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Δημόκριτος | Democritus

Simplicity is the key to the physics.

Matter =  atom∑

A frame of physical thinking:                                   
 

Complex =  simple∑

Frame of Physical thinking : reductionism



• Physics=Seeking the simplicity. More than 5 parameter? Not much 
predictability.  

• In condensed matter physics, there are  dof.  
How CM can be a physics?  
Ans= Periodic structure + 1 electron theory based on the weakness of 
int.)  

• Even in particle physics SM, we need something for the simplicity 
i) Group structure (symmetry)  
ii) Hierarchy + Family structure.  (repetition) 
iii) Weakness of coupling. (Independence of different sectors) 

• In both PP & CM, the  origin of the simplicity is  
the periodicity (repetition) & independence (weakness of int.)   
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Ways to the simplicity



What happen if interaction is not weak? I

• 1. Particle nature is lost.   
• 2. system is strongly entangled.  

 
 

 
 

 
 <-> more even  

Htot = H(x1) + H(x2)
⇒ ψtot = ψi(x1)ψj(x2) ⇒ No entanglement

Htot = H(x1) + H(x2) + Hint(x1, x2)

⇒ ψtot = ∑
ij

cijψi(x1)ψj(x2) ⇒ entanglement cij
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•  Weak coupling: in , one term dominance.  

  
 
                              

• For strong coupling,  
all the  in  are evenly distributed  

=> No. of the important terms increases.     
=> Entire system becomes  one object.  
    

• Inseparability is the characteristic of the strongly int. Sys.  

• Simplicity restored!  
What one object? The black hole. 

ψtot = ∑
ij

cijψi(x1)ψj(x2)

⇒ ψtot = ψi(x1)ψj(x2) separability

cij ψtot = ∑
ij

cijψi(x1)ψj(x2)
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What   if interaction is not weak? II



view the whole as one body:  QCP = BH 

• Origin of simplification/universality in SIY = Information Loss  
= Democracy of scales  = Emergence of physical law! 

•  Thermodynamic character: indeed, both have 0,1,2,3 law. 

• Classification of QCP vs HSV:   (z, θ)    ω=kz,   [s]=D-θ & sym. 

• Equivalence is supported by exactly solvable models: AdS/SYM 7



Faq in AdS/CMT

•   Postulate: gravity dual exits and Dictionary works.  
 
 
 
 

• Where is N of SU(N)?  
Large number of degen. 

• Respect the bulk locality NOT the body locality. 
• How to characterize a material?  
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II. Holographic mean field theory

• Material = lattice_structure +chem_composition 

• To characterize a CM,   need to introduce a lattice. 
Otherwise, we would not know what material we are dealing. 

• 3 ways   
1. Explicit introduction.  Brute force => PDE 
2. Explicit introduction. Tight Binding => ODE 
3. Implicit introduction by symmetry breaking 
    IR Probe scale = 1 meV  = KeV (scale of lattice).  
=> impossible to see the details of the lattice.  
 Proposal: Effect of the lattice = effect of the Symmetry breaking!

10−6
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Symmetry breaking  and lattice 
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Proposal: in low E limit,  
Role of lattice = R or Tr symmetry breaking 
How to establish this? 
Calculate the effect of the order on the Fermion spectrum 
Mean field theory=Theory of symmetry breaking. 

Conversely lattice can be identified as the 
spectrum generating symmetry breaking. 

   That is, material = spectrum  (~ band structure) 
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Universal structure of MFT : 
                  Condensation and Order

 

 

Δ ∼ ckc−k, BCS

Δ ∼ f †
k c−k, Kondo Condensation

M ∼ c†
k Γck, Charge density or magnetic ordering



Holographic MFT= Effect of order in fermion spectrum

Order : ,     
Holographic dictionary:  
Consider ,   and  

add   to .  
 
Find the configuration of  first, in the fixed BH gravity.  
—> Study  in the fixed (  , )  

        to get spectrum of . 

⟨c̄ΓAc⟩ ≠ 0

ψ dual to c
ΦA ⋅ ψ̄ΓAψ ℒ0 = ψ̄(γμi∂μ − m)ψ

Φ
ψ(z, x) gμν Φ

χ
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c
ψ

Φo(x)

Φ(r, x)

AdS



Structure of holographic MFT
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Holographic Fermions Model with order parameter fields

Stotal = S + Sbdy + S
g, �

+ Sint , (6)

S = i

Z
d
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⌘
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where �I is order parameter field,  ̄
(1)� · � (2)

is constructed by considering all possible

Lorentz symmetry.
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the strongly interacting system in the boundary to be described by nonlocal field theory.

The total action is given by [28]

Stotal = S + Sbdy + Sg,� + Sint, (2.1)

S =

Z
d
5
x

2X

j=1

p
�g  ̄

(j)
⇣1
2
(
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i

2
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d
4
x

p
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(1)

±  ̄
(2)
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, (2.4)

Sint =

Z
d
5
x
p
�g

⇣
 ̄
(1)� · � (2) + h.c

⌘
. (2.5)

where /D = �M (@M + 1
4!M↵��↵�), !M↵� is the spin connection, � ·� = �µ1µ2···µI�µ1µ2···µI .

�I is the order parameter field which couples with bilinear spinor in the bulk, leading to the

symmetry breaking under the presence of the source or its condensation. Additionally, we

will turn on just one component of field � to calculate the spectral function. The gamma

matrix convention and the geometry are chosen and given as follows,

�t = �1 ⌦ i�2, �x = �1 ⌦ �1, �y = �1 ⌦ �3, �z = �2 ⌦ �0, �u = �3 ⌦ �0 (2.6)

ds
2 =

1

u2
(dt2 +

3X

i=1

d~xi
2 + du

2), f(u) = 1, h = gg
uu
, uh =1, (2.7)

where the underlined indices represent tangent space ones. Under this convention, the

boundary locates at u = 0.

Notice that in AdS5, including two-flavors of fermions is mandatory because holography

projects out half of the fermion degrees of freedom while we need a full 4 component spinor

in the 4 dimensional boundary. On the other hand, in AdS4, considering one flavor is still

allowed since the boundary is of 2+1 dimension where spinors are of two components.

We will analytically determine and analyze the fermions’ Green’s function in the pres-

ence of an order parameter field. So, we consider the absence of gauge field for simplicity.

Furthermore, we will begin our analysis in the probe limit and later we will eventually

calculate the spectral function in the full back-reacted background. We will compare it

with the probe limit analytic results to check the reliability of the latter.

2.1 Variational analysis and boundary actions

In this section, we will perform the variational analysis in detail to show the boundary

fermions in di↵erent quantization choices. The standard-standard (SS) and standard-

alternative (SA) quantization can be distinguished by the sign of the boundary action

(2.4). We first simplify the action by introducing ⇣(j),

 
(j) = (�gguu)�1/4

⇣
(j)

e
�i!t+ikxx+ikyy+ikzz. (2.8)
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Simple Pole Types Green functions

8 (half) of them have both simple pole and branch-cut types.

�, Bi, Bjk, Btu (AdS5)

�,�5, Bi, B5i, Bjk, Btu (AdS4)

Figure: Simple pole and Branch-Cut types spectra

2-dimensional

slice of the

spectral density

3-dimensional

spectral density

(Hanyang University) Symmetry Breaking E↵ect 2023 6 / 19

 Classifying the MFT by the symmetry of the order

Appearing features: Gaps of s-,p-wave sym. 
                             Flat bands of dim 1,2,3.  
                             Nodal rings of dim 1,2
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AdS4 Simple Pole Type Spectral Functions

�(SS),�5(SA) TrGR(kµ) =
4!

p
~k2 � !2 +M2

~k2 � !2

Bx(SA), Bx5(SS)

TrGR(kµ) =
2!

b(k2y � !2)

⇥
(b+ kx)✏� + (b� kx)✏+

⇤

; ✏± =
q

(b± kx)2 + k2y � !2

Bxy(SS), Btu(SA)
TrGR(kµ) = �

2

b!

⇥
(b+ |~k|)✏� + (b� |~k|)✏+

⇤

; ✏± =
q

(b± |~k|)2 � !2

(Hanyang University) Symmetry Breaking E↵ect 2023 26 / 31

Analytic Green functions and their 
spectral functions (pole types 1/4)



Interactions Trace of analytic Green’s functions (AdS5) Features/Classifications Singularity types

M0

TrG(SA)
M0

=
4!q

k2
� !2 +M

2
0

(4.3) Gapful/s-wave gap Branch-cut

TrG(SS)
M0

= 4!

q
k2

� !2 +M
2
0

k2
� !2 � i✏

(4.2) Topological liquid Pole

Bx

TrG(SS)

B
(0)
x

=
2!q

(b� kx)2 + k2
? � !2

+
2!q

(b+ kx)2 + k2
? � !2

(4.10) Shifting cones/p-wave gap Branch-cut

TrG(SA)

B
(0)
x

=
2!

b

h(b+ kx)
q
(b� kx)2 + k2

? � !2 + (b� kx)
q

(b+ kx)2 + k2
? � !2

k2
? � !2 � i✏

i
(4.11) 1D flat band Pole

Bxy

TrG(SA)

B
(�1)
xy

=
2!p

(b� |k?|)2 + k2z � !2
+

2!p
(b+ |k?|)2 + k2z � !2

(4.15) Nodal ring Branch-cut

TrG(SS)

B
(�1)
xy

=
2!

b

h(b+ |k?|)
p
(b� |k?|)2 + k2z � !2 + (b� |k?|)

p
(b+ |k?|)2 + k2z � !2

k2z � !2 � i✏

i
(4.14) 2D flat band Pole

Btu

TrG(SS)

B
(�1)
tu

=
2!p

(b� |k|)2 � !2
+

2!p
(b+ |k|)2 � !2

(4.8) Nodal shell Branch-cut

TrG(SA)

B
(�1)
tu

= �
2

b

h(b+ |k|)
p

(b� |k|)2 � !2 + (b� |k|)
p
(b+ |k|)2 � !2

! + i✏

i
(4.9) 3D flat band Pole

Bu TrG(SS)

B
(0)
u

⌘ TrG(SA)

B
(0)
u

=
4!p

k2
� !2

(4.5) QCP Branch-cut

Bux

TrG(SS)

B
(�1)
ux

= 4!
b
2 + k2

� !
2 + f+f�

f+f�(f+ + f�)
; f± =

r
k2x �

⇣
b±

q
!2 � k2

?

⌘2
(4.12) Filled nodal segment Branch-cut

TrG(SA)

B
(�1)
ux

= 4!
(f+ + f�)

q
!2 � k2

? � b(f+ � f�)
q

!2 � k2
?(b

2 + k2
� !2 + f+f�)

; f± =

r
k2x �

⇣
b±

q
!2 � k2

?

⌘2
(4.13) Non-singular segment Branch-cut & nonsingular

Btz

TrG(SA)

B
(�1)
tz

= 4!
b
2 + k2

� !
2 + h+h�

h+h�(h+ + h�)
; h± =

r
k2
? �

⇣
b±

p
!2 � k2z

⌘2
(4.16) Filled nodal ring Branch-cut

TrG(SS)

B
(�1)
tz

= 4!
(h+ + h�)

q
!2 � k2

? � b(h+ � h�)
q
!2 � k2

?(b
2 + k2

� !2 + h+h�)
; h± =

r
k2
? �

⇣
b±

p
!2 � k2z

⌘2
(4.17) Non-singular disk Branch-cut & nonsingular

Bt

TrG(SS)

B
(0)
t

= 2
⇣

b+ !q
k2

� (b+ !)2
�

b� !q
k2

� (b� !)2

⌘
(4.6) Filled nodal shell Branch-cut

TrG(SA)

B
(0)
t

=
2

b

q
k2

� (b� !)2 �
q
k2

� (b+ !)2
�

(4.7) Non-singular bowl Branch-cut & nonsingular

Table 1: The summary of trace of Green’s functions, spectral features and classifications for AdS5.
For all of the expressions, k2 = k

2
x + k

2
y + k

2
z .

iv) Gapless with shifting in !-direction. Spectral features of this class show some

similarities to the gaps class, but instead of the usual nodal segment, ring, or shell, we

found non-zero spectra inside. Therefore, we will call them filled nodal segment, ring, or

shell, distinguishing them from the second class. The fourth column of figure 9 illustrates

this class.

4.4 Emergence of various dimensions flat band over finite region

We have shown that various dimensions flat band can emerge in our holographic approach

after the symmetry is broken by �, Bi, Bij , and Btu. We have reported the existance of

these flat bands in our previous works by numerical study. Nevertheless, the reason the

flat band emerged just over the finite region was still being investigated.

– 26 –
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Interactions Trace of analytic Green’s functions (AdS4) Features/Classification

M0/M05

TrG(SA)
M0

⌘ TrG(SS)
M50

=
4!q

k2
� !2 +M 2

0

Gapful/s-wave gap

TrG(SS)
M0

⌘ TrG(SA)
M50

= 4!

q
k2

� !2 +M 2
0

k2
� !2 � i✏

Topological liquid

Bx/B5x

TrG(SS)

B
(0)
x

⌘ TrG(SA)

B
(0)
5x

=
2!q

(b� kx)2 + k2
y
� !2

+
2!q

(b+ kx)2 + k2
y
� !2

Shifting cones/p-wave gap

TrG(SA)

B
(0)
x

⌘ TrG(SS)

B
(0)
5x

=
2!

b

h(b+ kx)
q
(b� kx)2 + k2

y
� !2 + (b� kx)

q
(b+ kx)2 + k2

y
� !2

k2
y
� !2 � i✏

i
1D flat band

Bxy/Btu TrG(SA)

B
(�1)
xy

⌘ TrG(SS)

B
(�1)
tu

=
2!p

(b� k)2 � !2
+

2!p
(b+ k)2 � !2

Nodal ring

(anti-symmetric) TrG(SS)

B
(�1)
xy

⌘ TrG(SA)

B
(�1)
tu

= �
2

b

h(b+ |k|)
p
(b� k)2 � !2 + (b� |k|)

p
(b+ k)2 � !2

! + i✏

i
2D flat band

Bu TrG(SS)

B
(0)
u

⌘ TrG(SA)

B
(0)
u

=
4!p

k2
� !2

QCP

Bux/B5u

TrG(SS)

B
(�1)
ux

⌘ TrG(SA)

B
(�1)
5u

= 4!
b2 + k2

� !2 + f+f�
f+f�(f+ + f�)

; f± =

r
k2
x
�

⇣
b±

q
!2 � k2

y

⌘2
Filled nodal line

TrG(SA)

B
(�1)
ux

⌘ TrG(SS)

B
(�1)
5u

= 4!
(f+ + f�)

q
!2 � k2

y
� b(f+ � f�)

q
!2 � k2

y
(b2 + k2

� !2 + f+f�)
; f± =

r
k2
x
�

⇣
b±

q
!2 � k2

y

⌘2
Non-singular segment

Bt/B5t

TrG(SS)

B
(0)
t

⌘ TrG(SA)

B
(0)
5t

= 2
⇣ b+ !q

k2
� (b+ !)2

�
b� !q

k2
� (b� !)2

⌘
Filled nodal ring

TrG(SA)

B
(0)
t

⌘ TrG(SS)

B
(0)
5t

=
2

b

q
k2

� (b� !)2 �
q
k2

� (b+ !)2
�

Non-singular disk

Table 2: The summary of trace of Green’s functions and spectral features in AdS4. In AdS4,
the Green’s functions have duality of the trace part between SS and SA quantization which the
key is the fifth gamma matrix �5 which is absent in AdS5 space-time. It is important to note that
k2 = k

2
x + k

2
y for all expressions.

Supplementary Materials

A AdS4 Green’s function, spectral features, classification, and dualities

Even the spectral functions for AdS4 were studied in our previous work but the analytic

results have not been completely reported yet. However, we found the duality between

AdS4 and AdS5 Green’s functions which we will show in this section. We follow the

gamma matrix convention for AdS4 in [24, 27, 38–40].

�t = �1 ⌦ i�2, �x = �1 ⌦ �1, �y = �1 ⌦ �3, �u = �3 ⌦ �0, �5 = i�t�x�y�u
. (A.1)

Under this convention, �5
⌘ �z in our main AdS5 context, so that the bulk gamma matrices

can be decomposed as follows,

�µ =

 
0 �

µ

�
µ 0

!
, �µ⌫ =

 
�
µ⌫ 0

0 �
µ⌫

!
,�µu =

 
0 ��

µ

�
µ 0

!
,

the structure of the gamma matrices shows us that the result of Green’s functions will

be the same as AdS5 by removing complex conjugates in the expressions and eliminating

– 34 –
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Figure 9: The classifications of spectral features for all interaction and quantization types. The
table consists of spectral functions in !-kx,y,z and kx-ky-kz at ! ' 0. The spectra have identical
symmetry on the horizontal alignment and have the same spectral feature on the vertical alignment.
deff is the number of the flat band, cones k-shifting, nonsingular, and cones !-shifting spectra
appearing in each k-space section.

According to our analytic results, the problem is clarified. Firstly, the flat band’s

singularity can be confirmed as a simple pole by directly calculating residue for each case.

Secondly, we found that where the frequency approaches the momentum which makes the

Green’s function diverge, then the imaginary of the TrG can be approximately written in

terms of the step-function as follows:

• Scalar M0:

Im[TrG(SS)
M0

]
���
!2!k2

' Im[
4!|M0|

k2
� !2 � i✏

], (4.18)

• Space-like polar vector Bx:

Im[TrG(SA)

B
(0)
x

]
���
!2!k2

?
' Im[

2!(b2x � k
2
x)

k2
? � !2 � i✏

]⇥(b2x � k
2
x), (4.19)

– 27 –



Summary of II 

Features in spectrum from Sym. Breaking 
  Gaps of s-,p-wave sym. 
  Flat bands of dim 1,2,3.   
  Nodal rings of dim 1,2 
Lattice <=> symmetry breaking 

All many body theory assume:  .  

Some of Green fct has poles, indeed.  
but some of them are not. Branch cut singularity!  
=> New class of Non-Fermi liquid

G ∼
Z

ω − ϵ − Σ

19



III.  Kondo Physics

1. Single Kondo 
2. Multi-Kondo : Random impurities  
3. Muti-Kondo : Kondo lattice

20



What is Kondo physics 

Scattering of conduction electrons in a metal  
                                           by the magnetic impurities. 
1. Exp. Fact : Resistivity increase as T decrease after certain temp.  

 
 

2. Theory: Kondo:    Divergence as .ρ(T ) = ρ0 + aT2 + bT5 + cm ln
μ
T

, T → 0
21

4 
 

 
 
Fig. Picture of Prof. Jun Kondo 
http://www.aist.go.jp/aist_j/information/emeritus_advisor/index.html 
 
3. Experimental results 

In 1934a resistance minimum was observed in gold as a function of temperature (de Haas, de Boer 
and van den Berg 1934), indicating that there must be some additional scattering mechanism giving an 
anomalous contribution to the resistivity--- one which increases in strength as the temperature is lowered. 
Other examples of metals showing a resistance minimum were later observed, and its origin was a 
longstanding puzzle for about 30 years. In the early 1960s it was recognized that the resistance minima 
are associated with magnetic impurities in the metallic host --- a magnetic impurity being one which has 
a local magnetic moment due to the spin of unpaired electrons in its atomic-like d or f shell. A carefully 
studied example showing the correlation between the resistance minima and the number of magnetic 
impurities is that of iron impurities in gold (van den Berg, 1964). In his book entitled Thermoelectricity, 
An Introduction to the Principles (first published in 1961 from John & Wiley), MacDonald (D.K.C.) 
showed various kinds of experimental results of electrical resistivity and thermoelectric power for noble 
metals (Au, Cu) diluted with magnetic impurities such as Mn and Fe. The electrical resistivity of Cu 
diluted with Mn or Fe clearly shows a local minimum at low temperatures. The temperature dependence 
of the thermoelectric power at low T is extremely sensitive to the amount of the magnetic impurities; Au 
diluted with Mn. 
(a) Electrical resistivity 

ExperimentTheory

5.6 Piers Coleman

• The scattering o↵ the Kondo singlet is resonantly confined to a narrow region of order
TK , called the Kondo or Abriksov-Suhl resonance.

Fig. 4: Temperature dependence of resistivity associated with scattering from an impurity
spin from [7, 8]. The resistivity saturates at the unitarity limit at low temperatures, due to the
formation of the Kondo resonance. Adapted from [7].

1.3 The Kondo lattice

In heavy fermion material, containing a lattice of local moments, the Kondo e↵ect develops
coherence. In a single impurity, a Kondo singlet scatters electrons without conserving momen-
tum, giving rise to a huge build-up of resistivity at low temperatures. However, in a lattice, with
translational symmetry, this same elastic scattering now conserves momentum, and this leads to
coherent scattering o↵ the Kondo singlets. In the simplest heavy fermion metals, this leads to a
dramatic reduction in the resistivity at temperatures below the Kondo temperature.
As a simple example, consider CeCu6 a classic heavy fermion metal. Naively, CeCu6 is just
a copper alloy, in which 14% of the copper atoms are replaced by cerium, yet this modest
replacement radically alters the metal. In this material, it actually proves possible to follow the
development of coherence from the dilute single ion Kondo limit, to the dense Kondo lattice, by
forming the alloy La1�xCexCu6. Lanthanum is iso-electronic to cerium, but has an empty f-shell,
so the limit x! 0 corresponds to the dilute Kondo limit, and in this limit the resistivity follows
the classic Kondo curve. However, as the concentration of cerium increases, the resistivity
curve starts to develop a coherence maximum, an in the concentrated limit drops to zero with a
characteristic T 2 dependence of a Landau Fermi liquid (see Fig. 6).
CeCu6 displays the following classic features of a heavy fermion metal:

• A Curie-Weiss susceptibility � ⇠ (T + ✓)�1 at high temperatures.

• A paramagnetic spin susceptibility � ⇠ cons at low temperatures.

ρ(T ) = ρ0 + aT2 + bT5,

https://en.wikipedia.org/wiki/Conduction_electrons
https://en.wikipedia.org/wiki/Magnetic_impurity
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g

Fig. 2: Flow of the coupling constants gz and g?, which is given by a set of hyperbolic curve

as show in Eq. (39). For transverse coupling |g?| > gz, the Kondo coupling always flows to

the strong-coupling fixed-point gz, g? ! 1. For a ferromagnetic gz < 0, g? renormalized to

g? = 0 where the RG-flow stops.

low-energy sector, PLHKPL, yields the three perturbative RG equations

dgx

d lnD = �2gygz (38a)

dgy

d lnD = �2gxgz (38b)

dgz

d lnD = �2gxgy (38c)

for the parameter flow of the coupling constants. Fixed points of those flow equations are
defined by dgi/d lnD = 0 for all i = x, y, z. These equations are called poor man’s scaling in
the literature.
In the transversal Kondo model defined by two independent parameters gz and g? = gx = gy

these equations reduce to

dg?
d lnD = �2g?g

z ;
dgz

d lnD = �2g2? , (39)

from which we obtain by integration [gz]2 � g2? = const. Therefore, the flow of the parameters
gz and g? are located on a hyperbolic curve in the parameter space (gz, g?) which is depicted
in figure 2. Since the RG-flow in Eq. (39) alway stops when g? vanishes, (gz, 0) defines a line
of fixed points for [gz]2 � g2? > 0 and gz < 0. If the transverse coupling is larger than the
ferromagnetic coupling gz, gz < 0, the transversal coupling g? remains finite for gz = 0 and
induces a sign change of gz. The couplings flow to the strong-coupling fixed-point (g?, gz) !
(1,1). These flow equations have one stable fixed point (gz, g?) = (1,1) and one line of
fixed points (gz, 0). The latter are stable for a ferromagnetic gz < 0 and unstable for gz > 0. For
a fully isotropic Kondo coupling, g = gz = g?, we only need to integrate the single differential
equation

dg

d lnD = �(g) = �2g2 . (40)

11.12 Frithjof B. Anders

The function �(g) is called the �-function in the literature and determines how the coupling
constants flow while reducing the band width: a negative �-function is a signature of weak
interactions at high-energies and a growing interaction strength while reducing the band width.
With the initial values of the model D0, g0, we integrate this differential equation to

g(D0) =
g0

1 + 2g0 ln(D0/D0)
. (41)

This solution obviously breaks down at a low energy scale TK = D at which the denominator
diverges:

TK = D0e
�1/2g0 = D0e

�1/⇢0J . (42)

However, the poor-man scaling approach is only valid for small coupling constants g, since
higher order processes will modify the �-function. Nevertheless, we can use the new energy
scale to express the running coupling constant g(D0) as function of TK

g(D0) =
1

ln(D0/TK)
(43)

which removes all reference to the original parameters. The coupling constant became an uni-
versal function of the ratio between cutoff and the new characteristic low energy scale TK .
How can we understand the divergence of the effective coupling constant? If we let g ! 1, we
can ignore the kinetic energy of the conduction electrons for a moment and focus on the local
Kondo interaction (35):

HK =
1

2

µ=x,y,zX

↵,�

c†0↵c0�g
µ�µ

↵�
⌧µ , (44)

where c0� =
R 1

�1 dxcx�. Since HK conserves spin and charge, a singlet and a triplet state is
formed for nc = 1, while the empty and doubly occupied conduction electron state does not
couple to the local spin. The singlet has the energy of �3/2g, the three triplet states lie at the
energy g/2 and the other two at E = 0. In the anti-ferromagnetic case g > 0, the ground
state is a singlet, which is energetically decoupled from the rest of the conduction electrons for
g ! 1. The ground state in this strong-coupling limit will be a free electron gas with one
electron removed and absorbed into this bound state. Hence, the ground state is orthogonal to
the ground state of the local moment fixed point we started with. That is the reason why these
ground states cannot be connected via perturbation theory. Since the scattering turns out to be
irrelevant in the vicinity of this so-called strong-coupling fixed-point, it is a stable fixed point
under the RG transformation.
Although the presented perturbative RG fails to solve the Kondo problem, it already proves
that the original Kondo Hamiltonian is unstable in second order of g and predicts the correct
crossover scale TK . However, the divergence of the coupling constant happens already at a finite
cutoff D = TK which must be an artifact of the approximation used since the model cannot
have any phase transition at finite temperature. The correct solution can only be obtained by the
numerical renormalization group [14, 15] or the Bethe ansatz [16].
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Schrieffer-Wolff transformation —> Kondo Hamiltonian

Heavy Fermions and the Kondo Lattice 5.3

diagram” [3] in Fig 1. The d-orbital metals at the bottom left of this diagram are highly itiner-
ant and exhibit conventional superconductivity. By contrast, in rare earth and actinide metals
towards the top right-hand corner, the f-shell electrons are localized, forming magnets or anti-
ferromagnets. It is the materials that lie in the cross-over between these two regions that are
particularly interesting, for these materials are “on the brink of magnetism”. It is in this cross-
over region that many strongly correlated materials reside: it is here for instance, that we find
cerium and uranium, which are key atoms for a wide range of 4f and 5f heavy electron materials.

1.2 Local moments and the Kondo e↵ect

Heavy electron materials contain a lattice of localized electrons immersed in a sea of mobile
conduction electrons. To understand their physics, we need to first step back and discuss in-
dividual localized moments, and the mechanism by which they interact with the surrounding
conduction sea.
The key feature of a localized moment, is that the Coulomb interaction has eliminated the high
frequency charge fluctuations, leaving behind a low energy manifold of degenerate spin states.
In rare earth and actinide ions, the orbital and spin angular momentum combine into a single
entity with angular momentum ~j = ~l + ~s. For example, a Ce3+ ion contains a single unpaired
4f-electron in the state 4 f 1, with l = 3 and s = 1/2. Spin-orbit coupling gives rise to low-
lying multiplet with j = 3 � 1

2 =
5
2 , consisting of 2 j + 1 = 6 degenerate orbitals |4 f 1 : Jmi,

(mJ 2 [�5
2 ,

5
2 ]) with an associated magnetic moment M = 2.64µB. In a crystal, the 2 j + 1 fold

degeneracy of such a magnetic ion is split, and provided there are an odd number of electrons
in the ion, Kramer’s theorem guarantees that the lowest lying state has at least, a two fold
degeneracy. (Fig. 2 a and b.)
One of the classic signatures of localized moments, is a high temperature Curie Weiss suscepti-
bility, given by

� ⇡ ni
M2

3(T + ✓)
M2 = g2µ2

B j( j + 1), (2)

where, ni is the concentration of magnetic moments while M is the magnetic moment with total
angular momentum quantum number j and gyro-magnetic ratio (“g-factor”) g. ✓ is the “Curie
Weiss” temperature, a phenomenological scale which takes account of interactions between
spins.
The presence of such local moments inside a metal profoundly alters its properties. The physics
of an isolated magnetic ion is described by the Kondo model

H =
X

k�

✏kc†k�ck� +

�Hz                }|                {
J †(0)~� (0) · ~S f . (3)

where c†k� creates a conduction electron of energy ✏k, momentum k and  †(0) = N�1/2
s
P

k c†k�
creates a conduction at the origin, whereNs is the number of sites in the lattice. The conduction
sea interacts with local moment via an antiferromagnetic contact interaction of strength J. The
antiferromagnetic sign (J > 0) of this interaction is an example of “super-exchange”, first

g  
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Classification of Multi Kondo :   Random vs regular impurities 
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Figures and Captions 

 
Figure 1| Schematics of different singlet states in metals with magnetic impurities.      

a, Unoverlapping Kondo singlet state where Kondo clouds are randomly distributed without 

interaction; this is practically the single-ion Kondo problem. b, Overlapping Kondo singlet 

state, i.e., Kondo condensation, where randomly distributed Kondo clouds overlap, interacting 

with each other and forming a correlated electron ground state. c, Kondo lattice where an 

electronic band of conduction electrons and a lattice of localised moments interact, forming a 

hybrid electronic structure. d, Random singlet state where two adjacent impurities interact via 

the RKKY interaction. The configuration of singlets in metals with magnetic moments is 

determined by many factors, such as the impurity density, randomness and complex 

single Kondo 

  Kondo Lattice
Both

heavy fermion/ 
Kondo insulator 

Random imp. 
Kondo-Conden:  

gap 

RKKY 
weak coupling



III.2. Discovery of a tiny gap in a dirty semiconductor
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본 연구제안서의 저작권 등 일체의 지적재산권은 연구 제안자에게 있으며 관련 법령에 따라 보호의 대상이 되는 영업비밀,  
산업기술 등을 포함하고 있을 수 있습니다. 본 문서에 포함된 정보의 전부 또는 일부를 무단으로 제 3 자에게 공개, 배포, 

복사 또는 사용하는 것은 엄격히 금지됩니다. 

삼성미래기술육성사업 제출용 
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[그림 1] (A) 금속에 형성된 Cooper pairs (CP)와 Kondo cloud (KC) 모식도. CP 와 KC 모두 net 

spin=0 인 보존 입자와 같다. (B) 고립된 콘도 구름. (C) 밀도가 높은 콘도 구름들의 응축에 따른 콘도 

응축상. 콘도 구름의 크기는 도핑 된 자성 불순물과 주변 전자 농도에 의해 결정될 것으로 예측되며, 

단일 콘도 구름은 최대 수 m 까지 확장될 수 있음이 이론과 실험에서 증명됐다. 따라서, 스핀자성 불순물-

스핀전자들 상호작용은 콘도 응축상의 임계 온도 및 임계 자기장을 결정하며 양자 상전이의 quantum 

criticality 특성을 결정할 것으로 예측된다.  

 

 
[그림 2] 반도체에 형성된 콘도 응축상의 온도 및 자기장에 따른 전기 전도도 특성 (선행 연구: Nature 

Physics revision 심사 중). (A) 측정 set-up 및 (B,C) 측정된 저항(Rd)–온도(T )/자기장(B ) 특성 곡선.  

 

 
[그림 3] (선행연구) (A) 반도체에 형성된 콘도 응축상의 tunneling density of states (DOS) 스펙트럼

(Inset: 소자). (B) 측정된 tunneling DOS 2-차원 mapping. 콘도 응축상이 형성되는 임계 온도는 대략 

150 mk 이다. (C) 양자 상전이 phase diagram 및 각 phase 에서 측정된 DOS 스펙트럼. 



• If no periodicity—> No momentum !  
No band. 
The whole picture of Kondo-lattice break down.  
No calculational scheme.  
In fact, random singlet picture  
—> No gap!  

• However, …… 
A gap is found in random impurity 
similar to  
Indirect gap of Kondo lattice

25

Difficulty of our system as Kondo lattice
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• Cooper pair=cc   :  superconductivity 

• Kondo pair  =   :  Kondo condensation

< cc > ≠ 0 →

f †c < f †c > ≠ 0 →

The Kondo Effect 11.17

3 Kondo effect in lattice systems

3.1 Heavy Fermion materials

Heavy Fermions [24] are Ce and U based metallic compounds which show a strongly enhanced
�-coefficient of the specific heat. Typically an enhancement over simple Cu of a factor of
300� 6000 is found. Since � / m⇤ in a simple effective Fermi-liquid theory, the name Heavy
Fermions was coined for this material class. It has been noted that the additional magnetic
contribution to the specific heat scales with the number of magnetic ions upon substitution with
non-magnetic elements such as La [24]. Apparently the major contribution in such strongly
correlated materials stems from the electrons in the localized 4f or 5f -shells. Early on, local
approximations were proposed [25, 26] in which each Ce or U site is treated as an indepen-
dent Kondo scatterer interacting with an averaged conduction band. Coherence is recovered by
summing up all single particle scattering events on a periodic lattice [24].
The most simplified description starts from a singly occupied 4f -shell of Ce. Employing Hund’s
rules, spin-orbit coupling yields a J = 5/2 ground state multiplet which is quenched by the
lattice point group symmetry either to a quartet and doublet in cubic crystal, or three Kramers
doublets in a tetragonal environment. Taking into account only a single Kramers doublet on
each 4f -shell and hybridizing the orbital with one effective conduction band defines the periodic
extension of the Anderson model (PAM)

H =
X

i�

"f
i
f †
i�
fi� + Uni"ni# +

X

~k�

"~k�c
†
~k�
c
~k�

+
X

i,~k,�

Vk

⇣
ei
~k ~Rif †

i�
c
~k�

+ e�i~k ~Ric†
~k�
fi�

⌘
, (50)

where fi� annihilates an f -electron at lattice site i with spin �. Although this model can already
explain some basic properties of HF materials [24], a more realistic description requires the
full J = 5/2 ground state multiplet structure, since experimentally the influence of crystal-field
effects are clearly seen in the specific heat or transport measurements [24].
As mentioned above, experimental evidence has indicated that the magnetic contribution to the
specific heat scales with number of magnetic Lanthanide ions, hinting towards locally generated
strong correlations. It was proposed that the single-particle dispersion can be calculated using
a local t-matrix which accounts for all local correlations, while different lattice [25] sites are
linked only by a free propagation of electrons. A physically intuitive picture emerges: at the
chemical potential, the electrons are mainly trapped in local Kondo-resonances and propagate
only rather rarely from site to site. On a larger length scale, a very slow coherent motion is
generated which is equivalent to a quasi-particle with a large effective mass.

3.2 Dynamical mean field theory (DMFT)

The combination of local-density approximation (LDA) and DMFT for realistic description
of material properties of a large variety of strongly correlated electron systems has been the
topic of the last year’s school [27] entitled The LDA+DMFT approach to strongly correlated

materials.

• Yamamoto     et. al.  
“Observation of the Kondo screening cloud” 
Nature 2020  

Kondo cloud

Kondo 
condensation

Our proposal: dense Random multi-Kondo
Overlapping Kondo cloud => Kondo condensation : 



Kondo condensation model and its result
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states that apart from the conserved total electrical charge, a BH does not have many 

characteristics. Such an analogy between a QCP and a BH is the guiding principle of the 

holographic approach for strongly correlated systems in condensed matter physicsS10,S11: if a 

QCP is characterized by the parameters z and θ, which are associated with the dispersion 

relation ω ~ k z and the entropy density s ~ T(d−θ)/z, then there exists a metric with the same 

scaling symmetry: 

!"! =	%"# &−%!$((%)!+! + %&!
&!'(&)+ %
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derivative is given by  
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where C/1- is the spin connection and AM is the vector potential, which is dual to the 

electron num.  

For fermions, the equation of motion is a first-order differential equation, and we 

cannot fix the values of all the components at the boundary, which makes it necessary to 
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respectively. The overall sign ± is chosen such that when we fix the value of ψ+ at the 

boundary, δSbd cancels the terms including δψ− that arises from the total derivative of δSD. A 

similar approach is true when we fix ψ−. The former defines the standard quantisation, and 

the latter performs the alternative quantization. The gravitational solution is Reisner-

Nordstrom BH in an asymptotic AdS4 spacetime, which may be considered a deformation of 

the metric for the case of z = 1 and θ = 0 by a possible presence of the electrical charge. 
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For the RN-AdS4 BH, the horizon r0 is defined as 
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where TB is the BH temperature chosen to be TB = 0.78 and µ = 2 for our system. The 

asymptotic behaviour of Φ in the metric is 
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Here Φ is a real scalar field that does not couple with a gauge field Aµ. For Φ(0) = 0, Φ(,) has 

the form of 

Φ(,) = T321 − O/O∗    (C. 9) 

where T* is the critical temperature. We considered T to be the temperature of the laboratory, 

and the condensation of Φ(1) should be zero if T > T*. 
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and D. Then, the retarded Green’s function in the standard quantisation condition is given by 

ef = diag &D ?'*' , −D
?!
*!
/ ≡ diag:lm+@ , lm"@= = −diag & ,

A+,
, ,A-,/ ,					8 > 0. (C.15) 

Since GR for the m < 0 case can also be obtained by the substitution GR → −1/GR ,lm@, 

Green’s function for the alternative quantisation for m > 0 is the same as that for −m in the 

standard quantization: 

lm±@(C, ];8) = − ,
A±,(B,D;>)

= l∓@(C, ];−8).  (C.16) 

The spectral function is defined as the imaginary part of Green’s function. There are two of 

them ℑ[l+@] and ℑ[l"@] and we can define the spectral function for each of them: 

F±(C, ]) = ℑrl±@(C, ])s.     (C.17) 

S8.3. Conversion 

To compare the experimental data, we needed to use dimensionful parameters, while 

our formula was written in terms of dimensionless variables in the natural unit where ℏ =

]5 = uG = 1. The prescription to restore the units is 

O → D.H
ℏJ/

w = HK
LMNJOP

Q
!.4×,30P>     (C.18) 

a → M
ℏaw

! = 5K
HMTN/

Q!
(!U.VP>)!   (C.19) 

T3 → -"
(ℏJ/)!

w! = WJ"!
2J/!

Q!
(P>)!

-
(MX)!   (C.20) 

where L is an arbitrary length scale that cancels everywhere in the formula and v0 = (the 

speed of light)/300. Let us finish with a concluding remark: The P atoms that possess local 

moments are just a fraction of the total number of phosphorous atoms. Therefore, we should 

think of our system as consisting of two fluids: one system includes the electrons involved in 

the RKKY interaction with the localised moments and the other is the electron system that 

does not interact with the localised moments. The BH has a temperature that is the 

Φ ∼ f †c
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Observation of Kondo condensation  
in a degenerately doped silicon metal
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When a magnetic moment is embedded in a metal, it captures nearby 
itinerant electrons to form a so-called Kondo cloud. When magnetic 
impurities are sufficiently dense that their individual clouds overlap with 
each other they are expected to form a correlated electronic ground state. 
This is known as Kondo condensation and can be considered a magnetic 
version of Bardeen–Cooper–Schrieffer pair formation. Here, we examine 
this phenomenon by performing electrical transport and high-precision 
tunnelling density-of-states spectroscopy measurements in a highly 
P-doped crystalline silicon metal in which disorder-induced localized 
magnetic moments exist. We detect the Kondo effect in the resistivity of the 
Si metal at temperatures below 2 K and an unusual pseudogap in the density 
of states with gap edge peaks below 100 mK. The pseudogap and peaks 
are tuned by applying an external magnetic field and transformed into a 
metallic Altshuler–Aronov gap associated with a paramagnetic disordered 
Fermi liquid phase. We interpret these observations as evidence of Kondo 
condensation followed by a transition to a disordered Fermi liquid.

The interplay of electron–electron interactions, disorder and spin cor-
relation in solids is the origin of many competing ground states and phase 
transitions between them1–3, which are typically observed in strongly cor-
related complex materials ranging from heavy-fermion compounds4 to 
high-temperature superconductors5,6. An intriguing question in complex 
interacting systems is how the interactions of microscopic particles lead 
to macroscopic phenomena such as superconductivity, charge and spin 
density waves and heavy fermions. The Kondo effect very often plays a 
central role in understanding the correlated ground states of electron 
systems and electrical transport (Fig. 1). Doping is a versatile tool with 
which to address this question because of its ability to control the inter-
action strength and the way particles interact with each other and with 
external perturbations such as magnetic fields and pressure7,8.

Here, we report observations of the Kondo interaction and an 
exotic Bardeen–Cooper–Schrieffer (BCS)-type pseudogap in highly 
P-doped degenerate silicon (Si:P) with doping concentrations of 
n ≈ 2−5 × 1019 cm−3 at very low temperatures (Methods). The existence 
and formation of magnetic moments in metallic Si:P are well understood 
in terms of Anderson’s picture and well explained in the pioneering 
works of Bhatt and Lee and others9–12. Because of the high doping con-
centration (higher than ~2 × 1019 cm−3), the Fermi energy (EF) in Si:P lies 
in the conduction band13, as it does in a metal (Supple mentary Fig. 4a).  
In these circumstances, it is very likely that the local moments are  
entangled with the conduction electrons to form micrometre- 
sized Kondo clouds14,15 that overlap with each other (Fig. 1b), leading 
to a correlated ground state in the Si:P metal. In this work, tunnelling 
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본 연구제안서의 저작권 등 일체의 지적재산권은 연구 제안자에게 있으며 관련 법령에 따라 보호의 대상이 되는 영업비밀,  
산업기술 등을 포함하고 있을 수 있습니다. 본 문서에 포함된 정보의 전부 또는 일부를 무단으로 제 3 자에게 공개, 배포, 

복사 또는 사용하는 것은 엄격히 금지됩니다. 

삼성미래기술육성사업 제출용 

별첨: 보조 설명을 위한 자료 및 선행 연구                                                                                        

 

 
 

[그림 1] (A) 금속에 형성된 Cooper pairs (CP)와 Kondo cloud (KC) 모식도. CP 와 KC 모두 net 

spin=0 인 보존 입자와 같다. (B) 고립된 콘도 구름. (C) 밀도가 높은 콘도 구름들의 응축에 따른 콘도 

응축상. 콘도 구름의 크기는 도핑 된 자성 불순물과 주변 전자 농도에 의해 결정될 것으로 예측되며, 

단일 콘도 구름은 최대 수 m 까지 확장될 수 있음이 이론과 실험에서 증명됐다. 따라서, 스핀자성 불순물-

스핀전자들 상호작용은 콘도 응축상의 임계 온도 및 임계 자기장을 결정하며 양자 상전이의 quantum 

criticality 특성을 결정할 것으로 예측된다.  

 

 
[그림 2] 반도체에 형성된 콘도 응축상의 온도 및 자기장에 따른 전기 전도도 특성 (선행 연구: Nature 

Physics revision 심사 중). (A) 측정 set-up 및 (B,C) 측정된 저항(Rd)–온도(T )/자기장(B ) 특성 곡선.  

 

 
[그림 3] (선행연구) (A) 반도체에 형성된 콘도 응축상의 tunneling density of states (DOS) 스펙트럼

(Inset: 소자). (B) 측정된 tunneling DOS 2-차원 mapping. 콘도 응축상이 형성되는 임계 온도는 대략 

150 mk 이다. (C) 양자 상전이 phase diagram 및 각 phase 에서 측정된 DOS 스펙트럼. 

SmB6
Si:P

K-lattice :  asymmetric gap K-cond: symmetric  gap

gaplike features in the low-temperature point-contact spec-
troscopy, but definitive explanations of the shape and the
temperature evolution are lacking. In our study, the
temperature dependence of the differential point-contact
conductance data, dI=dV, measured using a Ag-SmB6

junction, is summarized in Fig. 1(c). Below 100 K, the
zero-bias conductance starts to decrease, forming a trough

with a half-width of about 20 mV at low temperatures
[Fig. 2(a)]. The emergence of this feature reflects the onset
of Kondo hybridization between the Sm local moments and
the conduction electrons and is consistent with other
properties. At a similar temperature, the magnetic suscep-
tibility deviates from high-temperature independent-spin
paramagnetism, leading to a broad hump at lower
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FIG. 2. (a) The observed conductance spectra with the best fits to the classical Fano-resonance line shape [Eq. (1) and dashed lines]
and to the tunneling model for Kondo lattices [Eq. (2) and solid lines], respectively. For clarity, only the spectrum and the simulations
for 2 K are plotted with the actual value, while other curves are vertically shifted. (b), (c), and (d) show the temperature dependence of
! (renormalized f level), ! (Kondo resonance width), and " (half of the direct gap size), respectively, used in the Kondo-lattice-
tunneling simulations. The dashed line in (b) and (c) suggests that both the renormalized f level and the Kondo gap width are nearly
temperature independent in the entire temperature range below 100 K. (e) The temperature dependence of the hybridization gap
extracted from the hybridization amplitude and the bandwidth D, based on the Kondo-lattice-tunneling model. The dashed line in
(e) represents a smooth trend of the size of the hybridization gap as the temperature changes. The extrapolation of the curve suggests
that the hybridization gap vanishes at a temperature of around 100 K.
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As an exemplary Kondo insulator, SmB6 has been studied for several decades. However, direct evidence

for the development of the Kondo coherent state and for the evolution of the electronic structure in the

material has not been obtained due to the compound’s rather complicated electronic and thermal transport

behavior. Recently, these open questions have attracted increasing attention as the emergence of a

time-reversal-invariant topological surface state in the Kondo insulator has been suggested. Here,

we use point-contact spectroscopy to reveal the temperature dependence of the electronic states in

SmB6. We demonstrate that SmB6 is a model Kondo insulator: Below 100 K, the conductance spectra

reflect the Kondo hybridization of Sm ions, but, below about 30 K, signatures of inter-ion correlation

effects clearly emerge. Moreover, we find evidence that the low-temperature insulating state of this

exemplary Kondo-lattice compound harbors conduction states on the surface, in support of predictions of

nontrivial topology in Kondo insulators.
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The many-body screening interaction between a single
localized spin and a continuum of conduction electrons
known as the Kondo effect is a well-established element of
many physical systems, such as noble metals [1], quantum
dots [2], and graphene [3], etc. When spins are arranged in
a periodic array, called a Kondo lattice, the hybridization
leads further to the characteristic opening of an energy gap
in the electronic density of states [4]. However, this sig-
nature in the electronic structure has not yet been unam-
biguously observed in Kondo insulators.

Unlike conventional band insulators, a Kondo insulator
(KI) features an energy gap in the electronic density of
states (DOS) whose magnitude is strongly temperature
dependent and only fully developed at low temperatures.
This sensitivity to temperature is rooted in the electronic
interactions underlying the Kondo effect. At high tempera-
tures, localized spins on ions are only weakly coupled
to the conduction electrons in their host material. As the
temperature is lowered below a material-dependent char-
acteristic Kondo temperature, the localized spin states
hybridize with the itinerant electrons, forming a many-
body spin-singlet state. When considering only a single
isolated ion, the preceding description is enough, but, in a
Kondo lattice, the proximity of periodic ions brings into
play additional correlations on further cooling, resulting in
the reconstruction of the electronic band structure and the

formation of a hybridization gap in the DOS [4]. The KI is
a special case of the Kondo lattice, in which the Fermi level
or chemical potential falls in the gap [Fig. 1(b)], in contrast
to heavy-fermion metals [5], in which the Fermi level
coincides with a finite (and large) DOS.
Although this phenomenology is widely accepted, the

experimental evidence for the temperature evolution of the
electronic states in these complex systems is incomplete. An
ideal tool to address the issue is quasiparticle tunneling
spectroscopy, which directly probes the DOS. In the more
straightforward case of a single-ion Kondo system, the
conductance spectrum reflects the interference between the
two paths that an injected electron can take [Fig. 1(a)]: one
directly to the itinerant electrons and the other indirectly
through the hybridized many-body Kondo state. This
interference causes a characteristic Fano-resonance line
shape [6], as first observed in scanning-tunneling-
spectroscopy (STS) measurements on single magnetic ada-
toms embedded in normal metals [7].
In a Kondo lattice, the development of the correlated

ground state should substantially modify the Fano line
shape [8–18]. However, these effects have not been clearly
observed in STS [13–16] and point-contact-spectroscopy
(PCS) [17,18] measurements on heavy-fermion metals. It
is possible that signatures of correlation effects may be
clouded by the presence of competing interactions under-
lying tendencies toward superconductivity, magnetism, or
quantum criticality [4,5]. For example, substantial differ-
ences in the detailed characteristics and the temperature
dependence of the conductance spectra obtained on
URu2Si2 [13,14,18] hold different implications for the
relationship between the Kondo ground state and the mys-
terious hidden-order phase. In contrast, Kondo insulators,
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CeCoIn1−xHgx; x = 0.0015

The redistribution of the spectra observed on this surface is consistent
with a tunnelling process that is dominated by coupling to the light
conduction electrons and displays signatures of the direct hybridiza-
tion gap (2v) experienced by this component of the heavy-fermion
excitations (for example, see Fig. 1d, e). In contrast to these observa-
tions, similar measurements on the corresponding surface of CeRhIn5

show spectra that are featureless in the same temperature range
(Fig. 3a, dashed line) and are consistent with the more localized nature
of the Ce f orbitals in CeRhIn5 as compared to CeCoIn5. The hybrid-
ization gap structure in CeCoIn5 is also centred above the chemical
potential (8 meV, see Fig. 3a), which makes access difficult for angle-
resolved photoemission experiments43–45—the typical technique used
for probing electronic band structure in solids.

The composite nature of the heavy-fermion excitations manifests
itself by displaying different spectroscopic characteristics for tunnelling
into the different atomic layers. Figure 3b shows spectra measured on
surface B (identified as Co) of CeCo(In0.9985Hg0.0015)5 that look very
different from those measured on surface A (Fig. 3a). In the temperature
range where spectra on surface A (Fig. 3a) develop a depletion of
spectral weight near the Fermi energy, surface B shows a sharp enhance-
ment of spectral weight within the same energy window (Fig. 3b). With
further lowering of temperature, the enhanced tunnelling on surface B
evolves into a double-peak structure. As a control experiment, measure-
ments on the corresponding surface in CeRhIn5, once again, display
no sharp features in the same temperature and energy windows
(Fig. 3b, dashed line). The spectroscopic features of surface B of
CeCo(In0.9985Hg0.0015)5 display the characteristic signatures of
dominant tunnelling to the f component of the heavy quasiparticles,
which reside near the Fermi energy and are expected to display the
indirect hybridization gap (Dh; see Fig. 1d, f).

Modelling the tunnelling to composite heavy excitations can repro-
duce our spectroscopic measurements on the two different atomically

ordered surfaces of CeCo(In0.9985Hg0.0015)5. Following recent
theoretical efforts26,27, we compute spectroscopic properties of a
model band structure in which a single hole-like itinerant band of
spd-like electrons hybridizes with a narrow band of f-like electrons
(see Supplementary Information section I for details of the model).
The results of our calculations (Fig. 3c, d) are sensitive to the ratio of
tunnelling (tf/tc) into the heavy f states to tunnelling into the light
conduction band—a behaviour that explains the differences between
the tunnelling processes on the different cleaved surfaces (Fig. 3a, b).
Although naively one would expect that tunnelling to the heavy
excitations would be more pronounced on the Ce–In layer, recent
first principles calculations show that the amplitude of the hybridiza-
tion of the f states with the out-of-plane spd electrons can be remarkably
larger than the amplitude of the hybridization with the in-plane spd
electrons21.

Visualizing quasiparticle mass enhancement
To directly probe the energy–momentum structure of heavy
quasiparticles in the 115 material systems, we have carried out spec-
troscopic mapping with the STM that enables us to visualize the
scattering and interference of these quasiparticle excitations from
impurities or structural defects. Elastic scattering of quasiparticles
from these imperfections gives rise to standing waves in the conduc-
tance maps at wavelengths corresponding to 2p/q, where q 5 kf 2 ki
is the momentum transfer between initial (ki) and final (kf) states at
the same energy. We expect that those q with the strongest intensity
connect regions of high density of states on the contours of constant
energy, and hence provide energy–momentum information about
the quasiparticle excitations. We characterize the scattering q using
discrete Fourier transforms (DFTs) of STM conductance maps
measured at different energies. The presence of Hg substitutions in
CeCo(In0.9985Hg0.0015)5 provides a sufficient number of scattering
centres to enhance signal to noise ratio for such quasiparticle
interference (QPI) measurements.

Figure 4a shows examples of energy-resolved STM conductance
maps on surface A of CeCo(In0.9985Hg0.0015)5 measured at 20 K; the
maps display signatures of scattering and interference of quasiparticles
from defects and step edges. These conductance maps show clear
changes of the wavelength of the modulations as a function of energy.
Perhaps the most noticeable are the changes around each random
defect (see Supplementary Information section II for the correspond-
ing STM image showing the location of the Hg defects). Figure 4b
shows DFTs of such maps; sharp non-dispersive Bragg peaks (at the
corners, (62p/a, 0), (0, 62p/a)) corresponding to the atomic lattice are
seen, as well as other features (concentric square-like shapes) that
rapidly disperse with energy, collapse (Fig. 4b; 0 meV) and then dis-
appear (Fig. 4b; 9 meV) near the Fermi energy. We have carried out
such measurements both at low temperatures (20 K, Fig. 4b), where the
spectrum shows signatures of hybridization between conduction elec-
trons and f orbitals, and at high temperatures (70 K, Fig. 4c), where
such features are considerably weakened (for example, Fig. 4c; 2 meV,
10 meV). As a control experiment, we have also carried out the same
measurements on the corresponding surface of CeRhIn5 (Fig. 4d), for
which signatures of heavy electron behaviour are absent (for example,
Fig. 3a) in the same temperature window (20 K). Although
understanding details of the QPI in Fig. 4 requires detailed modelling
of the band structure of the 115 compounds, the square-like patterns
observed in the data correspond to scattering wavevectors that can be
identified from the calculated local-density approximation (LDA)
band structure46 (see Supplementary Information section V).

We find that analysing the features of the energy-resolved DFT
maps provides direct evidence for mass enhancement of quasiparticles,
in unison with related signatures in the tunnelling spectra. Figure 5a
and b shows line sections of the DFT maps plotted along two high-
symmetry directions (the thick white lines in Fig. 4b) as a function of
energy for CeCo(In0.9985Hg0.0015)5 at 20 K, and in Fig. 5c we show their
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Figure 3 | Composite nature of heavy-fermion excitations. a Averaged
tunnelling spectra (2150 mV, 200 pA) measured on surface A of
CeCo(In0.9985Hg0.0015)5 for different temperatures (T, in K; solid lines) and on
the corresponding surface A of CeRhIn5 at 20 K (dashed line). b, Averaged
tunnelling spectra (2150 mV, 200 pA) measured on surface B of
CeCo(In0.9985Hg0.0015)5 for different temperatures (T, in K; solid lines) and on
corresponding surface B of CeRhIn5 at 20 K (dashed line). c, d, Tunnelling
spectra computed for tf /tc 5 20.01 (c) and tf /tc 5 20.20 (d) for selected values
of cf (in meV; solid lines). See Supplementary Information section I for details
of the model.
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Figure 3 | Composite nature of heavy-fermion excitations. a Averaged
tunnelling spectra (2150 mV, 200 pA) measured on surface A of
CeCo(In0.9985Hg0.0015)5 for different temperatures (T, in K; solid lines) and on
the corresponding surface A of CeRhIn5 at 20 K (dashed line). b, Averaged
tunnelling spectra (2150 mV, 200 pA) measured on surface B of
CeCo(In0.9985Hg0.0015)5 for different temperatures (T, in K; solid lines) and on
corresponding surface B of CeRhIn5 at 20 K (dashed line). c, d, Tunnelling
spectra computed for tf /tc 5 20.01 (c) and tf /tc 5 20.20 (d) for selected values
of cf (in meV; solid lines). See Supplementary Information section I for details
of the model.
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III.3 Physics of Kondo lattice

30

Essence of the Kondo Lattice physics: 
Electron trapped  and propagate  rarely from site to site. 
On a larger length scale, a very slow coherent motion  
     =   a quasi-particle with a large effective mass.
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MFT for the Kondo lattice

large fermion mass.

In section 2, we study the mean-field theory in the non-relativistic framework. In

section 3, we construct a holographic mean-field theory for the Kondo lattice and calculate

the spectral functions. We summarize and discuss in section 4. There are four appendices

describing the mathematical details, which are omitted in the main text.

2 Non-relativistic mean-field model for the Kondo condensation

2.1 Setup

Based on refs. [4–8, 28–37], we construct a non-relativistic model for the Kondo lattice in

continuum limit as follows:
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TK ∼ V2/D : 1 − Kondo Temp .

FS in gap-> K insulator, 
otherwise
Heavy Fermion w/ larger FS(a) !(p) without condensation. (b) !(p) with condensation.

(c) Size of the hybridization
gap.

Figure 1: Energy-momentum dispersion and the hybridization gap. m = µ = 0.6, � =

10�8. (a,b) Black lines represent !i and red lines represent the Fermi level. (a) M = 0,

|�s| = 0, |�v| = 0, ✓ = 0. (b) M = 0.1, |�s| = 0.1, |�v| = 0.05, ✓ = 1. (c) M = 0,

|�v| = 0. Black and blue lines show the direct and indirect hybridization gaps, respectively.

The direct gap is approximately linear in |�s|, while the indirect gap is quadratic.

The thermodynamic potential is given by (see appendix A and ref. [82])
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where T ⌘ 1/� is the temperature, ⇤ is the momentum cuto↵, and !i(~p) is the energy-

momentum dispersion defined by

G�1(!, ~p) :=
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In this paper, we set ⇤ to be unity. The first, second, and third terms in the right-hand

side of eq. (2.9) are potential, vacuum, and thermal contributions to ⌦, respectively.

2.2 Energy-momentum dispersion

Solving detG�1(!i, ~p) = 0, we obtain the energy-momentum dispersion
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(a) ⌦ versus |�|. (b) ⌦ with strong g0s > g0v > gc. (c) ⌦ with strong g0v > g0s > gc.

Figure 3: Thermodynamic potential at zero temperature. m = µ = 0.6, � = 10�8,

gl = 0.01, T = 0, M = 0 ⇡ Meq, ✓ = ⇡/2 ⇡ ✓eq. Cyan points and line represent the

minima of ⌦. (a,b,d,e) The brighter it is, the higher the value of ⌦. (a) g0s = g0v = 0.8. (b)

g0s = g0v = 1.2. (c) shows ⌦ versus |�| :=
p
|�s|2 + |�v|2 for various g0s = g0v. (d) g

0
s = 1.21,

g0v = 1.19. (e) g0s = 1.19, g0v = 1.21.

To check the stability of our mean-field model, consider ⌦ with large condensation �:

⌦large � =

✓
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(2.18)

For large �, the potential contribution to ⌦, the first term in the right-hand side of eq.

(2.18), is dominant relative to other contributions. Apart from that, for ⌦ to have a

minimum with finite �, ⌦ must not go to negative infinity as � goes to infinity. Therefore,

gl, g0s, and g0v should be positive so that the potential contribution does not go to negative

infinity (see eq. (2.8)). Figure 2a shows the thermodynamic potential in the case of g0s,v < 0.

We can rewrite the stability condition g0s,v > 0 in terms of gs,v in eq. (2.1) as gs > �3gv,

gs > gv (see figure 2b). For the above stability condition to hold, we need nonzero positive

gs.

To analyze the e↵ects of the contributions to ⌦ and the heavy-light coupling g0 at zero

temperature qualitatively, consider

⌦T=0 =
M2

2gl
+

|�s|2

g0s
+

|�v|2

g0v| {z }
�2/g0

+
1
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2
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R
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. (2.19)

Without the vacuum contribution �1
2

R
|!�|, minimization of the potential contribution

�2/g0 gives � = 0 (see the dashed lines in figure 2c). Therefore, �1
2

R
|!�| is important to
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make a new vacuum with nonzero Kondo condensation �. If g0 is weak, �2/g0 is dominant

so that there is no way to make a new vacuum (see the solid blue line in figure 2c).

Figure 3 shows ⌦ at T = 0 with fixed M = Meq = 0, ✓ = ✓eq = ⇡/2. When g0s,v are

weak, the Kondo condensations do not arise (see the black line in figure 3a). However, as

we increase g0s,v, there is a new vacuum, where the Kondo condensation is nonzero (see the

blue line in figure 3a). Since the thermodynamic potential is invariant under rotation on

the |�s|-|�v| plane if g0s = g0v and ✓ = ⇡/2 (see eqs. (2.8), (2.9), and (2.15)), there are

infinitely many degenerate minima. The critical coupling constant is gc ⇡ 1.167, and the

formation of the Kondo condensation is a first-order quantum phase transition (see figure

3a). If we change g0s,v so that g0s > g0v, then there is a unique minimum with |�s| 6= 0 but

|�v| = 0 (see figure 3b). In the opposite case g0s < g0v, only |�v| forms (see figure 3c).

We also perform the finite-temperature calculation in the case of g0s > g0v (see the blue

region in figure 2b); and show that, if the temperature is low and the heavy-light coupling

is strong, only the scalar-type Kondo condensation forms so that our model is reduced to

a Anderson-like model with lattice (see appendix B).

3 Holographic Kondo lattice model

3.1 Setup

Consider a metric field g, a U(1) gauge field A, two neutral real scalar fields �s,ps, and two

probe spinor fields  (1,2) in AdS4:

Stot = Sbg + Sspin, (3.1)

Sbg = Sbg,bdy +

Z
d4x
p
�g
✓
R+

6

L2
� 1

4
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2
ps],

(3.2)

Sspin = Sspin,bdy +
2X

j=1

Z
d4x
p
�gi ̄(j)


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2

⇣�!
/D (j) �
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/D (j)

⌘
�mj

�
 (j)

+

Z
d4x
p
�g
 
 ̄(1)

 ̄(2)

!T 
g1�ps · �5 V �s · iI4
V �s · iI4 g2�s · iI4

! 
 (1)

 (2)

!
,

(3.3)

Sspin,bdy =
1

2

Z
d3x
p
�h[ ̄(1)(iI4) (1) +  ̄(2)�xy (2)], (3.4)
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where

/D
(j)

= �ae B

a

✓
@B +

1

4
!Bcd�

cd � iqjAB

◆
, h = gguu, (3.5)

L = 1,  ̄(j) =  (j)†�t, (3.6)

�t = �1 ⌦ i�2 =

 
0 i�2
i�2 0

!
, �x = �1 ⌦ �1 =

 
0 �1
�1 0

!
, (3.7)

�y = �1 ⌦ �3 =

 
0 �3
�3 0

!
, �u = �3 ⌦ �0 =

 
�0 0

0 ��0

!
, (3.8)

�5 = i�t�x�y�u, �ab =
1

2
[�a,�b] . (3.9)

ms,ps and m1,2 are the bulk masses of �s,ps and  (1,2), respectively. We list the motivation

for the above action in the following:

• g1 is the coupling strength of  ̄(1)(�ps · �5) (1) that makes a hyperbolic spectrum

of the light fermion dual to  (1) (to see why we have not chosen the scalar-type

interaction, see appendix D).

• We consider the standard-mixed quantization to flatten the spectrum of the heavy

fermion dual to  (2) (see eq. (3.4) and refs. [70, 71, 83]). The flat spectrum comes

from the cancellation of the spinor components making the compact localized states

(CLS) [71, 84].

• g2 is the coupling strength of  ̄(2)(�s · iI4) (2) that isolates the flat spectrum from

others (see appendix D and ref. [71]).
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3.2 Background fields

We first consider the background fields only by neglecting the probe spinor fields:

Sbg = Sbg,bdy +

Z
d4x

p
�g

✓
R+

6

L2
� 1

4
Fµ⌫F

µ⌫

◆

+

Z
d4x

p
�g[�(@µ�s)(@

µ�s)�m2
s�

2
s � (@µ�ps)(@

µ�ps)�m2
ps�

2
ps].

(3.10)

When we choose m2
s = �2,m2

ps = �9/4 and take ansatz

ds2 =
1

u2
[�f(u)�(u)dt2 + dx2 + dy2] +

du2

f(u)u2
, (3.11)

A = At(u)dt, �s = �s(u), �ps = �ps(u), (3.12)
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where

/D
(j)

= �ae B

a

✓
@B +

1

4
!Bcd�

cd � iqjAB

◆
, h = gguu, (3.5)

L = 1,  ̄(j) =  (j)†�t, (3.6)

�t = �1 ⌦ i�2 =

 
0 i�2
i�2 0

!
, �x = �1 ⌦ �1 =

 
0 �1
�1 0

!
, (3.7)

�y = �1 ⌦ �3 =

 
0 �3
�3 0

!
, �u = �3 ⌦ �0 =

 
�0 0

0 ��0

!
, (3.8)

�5 = i�t�x�y�u, �ab =
1

2
[�a,�b] . (3.9)
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make a new vacuum with nonzero Kondo condensation �. If g0 is weak, �2/g0 is dominant

so that there is no way to make a new vacuum (see the solid blue line in figure 2c).

Figure 3 shows ⌦ at T = 0 with fixed M = Meq = 0, ✓ = ✓eq = ⇡/2. When g0s,v are

weak, the Kondo condensations do not arise (see the black line in figure 3a). However, as

we increase g0s,v, there is a new vacuum, where the Kondo condensation is nonzero (see the

blue line in figure 3a). Since the thermodynamic potential is invariant under rotation on

the |�s|-|�v| plane if g0s = g0v and ✓ = ⇡/2 (see eqs. (2.8), (2.9), and (2.15)), there are

infinitely many degenerate minima. The critical coupling constant is gc ⇡ 1.167, and the

formation of the Kondo condensation is a first-order quantum phase transition (see figure

3a). If we change g0s,v so that g0s > g0v, then there is a unique minimum with |�s| 6= 0 but

|�v| = 0 (see figure 3b). In the opposite case g0s < g0v, only |�v| forms (see figure 3c).

We also perform the finite-temperature calculation in the case of g0s > g0v (see the blue

region in figure 2b); and show that, if the temperature is low and the heavy-light coupling

is strong, only the scalar-type Kondo condensation forms so that our model is reduced to

a Anderson-like model with lattice (see appendix B).

3 Holographic Kondo lattice model

3.1 Setup

Consider a metric field g, a U(1) gauge field A, two neutral real scalar fields �s,ps, and two

probe spinor fields  (1,2) in AdS4:

Stot = Sbg + Sspin, (3.1)

Sbg = Sbg,bdy +

Z
d4x
p
�g
✓
R+

6

L2
� 1

4
Fµ⌫F

µ⌫

◆

+

Z
d4x
p
�g[�(@µ�s)(@

µ�s)�m2
s�

2
s � (@µ�ps)(@

µ�ps)�m2
ps�

2
ps],

(3.2)

Sspin = Sspin,bdy +
2X

j=1

Z
d4x
p
�gi ̄(j)


1

2

⇣�!
/D (j) �

 �
/D (j)

⌘
�mj

�
 (j)

+

Z
d4x
p
�g
 
 ̄(1)

 ̄(2)

!T 
g1�ps · �5 V �s · iI4
V �s · iI4 g2�s · iI4

! 
 (1)

 (2)

!
,

(3.3)

Sspin,bdy =
1

2

Z
d3x
p
�h[ ̄(1)(iI4) (1) +  ̄(2)�xy (2)], (3.4)
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(a) A(!, k), V = 0. (b) A(!, k), V = 0.5. (c) A(!, k), V = 0. (d) A(!, k), V = 0.5.

(e) g(!), V = 0. (f) g(!), V = 0.5. (g) g(!), V = 0. (h) g(!), V = 0.5.

Figure 5: Holographic Kondo lattice model. (a,b,e,f) uh = 10. (c,d,g,h) uh = 2. (a,b,c,d)

The brighter it is, the higher the value of A(!, k).

Then, using the Gubser-Klebanov-Polyakov-Witten relation [39, 40], we can show that Gk

is the Green’s function of the boundary operator dual to the probe spinor fields [74].

3.4 Spectral function and density of states

After calculating the Green’s functionGSM
k

in the standard-mixed quantization, we consider

the spectral function A(!,~k) and the density of states g(!) that are defined by

A(!,~k) := lim
�!0+

2 Im trGSM
(!+i�,~k)

, (3.48)

g(!) :=

Z

|~k|<1

dkxdky
(2⇡)2

A(!,~k) =
1

2⇡

Z 1

0
dkkA(!, k), (3.49)

where we have introduced momentum cuto↵ |~k| < ⇤ = 1 and used the rotational symmetry

of the system.

Figure 5 shows the result of numerical calculation with q1 = 23.5, q2 = 0, g1 = 10,

g2 = 15, and m1 = m2 = 0+. � must be 0+ in principle, but we set � = 10�3 in the

numerical calculation. Without V , there exist hyperbolic and flat spectra independently

(see figures 5a and 5c). As we turn on V , the hybridization gap opens (see figures 5b and

5d). At high temperatures, the spectra spread wide and the hybridization gap becomes a

pseudogap (see figures 5c and 5d). The spectra and density of states are asymmetric under

! ! �! unlike the holographic Kondo model for random impurities [27].

4 Conclusion

We start from a non-relativistic field theory model with s-d interaction based on the Kondo

model. Our model can be transformed into an Anderson-like model using the Fierz identity

– 13 –

(a) At low temperature (uh = 10). (b) At high temperature (uh = 2).

Figure 4: Background fields.

with boundary action

Sspin,bdy =
1

2

Z
d3x

p
�h[ ̄(1)�(1) (1) +  ̄(2)�(2) (2)], (3.30)

where �(j) are some complex 4⇥4 matrices that can be written in the block-diagonal form:

�(j) ⌘
 
�(j)11 0

0 �(j)22

!
. (3.31)

Assuming that the background fields are not a↵ected by the probe spinor fields, we have

�Sspin = (equations of motion term)

+
2X

j=1

1

2

Z
d3x

p
�h[ ̄(j)(�(j) + i�u)(� (j)) + (� ̄(j))(�(j) � i�u) (j)],

(3.32)

where the equations of motion of the probe spinors are given by
" �!

/D �m1 0

0
�!
/D �m2

!
� i

 
g1�ps · �5 V �s · iI4
V �s · iI4 g2�s · iI4

!# 
 (1)

 (2)

!
= 0. (3.33)

Substituting  (j) =: (�h)�1/4�(j) to the equations of motion, we get

[�ae B

a (@B � iq1AB)�m1 � ig1�ps�
5]�(1) + V �s�

(2) = 0, (3.34)

V �s�
(1) + [�ae B

a (@B � iq2AB)�m2 + g2�s]�
(2) = 0. (3.35)

Then, taking

�(j)(t, x, y, u) =

Z
d3k

(2⇡)3
e�i!t+i~k·~x�(j)

k
(u) [k ⌘ (!,~k) ⌘ (!, kx, ky)], (3.36)

we obtain

@u�
(1)
k

+ �u

�i(!+q1At)�t

f
p
�

+ ikx�x+iky�yp
f

+ �m1�ig1�ps�5

u
p
f

�
�(1)
k

+ V �s�u
u
p
f
�(2)
k

= 0, (3.37)

@u�
(2)
k

+ V �s�u
u
p
f
�(1)
k

+ �u

�i(!+q2At)�t

f
p
�

+ ikx�x+iky�yp
f

+ �m2+g2�s

u
p
f

�
�(2)
k

= 0. (3.38)
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IV.   Topology in interacting system 

37

Holographic Green’s function, A Way to Study Topology!

Topological Hamiltonian Method and Eigenvectors (! = 0)

Ht(k) = �G�1(0,k)

where eigenvector of Ht and H share the same eigenvector, |ni.

Fc = r⇥ hn| @k |ni (2)

Alternative method: ”Cubic of Green’s function”

Fc =
1

3!

Z 1

�1

d!

2⇡
✏µ⌫⇢cTr

⇥
G(@µG�1)G(@⌫G�1)G(@⇢G�1)

⇤
(3)

(Hanyang University) 2024 3 / 9

Monopole Charge and Monopole Number

We found ”charge-like” Curvature. In this work, we will consider topological quantity, the

so-called ”Monopole number,” by integrating the monopole flux over the sphere surface S
2

Monopole Number:

Cn =

I
Fc · dS = i

I
r⇥ hn| @k |ni · dS (4)

(Hanyang University) 2024 4 / 9



Critical case ( )Φ = 0

 

F=dA+A^A =>for Abelian case, denote F=  

 
 

In our first step, we will ignore the degeneracy case and consider just only the occupied

bands. So that the Berry connection and curvature reduce into the trace of occupied index

as follows

Ai(k) = i
X

↵

hv↵(k)| @i |v
↵(k)i , (3.4)

⌦l = ✏ijlTr ↵[Fij ] = ✏ijl(@iAj � @jAi). (3.5)

Here ↵ runs over occupied band, so that there is no interband contribution which make our

Berry curvature becomes abelian. Finally, the abelian Berry curvature can be expressed in

term of 3-component vector which we will use to our next step of investigation.

4 Topological order parameter (cubic method)

one way to investigate the topology using the Green’s function is topological order param-

eter [4]. By this method, the frequency will be integrated.

⌦ =
1

3!

Z 1

�1

d!

2⇡
✏µ⌫⇢lTr

h
G(@µG)�1G(@⌫G)�1G(@⇢G)�1

i
. (4.1)

where µ, ⌫, ⇢ run over !, kx, ky, kz and l runs kx, ky, kz. Notice that the holographic Green’s

functions always gives a singularity structure. As a result, the analytic continuation is

required. By mapping (! ! i!), the integral well is defined.

5 Geometry and topology

5.1 Non-interacting fermions

At zero temperature

For zero temperature, we use the Green’s function derived in our previous work, which

the analytic Green’s function is completely determined. We first investigate in geometric

properties by using the topological hamiltonian method. The connection is given:

A
11 = A

22 =
|k|� kx

2|k|(k2y + k2z)
(0,�kz, ky)

T (5.1)

A
33 = A

44 =
|k|+ kx

2|k|(k2y + k2z)
(0,�kz, ky)

T (5.2)

A
13 = A

24 = A
31⇤ = A

42⇤ =

q
k2

� k2x

2k2(k2y + k2z)
(�i(k2y + k2z), ikxky + |k|kz, ikxkz � |k|ky)

T

(5.3)

and A
12 = A

21 = A
34 = A

43 = A
14 = A

41 = A
32 = A

23 = 0. Then we can calculate the

curvature which we will consider just occupied bands ↵ = 1, 2. One can see that A12 = A
21.

So, the curvature for this case is so far abelian.
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(a) Berrey Curvature with closed integral surface (b) Phase Diagram

Figure 1: (a) Berry curvature in momentum space of non-interacting holographic fermions at low
temperature with closed surface. The curvature shows the same feature with the dirac monopole.
(b) Berry curvature density in momentum space where k2 = k2x + k2y + k2z . The density behaves as
an inverse k-squred function.

Fky ,kz = �Fkz ,ky =
kx

2k3/2
1 (5.4)

Fkz ,kx = �Fkx,kz =
ky

2k3/2
1 (5.5)

Fkx,ky = �Fky ,kx =
kz

2k3/2
1 (5.6)

⌦ =
1

k3/2
(kx, ky, kz)

T (5.7)

The result reveals that the geometric charactor of noninteracting holographic fermions

with standard-standard quantization is nothing but a dirac monopole. Then according to

Stockes’s theorem, one can calculate the Berry flux over an arbitrary surface. Through

this paper, we will call the result of integral as monopole number which is a topological

number. the detail will be discuss in up coming section.

flux =

Z

S
⌦ · dS = 2⇡ (5.8)

Simultaneously, the result from topological order parameter (4.1) also gives the same

result, meaning that the topological method is formulated for the case the trace over

occupied state.

At finite temperature

For at the finite temperature, the analytic expression can not be used since the Green’s

function usually be deformed due to the temperature. In term of gravity side, the size
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an inverse k-squred function.
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Topological Liquid : scalar order without gap 

39

Holographic: Scalar interacting system

S =

Z
d
5
x

2X

j=1

p
�g  ̄

(j)
⇣�!

/D �
 �
/D

2
�m

(j)
⌘
 
(j)

, (5)

Sg,� =

Z
d
5
x
p
�g

⇣
R� 2⇤�rM�2

�m
2
�|�|

2
⌘

(6)

Sint =

Z
d
5
x
p
�g

⇣
i� ̄(1)

 
(2) + h.c

⌘
. (7)

where /D = �M
DM , DM = (@M � iqAM + 1

4!M↵��↵�)
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Scalar Interaction case(SS quantization)  

Spectrum is pole type, differ from critical case.

40

(a) Berrey Curvature with closed integral surface

(b) Phase Diagram

Figure 3: (a) Berry curvature in momentum space of non-interacting holographic fermions at low
temperature with closed surface. The curvature shows the same feature with the dirac monopole.
(b) Berry curvature density in momentum space where k2 = k2x + k2y + k2z . The density behaves as
an inverse k-squred function.

Before trace over occupied bands, we get following curvature

Fky ,kz = �Fkz ,ky =

0

BB@

kx+bx

2
�
(bx+kx)2+k2y+k2z

�3/2 0

0 kx�bx

2
�
(bx�kx)2+k2y+k2z

�3/2

1

CCA (5.9)

Fkz ,kx = �Fkx,kz =

0

BB@

ky

2
�
(bx+kx)2+k2y+k2z

�3/2 0

0 ky

2
�
(bx�kx)2+k2y+k2z

�3/2

1

CCA (5.10)

Fkx,ky = �Fky ,kx =

0

BB@

kz

2
�
(bx+kx)2+k2y+k2z

�3/2 0

0 kz

2
�
(bx�kx)2+k2y+k2z

�3/2

1

CCA (5.11)

⌦ =
1

2
�
(bx + kx)2 + k2y + k2z

�3/2 (kx + bx, ky, kz)
T +

1

2
�
(bx � kx)2 + k2y + k2z

�3/2 (kx � bx, ky, kz)
T

(5.12)

What we found above is dirac monopoles shifting from the origin with range |bx| which is

the symmetry breaking strength. See figure 4.

There are 2 important point to notice. i) one can see that the each monopole contain

one-half factor so that if one look far enough respect to the origin point, then the 2-dirac

monpoles will merge into a single monopole observed in non-interacting and scalar case.

ii) The sign of the monopole is plus-plus so that this is not the Weyl semi-metal. In order

to get the Weyl semi-metal, which the monopole is plus-minus, one need to modify the

model. So, we might call this topological feature as shifting monopoles.
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Quantum Critical Point (QCP)

At the QCP, the fermions propagator shows as Non-Fermi liquids

G(!, k)
���
QCP

/
!

p
k2 � !2

(1)

Figure: Quantum Critical Point and its Spectral Function
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Figure 3: (a) Berry curvature in momentum space of non-interacting holographic fermions at low
temperature with closed surface. The curvature shows the same feature with the dirac monopole.
(b) Berry curvature density in momentum space where k2 = k2x + k2y + k2z . The density behaves as
an inverse k-squred function.
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one-half factor so that if one look far enough respect to the origin point, then the 2-dirac

monpoles will merge into a single monopole observed in non-interacting and scalar case.

ii) The sign of the monopole is plus-plus so that this is not the Weyl semi-metal. In order

to get the Weyl semi-metal, which the monopole is plus-minus, one need to modify the

model. So, we might call this topological feature as shifting monopoles.
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(a) M (SS)
0 ,!-k (b) M (SA)

0 ,!-k (c) ! = 2.5 (d) ! = 2.5

Figure 2: Spectral Functions (SFs) of scalar source for both quantization choices. (a,b) SFs in
!-k plane. (c,d) SFs in ! = 2.5 slice, the dashed red line in figure (a), is the three dimensional
object in (c,d). The figure at each plane is its projection to each plane. The blue (c) and red (d)
surfaces represent the pole and the branch-cut type singularity, respectively.

Diagonal interaction in fermion flavors

For the scalar, we consider the case where the fermion-scalar interaction is diagonal type,

namely,

Sint =

Z
d
5
x
p
�g

⇣
 ̄
(i)� · � (i) + h.c

⌘
.

In this case, we have independent sum of two flavors and the result is following.

TrGM0 =
2!

�M0 +
q
k2

� !2 � i✏+M
2
0

(4.4)

Notice that the sign of M0 is important: for sign(M0) > 0 we have gapless spectrum

while for negative case we have gapped one. Therefore, in the intra-flavor case with Lint =

i�( ̄(1)
 
(1)), the massless-gapped phase transition depends on the changing sign ofM0 [29].

However, in our inter-flavor with Lint = i�( ̄(2)
 
(1) + h.c), there is no phase transition

under the sign change of M0. See figure 2(a,c). It turns out that for all interaction types

other than the scalar-fermion, there is no such phase transition between the gap-gapless

phases in the spectral function.

4.1.1 Radial scalar Bu

SS and SA

For this interaction, there is no e↵ect from the order parameter b due to the cancelation

that happened during calculation of the Green’s function, see (3.24). In fact, this has been

a puzzle from the view of the numerical calculation. As a result, the trace of the Green’s

function, regardless the quantization choice, is given by

TrG(SS,SA)

B
(0)
u

=
4!p

k2
� !2

, (4.5)

which is the same as that of critical point where Bu = 0.
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where k2
? = k

2
x + k

2
y, Kxy± , bxy are define in (3.68) and

K̃ = KUK, U =
2

k2
� !2

 
kx(kx � !) + ky(ky + ikz) ikxkz + ky!

ikxkz + ky! kx(kx + !) + ky(ky � ikz).

!
.

Btz/SS/SA: The decomposition and simplification of the Green’s functions for this

case pose significant challenges. Consequently, we will focus only on the trace of the Green’s

function, which included in the following section.

4 Features of spectral functions

The spectral functions (SF) can be determined by the imaginary part of the traced Green’s

functions:

A(!, k) = Im[Tr (G)]. (4.1)

Since the analytic results can be obtained when the order parameter fields have only leading

terms we will analyze only such cases.

4.1 Scalar

SS

The essential part of the Green’s functions is given by the trace (3.12),

TrG(SS)
M0

= 4!

q
k2

� !2 +M
2
0

k2
� !2 � i✏

. (4.2)

where k2 =
P

d�1
i=1 k

2
i
, and M0 is the scalar source. The simple pole is located at the surface

of the d dimensional cone where d is dimension of the AdS boundary. Notice that the

symmetry breaking strength M0 does not a↵ect the pole structure but only contributes to

the gap size. In AdS4, the pair of the gapped spectrum with M0, M50 was reported [24].

In AdS5, we do not have the chiral dynamics of the boundary although we should have

corresponding spectrum from the boundary point of view. The di�culty lies in the fact

that the chirality cannot be defined in odd dimensions. We postpone this problem to the

future work.

SA

The analytic expression is given by

TrG(SA)
M0

=
4!q

k2
� !2 +M

2
0

, (4.3)

The main feature of this interaction is the gap generation, as it was noticed in [24, 38,

39]. Therefore, the scalar source in this case can be interpreted as the mass of boundary

fermions. In AdS5, only scalar SA quantization can generate the gap, while in AdS4 case,

both M0,M
2
05 can do that. See figure 2(b,d).
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 Vector  Interaction : Separated Dirac monopole   

42

Spectrum  

Berry curvature

(a) Berrey curvature with closed integral surface (b) Berry curvature on kz-kx plane

Figure 4: (a) Berry curvature in momentum space of vector type interaction. The dirac monopoles
shift in ±kx direction. (b) The curvature on the kz-kx plane

6 Space-like tensor type interaction

For this case, there is no degeneracy in the topological hamiltonian, so one can skip into

the calculation of the abelian Berry curvature with the trace over occupied.

⌦ =
kz(f� � f+)2(k

2
� b2)

4
p
2|k?|f�f+

�
(k2

� b2)(k2
� b2xy � f�f+)

�3/2

0

BBBB@

�
|k?|(f� � f+) + bxy(f� + f+)

�
sin ✓

�
|k?|(f� � f+) + bxy(f� + f+)

�
cos ✓

4kz(b2xy+k2
?+k2z)

⇣
(k2

?+k2z)(f��f+)+bxy |k?|(f�+f+)

⌘

(k2
?+k2z�b2xy)(f��f+)2

1

CCCCA

(6.1)

where f± =
p
(bxy ± k?)2 + k2z and k? =

q
k2x + k2y. The appearance of the curvature

vector field is monopole with ring structure. See figure 5. The expresion shown in (6.1) is

quite complicated and might cannot see the singularity structure. To simplify it, we take

the limit at kz ! 0

⌦|kz!0 ⇡
i
p
2kzq

k2x + k2y � b2(b2 � k2x � k2y + |b2 � k2x � k2y|)
3/2

(kx, ky, 0)
T (6.2)

One can see that the the singularity is located at k2x+k2y = b2. Now we are going to discuss

why this one is called monopole ring. If one look far enough from the origin surprisingly the

expression (6.1) reduces into dirac monopole as shown at (5.7). This statement also true

for vector case (Bx), so that monopole number by integrating Berry flux over big sphere

surface is unchange and also temperature independent for standard-standard quantization.

See figure 6
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(a) B(0)(SS)
x ,!-kx (b) B(0)(SS)

x ,!-k? (c) ! ' 0 (d) ! = 2.5

(e) B(0)(SA)
x ,!-kx (f) B(0)(SA)

x ,!-k? (g) ! = 0 (h) ! = 2.5

Figure 5: Spectral functions (SFs) of Bx source for both quantization choices. (a,b,e,f) SFs in
!-kx,!-k? plane. (c,g) SFs in ! = 0, and (d,h) SFs for ! = 2.5 correspondingly to the dashed red
lines. In (g,h), if kx /2 [�b, b] the pole type singularity disappears so that only kx /2 [�b, b] which
the arc lines visible. The box’s background represents the certain slices at each momentum is zero.

where k2
? = k

2
y + k

2
z . The SF shows the superposition of two Dirac cones shifted along the

kx direction, which are non-interacting with each other.(4.10). The distance between the

Dirac points is 2b and the surface of the cones are branch-cut type singularity. Notably,

the SF in the !-kx plane exhibits a shifting of 2dimensional Dirac cones, see fig 5(a). In

the section of !-k? plane; it shows a gap, see figure 5(b).

SA

The trace of the Green’s function matrix (3.44) for µ = x is given by

TrG(SA)

B
(0)
x

=
2!

b

h(b+ kx)
q

(b� kx)2 + k2
? � !2 + (b� kx)

q
(b+ kx)2 + k2

? � !2

k2
? � !2 � i✏

i
. (4.11)

The main feature of the spectrum is shifted Dirac cones in ±kx direction: two Dirac points

is connected by flat band of 1-dimensional pole singularity (!2
� k2

?)
�1 along kx 2 [�b, b].

See figure 5(e,f). It is important to note that the residue is zero for kx /2 [�b, b], so there

is no singularity outside the interval. See figure 5(g,h).
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(a) Berrey Curvature with closed integral surface

(b) Phase Diagram

Figure 3: (a) Berry curvature in momentum space of non-interacting holographic fermions at low
temperature with closed surface. The curvature shows the same feature with the dirac monopole.
(b) Berry curvature density in momentum space where k2 = k2x + k2y + k2z . The density behaves as
an inverse k-squred function.

Before trace over occupied bands, we get following curvature

Fky ,kz = �Fkz ,ky =

0

BB@

kx+bx

2
�
(bx+kx)2+k2y+k2z

�3/2 0

0 kx�bx

2
�
(bx�kx)2+k2y+k2z

�3/2

1

CCA (5.9)

Fkz ,kx = �Fkx,kz =

0

BB@

ky

2
�
(bx+kx)2+k2y+k2z

�3/2 0

0 ky

2
�
(bx�kx)2+k2y+k2z

�3/2

1

CCA (5.10)

Fkx,ky = �Fky ,kx =

0

BB@

kz

2
�
(bx+kx)2+k2y+k2z

�3/2 0

0 kz

2
�
(bx�kx)2+k2y+k2z

�3/2

1

CCA (5.11)

⌦ =
1

2
�
(bx + kx)2 + k2y + k2z

�3/2 (kx + bx, ky, kz)
T +

1

2
�
(bx � kx)2 + k2y + k2z

�3/2 (kx � bx, ky, kz)
T

(5.12)

What we found above is dirac monopoles shifting from the origin with range |bx| which is

the symmetry breaking strength. See figure 4.

There are 2 important point to notice. i) one can see that the each monopole contain

one-half factor so that if one look far enough respect to the origin point, then the 2-dirac

monpoles will merge into a single monopole observed in non-interacting and scalar case.

ii) The sign of the monopole is plus-plus so that this is not the Weyl semi-metal. In order

to get the Weyl semi-metal, which the monopole is plus-minus, one need to modify the

model. So, we might call this topological feature as shifting monopoles.
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Holographic 2-Dimensional Flat Band

S =

Z
d
5
x

2X

j=1

p
�g  ̄

(j)
⇣�!

/D �
 �
/D

2
�m

(j)
⌘
 
(j)

, (8)

Sg,Bµ⌫ =

Z
d
5
x
p
�g

⇣
R� 2⇤� |DM�I |

2
�m

2
�|�|

2
⌘
, (9)

Sint =

Z
d
5
x
p
�g

⇣
Bµ⌫ ̄

(1)�µ⌫
 
(2) + h.c

⌘
. (10)

where /D = �M
DM , DM = (@M + 1

4!M↵��↵�), and B = Bxy(u) dx ^ dy

(Hanyang University) 2024 7 / 9



 Topology of Flat band

44

Spectrum =2d Disk  Berry curvature=monopole Ring

(a) x-y plane (b) x-z plane (c) y-z plane

Figure 5: (a) Berry curvature in momentum space of tensor type interaction (Bxy). The dirac
monopole becomes monpole ring with radius bxy . (b-d) The curvature on the kx-ky , kx-kz , ky-kz
plane, respectively

Figure 6: Berry curvature for various types of interaction in k-space and the curvature

at far from the origin point of view
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(a) B(�1)(SA)
xy ,!-k? (b) B(�1)(SA)

xy ,!-kz (c) ! ' 0 (d) ! = 1

(e) B(�1)(SS)
xy ,!-k? (f) B(�1)(SS)

xy ,!-kz (g) ! = 0 (h) ! = 1

Figure 7: Spectral function (SFs) of Bxy source for both quantization choices. (a,b,e,f) SFs in
!-kx,!-k? planes. (c,g,) SFs in ! = 0, and (d,h) ! = 1 correspondingly to the dashed red lines.
The spectral functions have rotational symmetry for each fixing kz. The background of the box
represents the certain slices at each momentum is zero.

Where k2
? = k

2
x + k

2
y, which is perpendicular to kz. The structure of SF is di↵erent to

Bx case due to rotational symmetry in k-space. In this case, the cone shifts along k?
directions, which makes the nodal line instead of separated two-Dirac points. Meanwhile,

an infinite 1-dimensional pole-type singularity exists on a disk k? 2 [�b, b]. See figure

7(e,f) In kx-ky-kz space, if ! slightly increases from 0, the singularity splits in kz direction

and connects the torus’s center; see figure 7(g,h). For AdS4, we lost the third momentum,

so that no cone appears and flat band remains only in kx-ky plane [40].

SA

The spectrum exhibits a notable characteristic of rotational symmetry in the kx-ky plane

(4.15), so the nodal line is this case’s main feature. The radius of the nodal line is 2b, and

the surface of the SF appears as the branch-cut type singularity. See figure 7(a,b,c,d)

TrG(SA)

B
(�1)
xy

=
2!p

(b� |k?|)2 + k2z � !2
+

2!p
(b+ |k?|)2 + k2z � !2

. (4.15)

4.3.2 Time-space-like tensor Btz

The trace of the Green’s function is given by

TrG(SA)

B
(�1)
tz

= 4!
b
2 + k2

� !
2 + h+h�

h+h�(h+ + h�)
, (4.16)

TrG(SS)

B
(�1)
tz

= 4!
(h+ + h�)

q
!2 � k2

? � b(h+ � h�)
q
!2 � k2

?(b
2 + k2

� !2 + h+h�)
. (4.17)
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(a) B(�1)(SS)
ux ,!-kx (b) B(�1)(SS)

ux ,!-k? (c) ! = 0 (d) ! = 1

(e) B(�1)(SA)
ux ,!-kx (f) B(�1)(SA)

ux ,!-k? (g) ! = 0 (h) ! = 1

Figure 6: Spectral functions (SFs) for Bux source for both quantization choices. (a,b,e,f) SFs
in !-k plane. (c,d,g,h) SFs in kx-ky-kz at ! = 0, 1 slices, respectively. The spectral features are
analogous to Bx case, with extra branch-cut singularity pieces. Notice that the spectrum shown in
(g) is just the nonsingular branch-cut.

4.2.4 Space-like radial vector, Bux

The analytic expression is given by

TrG(SS)

B
(�1)
ux

= 4!
b
2 + k2

� !
2 + f+f�

f+f�(f+ + f�)
, (4.12)

TrG(SA)

B
(�1)
ux

= 4!
(f+ + f�)

q
!2 � k2

? � b(f+ � f�)
q
!2 � k2

?(b
2 + k2

� !2 + f+f�)
. (4.13)

where f± =

r
k2x �

⇣
b±

q
!2 � k2

?

⌘2
. The structure of the f± is nothing but shifting of

|!|-radius semispheres in kx direction. It is useful to realize that f�f+ is shifting of two

|!|-radius spheres in kx direction. See figure 6.

4.3 Antisymmetric 2-tensors

4.3.1 Space-like tensor Bxy

SS

The polar spatial tensor source of SS-quantization yields Green’s functions with the rota-

tional symmetry in kx-ky plane. The trace of the Green’s function matrix (3.65) yields

TrG(SS)

B
(�1)
xy

=
2!

b

h(b+ |k?|)
p
(b� |k?|)2 + k2z � !2 + (b� |k?|)

p
(b+ |k?|)2 + k2z � !2

k2z � !2 � i✏

i
.

(4.14)
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(a) Berrey curvature with closed integral surface (b) Berry curvature on kz-kx plane

Figure 4: (a) Berry curvature in momentum space of vector type interaction. The dirac monopoles
shift in ±kx direction. (b) The curvature on the kz-kx plane

6 Space-like tensor type interaction

For this case, there is no degeneracy in the topological hamiltonian, so one can skip into

the calculation of the abelian Berry curvature with the trace over occupied.

⌦ =
kz(f� � f+)2(k

2
� b2)

4
p
2|k?|f�f+

�
(k2

� b2)(k2
� b2xy � f�f+)

�3/2

0

BBBB@

�
|k?|(f� � f+) + bxy(f� + f+)

�
sin ✓

�
|k?|(f� � f+) + bxy(f� + f+)

�
cos ✓

4kz(b2xy+k2
?+k2z)

⇣
(k2

?+k2z)(f��f+)+bxy |k?|(f�+f+)

⌘

(k2
?+k2z�b2xy)(f��f+)2

1

CCCCA

(6.1)

where f± =
p
(bxy ± k?)2 + k2z and k? =

q
k2x + k2y. The appearance of the curvature

vector field is monopole with ring structure. See figure 5. The expresion shown in (6.1) is

quite complicated and might cannot see the singularity structure. To simplify it, we take

the limit at kz ! 0

⌦|kz!0 ⇡
i
p
2kzq

k2x + k2y � b2(b2 � k2x � k2y + |b2 � k2x � k2y|)
3/2

(kx, ky, 0)
T (6.2)

One can see that the the singularity is located at k2x+k2y = b2. Now we are going to discuss

why this one is called monopole ring. If one look far enough from the origin surprisingly the

expression (6.1) reduces into dirac monopole as shown at (5.7). This statement also true

for vector case (Bx), so that monopole number by integrating Berry flux over big sphere

surface is unchange and also temperature independent for standard-standard quantization.

See figure 6
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6 Space-like tensor type interaction

For this case, there is no degeneracy in the topological hamiltonian, so one can skip into

the calculation of the abelian Berry curvature with the trace over occupied.

⌦ =
kz(f� � f+)2(k

2
� b2)

4
p
2|k?|f�f+

�
(k2

� b2)(k2
� b2xy � f�f+)

�3/2

0

BBBB@

�
|k?|(f� � f+) + bxy(f� + f+)

�
sin ✓

�
|k?|(f� � f+) + bxy(f� + f+)

�
cos ✓

4kz(b2xy+k2
?+k2z)

⇣
(k2

?+k2z)(f��f+)+bxy |k?|(f�+f+)

⌘

(k2
?+k2z�b2xy)(f��f+)2

1

CCCCA

(6.1)

where f± =
p

(bxy ± k?)2 + k2z and k? =
q

k2x + k2y. The appearance of the curvature

vector field is monopole with ring structure. See figure 5. The expresion shown in (6.1) is

quite complicated and might cannot see the singularity structure. To simplify it, we take

the limit at kz ! 0

⌦|kz!0 ⇡
i
p
2kzq

k2x + k2y � b2(b2 � k2x � k2y + |b2 � k2x � k2y|)
3/2

(kx, ky, 0)
T (6.2)

One can see that the the singularity is located at k2x+k2y = b2. Now we are going to discuss

why this one is called monopole ring. If one look far enough from the origin surprisingly the

expression (6.1) reduces into dirac monopole as shown at (5.7). This statement also true

for vector case (Bx), so that monopole number by integrating Berry flux over big sphere

surface is unchange and also temperature independent for standard-standard quantization.

See figure 6

– 7 –



Summary (  or 3d topology) AdS5

45

Single monopole

Separated monopole

  Monopole ring 

Figure 6: Berry curvature for various types of interaction in k-space and the curvature

at far from the origin point of view
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  : scalar vs pseudo-scalar  AdS4

46

(a) M0 > 0 (b) M0 = 0 (c) M0 < 0 (d) M5 6= 0 (pseudo-scalar)

Figure 7: (a,b,c) Spectral functions of scalar 1-flavor in AdS4 by changing sign of symmetry
breaking strength. (d) Spectral functions of pseudo scalar 1-flavor in AdS4

7 Interesting cases in AdS4

In AdS4, 2-flavors always gives zero curvature so that the topology is trivial. However,

1-flavor cases are non-trivial topology.

7.1 scalar vs pseudo-scalar

In 1-flavor case, the scalar � · � = iM0 Green’s function is given by

G =

0

@
kx+!

�M0+
p

k2x+k2y+M2
0�!2

ky
M0�

p
k2x+k2y+M2

0�!2

ky
M0�

p
k2x+k2y+M2

0�!2

kx+!
M0�

p
k2x+k2y+M2

0�!2

1

A , (7.1)

TrG =
2!

�M0 +
q

k2x + k2y +M2
0 � !2

(7.2)

One can see that there is gap-gappless phase transition where sign of M0 see figure 7 .

In this case, the Green function gives zero curvature so that the topology is trivial,

regradless of spectral functions.

In contrast, the 1-flavor with psudo scalar � · � = �5M5 can give a gap phase also.

G =
1q

k2x + k2y +M2
5 � !2

 
kx + ! �ky + iM5

�ky � iM5 �kx + !

!
, (7.3)

TrG =
2!q

k2x + k2y +M2
5 � !2

(7.4)

By using topological Hamiltonian method we get the curvature:

⌦ =
M5

2(k2x + k2y +M2
5 )

3/2
(7.5)

Therefore, even in the case that the spectral function look similar the topological

character is completely di↵erent as we have shown here where scalar-gap and pseudo-scalar

gap give the di↵erent topological character.
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gap give the di↵erent topological character.
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(a) M0 > 0 (b) M0 = 0 (c) M0 < 0 (d) M5 6= 0 (pseudo-scalar)

Figure 7: (a,b,c) Spectral functions of scalar 1-flavor in AdS4 by changing sign of symmetry
breaking strength. (d) Spectral functions of pseudo scalar 1-flavor in AdS4

7 Interesting cases in AdS4
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0�!2

kx+!
M0�

p
k2x+k2y+M2

0�!2

1

A , (7.1)

TrG =
2!

�M0 +
q

k2x + k2y +M2
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One can see that there is gap-gappless phase transition where sign of M0 see figure 7 .

In this case, the Green function gives zero curvature so that the topology is trivial,
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By using topological Hamiltonian method we get the curvature:

⌦ =
M5

2(k2x + k2y +M2
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3/2
(7.5)

Therefore, even in the case that the spectral function look similar the topological

character is completely di↵erent as we have shown here where scalar-gap and pseudo-scalar

gap give the di↵erent topological character.
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Spectrum->  gap  (g>0) 
Topological Liquid (g<0)

But in both case 
Ωxy = 0

Spectrum->  gap 

c1 =
1

2π ∫ F = 1



 Topology in finite temperature

1. Non-interacting (single particle) theory:  
   Finite temperature is ensemble average.    
   Each band  has its own topological number  . 
   Therefore the topological number = average of  :   
                          
   Actually Uhlmann defined a T-dependent c.  

Q: But does it make sense for a topology to be dependent on T, a 
continuous deformation? 

Q: What holography says about it? 

cn
cn

c(T ) = ∑ pn(T )cn
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Monopole number at Finite T in holography
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Finite Temperature Monopole Number of Scalar Interacting system

Figure: Monopole charge with increasing of temperature, with

a fixed sphere surface

Figure: monopole numbers over the

evolution of temperature by various

integration sphere radius.

(Hanyang University) 2024 6 / 9

Flux over Large enough Surface => temperature independent result. 

Method 1:  A & F are T-independent, though G depends on T. 
Method 2:   depends on T.  

 

GdG−1



Observation
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1. In holography,                                . 
 
2. Why this happen? 
In AdS/CFT dictionary,  
finite temperature ~ black hole ~ (a pure) state!

c1(T ) = c1(0)

Retarded = inflating BC 



Conclusion

1. Lattice = symmetry breaking mechanism =>spectrum generation 
CLS=Atom, essence of both=localization of electron  
identify  f orbital  = flat band by CLS.   

2. Topology of strongly interaction can be handled and holography 
gives a T-independent Topology.  

3. Kondo lattice = flat band hybridized with s-band. 
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Thank you    
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