way
- Simulation, FullSim and Recontruction far from complete
- Plenty of work ahead of us and You can join our meetings
 - FCC Software Indico Category
 - Key4hep Indico Category

n far from complete an join our meetings