Holographic mean field theory and Kondo Lattice

Sang-Jin Sin (Hanyang U.) 2024.09@Athen

[Mean field theory and holographic Kondo lattice](https://inspirehep.net/literature/2803973), [2407.01978](https://arxiv.org/abs/2407.01978)

1 Mean field theory for strongly coupled systems: [Holographic approach](https://inspirehep.net/literature/2718941) *JHEP* 06 (2024) 100

II. Holographic mean field theory

III. Kondo Physics

IV. Topology with Holography

Frame of Physical thinking : reductionism

Δημόκριτος | Democritus

Matter = \sum atom

A frame of physical thinking:

 $Complex = \sum$ simple

Simplicity is the key to the physics.

Ways to the simplicity

- Physics=Seeking the simplicity. More than 5 parameter? Not much predictability.
- In condensed matter physics, there are 10^{25} dof. How CM can be a physics? Ans= Periodic structure + 1 electron theory based on the weakness of int.)
- Even in particle physics SM, we need something for the simplicity i) Group structure (symmetry) ii) Hierarchy + Family structure. (repetition) iii) Weakness of coupling. (Independence of different sectors)
- In both PP & CM, the origin of the simplicity is the periodicity (repetition) & independence (weakness of int.)

What happen if interaction is not weak? I

- 1. Particle nature is lost.
- 2. system is strongly entangled.

$$
H_{tot} = H(x_1) + H(x_2)
$$

\n
$$
\Rightarrow \psi_{tot} = \psi_i(x_1)\psi_j(x_2) \Rightarrow No \ entanglement
$$

$$
H_{tot} = H(x_1) + H(x_2) + H_{int}(x_1, x_2)
$$

\n
$$
\Rightarrow \psi_{tot} = \sum_{ij} c_{ij} \psi_i(x_1) \psi_j(x_2) \Rightarrow entanglement \iff \text{more even } c_{ij}
$$

What if interaction is not weak? II

• Weak coupling: in $\psi_{tot} = \sum_i c_{ij} \psi_i(x_1) \psi_j(x_2)$, one term dominance. *ij* $c_{ij}\psi_i(x_1)\psi_j(x_2)$ \Rightarrow $\psi_{tot} = \psi_i(x_1)\psi_j(x_2)$ *separability*

• For strong coupling, all the c_{ij} in $\psi_{tot} = \sum c_{ij}\psi_i(x_1)\psi_j(x_2)$ are evenly distributed => No. of the important terms increases. *ij*

=> Entire system becomes one object.

- Inseparability is the characteristic of the strongly int. Sys.
- Simplicity restored! What one object? The black hole.

view the whole as one body: QCP = BH

- Origin of simplification/universality in SIY = Information Loss $=$ Democracy of scales $=$ Emergence of physical law!
- Thermodynamic character: indeed, both have 0,1,2,3 law.
- Classification of OCP vs HSV: (z, θ) $\omega = kz$, $[s]=D-\theta \&$ sym.
- Equivalence is supported by exactly solvable models: AdS/SYM \rightarrow

Faq in AdS/CMT

• Postulate: gravity dual exits and Dictionary works.

GKP-Witten Relation

 $Z_{\text{gauge}} = Z_{\text{AdS}}$ $\langle \exp\left(i \int \phi^{(0)} O\right)\rangle = e^{i \underline{S}[\phi]_{u=0} = \phi^{(0)}]}.$

• Where is N of SU(N)? Large number of degen.

- Respect the bulk locality NOT the body locality.
- How to characterize a material?

II. Holographic mean field theory

- Material = lattice_structure +chem composition
- To characterize a CM, need to introduce a lattice.

Otherwise, we would not know what material we are dealing.

- 3 ways
	- 1. Explicit introduction. Brute force => PDE
	- 2. Explicit introduction. Tight Binding => ODE
	- 3. Implicit introduction by symmetry breaking

IR Probe scale = 1 meV = 10^{-6} KeV (scale of lattice).

=> impossible to see the details of the lattice.

Proposal: Effect of the lattice = effect of the Symmetry breaking!

Symmetry breaking and lattice

Proposal: in low E limit, Role of lattice $= R$ or Tr symmetry breaking How to establish this? Calculate the effect of the order on the Fermion spectrum Mean field theory=Theory of symmetry breaking.

Conversely lattice can be identified as the spectrum generating symmetry breaking.

That is, material $=$ spectrum (\sim band structure)

Universal structure of MFT : Condensation and Order

 $\Delta \sim c_k c_{-k}$, *BCS* $\Delta \sim f_k^{\dagger} c_{-k}$, *Kondo Condensation* $M \sim c_k^{\dagger} \Gamma c_k$, *Charge density or magnetic ordering*

Holographic MFT= Effect of order in fermion spectrum

 $Order$: $\langle \bar{c}\Gamma^A c\rangle \neq 0$, Holographic dictionary: *Consider ψ dual to c*, and add $\Phi_A \cdot \bar{\psi} \Gamma^A \psi$ to $\mathscr{L}_0 = \bar{\psi} (\gamma^\mu i \partial_\mu - m) \psi$.

Find the configuration of Φ first, in the fixed BH gravity. \rightarrow Study $\psi(z, x)$ in the fixed ($g_{\mu\nu}$, Φ)

to get spectrum of χ .

Structure of holographic MFT

p*^g* ¯(*j*)

$$
JHEP 06 (2024) 100 \cdot e-Print: 2311.01897
$$

$$
S_{total} = S_{\psi} + S_{bdy} + S_{g,\overline{\Phi}} + \overline{S_{int}},
$$

2

j=1

⌘

 $d^d x \sum$

 $S_\psi = i$

Z

 $D_{\psi} = i \int d^{\pi}x \sum_{j=1}$

 \overline{f} . Yuk Same \overline{f} and \overline{f}

$$
S_{bdy} = \frac{i}{2} \int_{bdy} d^{d-1}x \sqrt{-h} \left(\bar{\psi}^{(1)} \psi^{(1)} \pm \bar{\psi}^{(2)} \psi^{(2)} \right),
$$

\n
$$
S_{g, \Phi} = \int d^{d}x \sqrt{-g} \left(R - 2\Lambda + |D_M \Phi_I|^2 - m_{\Phi}^2 |\Phi|^2 \right),
$$

\n
$$
S_{int} = \int d^{d}x \sqrt{-g} \left(\bar{\psi}^{(1)} \Phi \cdot \Gamma \psi^{(2)} + h.c \right)
$$

 $\sqrt{-g} \, \, \bar{\psi}^{(j)} \Big($

where Φ _{*I*} is order parameter field</sub> *d*5*x* \overline{d} , \overline{d} , \overline{d} , \overline{d} , \overline{d} , \overline{d} \overline{d} is constructed by cons where Φ_I is order parameter field, $\bar\psi^{(1)}\Phi\cdot\Gamma\psi^{(2)}$ is constructed by considering all possible Lorentz symmetry. $4 \Box$ \rightarrow $4 \Box$ \rightarrow $4 \Box$ \rightarrow $4 \Box$ \rightarrow \rightarrow \Box

$$
\Phi\cdot\Gamma=\Gamma^{\underline{\mu_1\mu_2\cdots\mu_I}}\Phi_{\underline{\mu_1\mu_2\cdots\mu_I}}.
$$

 $D\!\!\!\!/$ - $m^{(j)}$

 \setminus

 $\psi^{(j)}$

Classifying the MFT by the symmetry of the order

8 (half) of them have both simple pole and branch-cut types.

- \bullet $\Phi, B_i, B_{ik}, B_{tu}$ (*AdS*₅)
- \bullet Φ , Φ ₅, B _{*i*}, B _{5*i*}, B _{*ik*}, B _{*tu*} (*AdS*₄)

- 2-dimensional slice of the spectral density
- 3-dimensional spectral density

Figure: Simple pole and Branch-Cut types spectra

Appearing features: Gaps of s-,p-wave sym. 14 Flat bands of dim 1,2,3. Nodal rings of dim 1,2

Additional Supectral functions (pole types 1/4) Analytic Green functions and their

Summary of II

Features in spectrum from Sym. Breaking Gaps of s-,p-wave sym. Flat bands of dim 1,2,3. Nodal rings of dim 1,2 Lattice <=> symmetry breaking

All many body theory assume: $G \sim \frac{1}{\sqrt{2}}$. *Z* $\omega - \epsilon - \Sigma$

Some of Green fct has poles, indeed. but some of them are not. Branch cut singularity! => New class of Non-Fermi liquid 19

III. Kondo Physics

- 1. Single Kondo
- 2. Multi-Kondo : Random impurities
- 3. Muti-Kondo : Kondo lattice

What is Kondo physics

Scattering of [conduction electrons](https://en.wikipedia.org/wiki/Conduction_electrons) in a metal by the [magnetic impurities](https://en.wikipedia.org/wiki/Magnetic_impurity).

1. Exp. Fact : Resistivity increase as T decrease after certain temp.

2. Theory: **Kondo**: $\rho(T) = \rho_0 + aT^2 + bT^5 + c_m \ln \frac{\mu}{T}$, Divergence as $T \to 0$. *T* 2. Theory: **Kondo**: $\rho(T) = \rho_0 + aT^2 + bT^5 + c_m \ln \frac{\mu}{T}$, Divergence as $T \to 0$ 21 *formation of the Kondo Z. Theory.* **N**

$Saturation of ρ in $T \rightarrow 0$$ P in the same state of ρ in $\mathsf{I} \rightarrow \mathsf{U}$ the literature. degeneracy of such a magnetic ion is split, and provided there are an odd number of α

²]) with an associated magnetic moment *M* = 2.64µ*B*. In a crystal, the 2 *j* + 1 fold

In the transversal Kondo model defined by two independent parameters *g^z* and *g*? = *g^x* = *g^y* nd. implimerant e couping goes strong in in. Complete screer degeneracy. (Fig. 2 and b.) **RG: imp-itinerant e coupling goes strong in IR: complete screening**

^d ln *^D* ⁼ 2*g*?*g^z* ; *^d* ln *^D* ⁼ 2*g*² from which we obtain by integration [*g^z*] ? = const*.* Therefore, the flow of the parameters *g^z* and *g*? are located on a hyperbolic curve in the parameter space (*g^z, g*?) which is depicted in figure 2. Since the RG-flow in Eq. (39) always when \mathcal{I} and \mathcal{I} and \mathcal{I} are \mathcal{I} and \mathcal{I} and \mathcal{I} are \mathcal{I} and \mathcal{I} are \mathcal{I} and \mathcal{I} are \mathcal{I} and \mathcal{I} are \mathcal{I} an $\frac{1}{2}$ fundation $\frac{1}{2}$? *>* ⁰ and *^g^z <* ⁰. If the transverse coupling is larger than the , *g^z <* 0, the transversal coupling *g*? remains finite for *g^z* = 0 and induces a sign change of g^2 . The strong-coupling flow to the strong-coupling fixed-point (g^2 (1*,* 1). These flow equations have one stable fixed point (*g^z, g*?)=(1*,* 1) and one line of fixed points (*g^z ,* 0). The latter are stable for a ferromagnetic *g^z <* 0 and unstable for *g^z >* 0. For a fully isotropic Kondo coupling, *g* = *g^z* = *g*?, we only need to integrate the single differential $\sqrt{2}$ *dg* $\frac{dy}{d \ln D} = \frac{a}{e} \mathcal{G}(g) \frac{f}{t} = -\frac{2}{e} g^2 \frac{1}{t}$ **a p h**
c c c h c n x 11.12 Frithjof B. Anders The function of the function of the function in the second the literature and determines how the coupling of t constants flow while reducing the band width: a negative -function is a signature of weak signat interactions are the contractions and a growing interaction strength while dg is a growing the band width. $\frac{u}{e} \frac{d}{d} \ln D$ $\frac{u}{r} \frac{d}{d} \frac{d}{d} \frac{d}{d}$ $g(D_0^{\mathbf{t}}) = \frac{\mathbf{k}}{i_1 + \mathbf{k_2}} \frac{q_0}{i_2 + \mathbf{k_3}}$ $1+2g_0 \ln(D_0^{\mathbf{h}}/D^{\prime})$ This solution obviously breaks down at a low energy scale *T^K* = *D* at which the denominator 11.12 Frithjeffer B. Anders B The function is called the second the literature and determines how the coupling of the coupli constants flow which reducing the band with the band width: a negative reducing to the band with the band with
The band width: a negative of weak is a signature of weak is a signature of weak is a signature of weak is a s interactions are got high-energies and a growing interaction strength while $\frac{t}{a}$ interaction strength width. With the initial values of the model *D*0*, g*0, we integrate this differential equation to $\begin{array}{ccc} \n\frac{D}{c} & \frac{1}{c} & \frac{1}{c} \\ \n\frac{1}{c} & \frac{1}{c} & \frac{1}{c} \n\end{array}$ $\frac{1}{2}$ **g** $\frac{1}{2}$ **g** $\frac{1}{2}$ **g** $\frac{1}{2}$ **g** $\frac{1}{2}$ $\int \mathbf{S} \cdot \vec{S} \cdot \vec{I}$ diverges: **6. Origin** of excess to θ The Hamiltonian of the Anderson model can be described by $H_0 = \sum \varepsilon_k c$ $H' = \frac{1}{\sqrt{N}} \sum_{k,\sigma}$ where *n d* e that $\mathbf{d}H$ m s σ $\mathcal{E}_{\pmb{k}} \mathcal{C}_{\pmb{k}\sigma}$, 0 *k* k ^{\cup} k $H' = \frac{1}{\sqrt{N}} \sum_{k,\sigma} (V_{kd} c_{k\sigma}^{\dagger} d_{\sigma} + V_{dk} d_{\sigma}^{\dagger} c_{k\sigma})$ (perturbation) $n_{d\sigma} = d_{\sigma}^{d} d_{\sigma}$ $\langle \sigma, d_{\sigma}^{\dagger} \rangle = 1$, c_g_r $c_{k\sigma}$ + ε_d \sum σ $H_0 = \sum_{k,\sigma} \varepsilon_k c_{k\sigma}^{\dagger} c_{k\sigma} + \varepsilon_d \sum_{\sigma} n_{d\sigma}^{\dagger} + U n_{d\uparrow} n_{d\downarrow}$ $(\sigma$ $\big\langle c_{k\sigma}$ **r** $=\uparrow, \downarrow$). $,c_{k' \sigma}^{\dagger}$ $\left\} = \delta_{k,k'}^{}$ Schrieffer-Wolff transformation —> Kondo Hamiltonian *M*² H_{α} $+U_{n_{\alpha}+n_{\beta}}$ *^B j*(*j* + 1), (2) angular momentum quantum number *j* and gyro-magnetic ratio ("g-factor") *g*. ✓ is the "Curie Where $\sum_{n=1}^{\infty} \frac{1}{n}$ is the matrix of interactions between $\sum_{n=1}^{\infty} \frac{1}{n}$ interactions between $\sum_{n=1}^{\infty} \frac{1}{n}$ is the matrix of interactions between $\sum_{n=1}^{\infty} \frac{1}{n}$ is the matrix of interactions b $\begin{pmatrix} 1 & 1 \end{pmatrix}$ a metal presence of such local properties. The physics profoundly alters in the physics properties. The physics properties are properties. The physics properties are properties. The physics properties $(\begin{array}{cccc} 0 & 0 \\ 0 & 0 \end{array})$ is defined by the *Ko*ⁿ κ ₀ $H =$ \sum $k\sigma$ $\epsilon_k c^{\dagger}_{k\sigma} c_{k\sigma} +$ $\overline{d}H$ \overrightarrow{r} $g \psi^\dagger(0) \vec{\sigma} \psi(0) \cdot \vec{S}$ *^f* . (3) *g* al \mathbf{n} The inter Kasuya-Y **c** \mathbf{i} nature of My fi was written to the top of the top o electrical 1 temperatu impuritie dependen The **K** noble me s l $\frac{1}{c}$ c n n r w Y r c a i n f spin glass. fie e t $d\alpha$ l \sim 9 f u₇₁ $\sqrt{2}$ e μ 111 μ n e **K** t K_{Ω} () \bigcap \mathfrak{b} e β ($\overline{}$ o lized spins in c e n m w a r y a e of the intervals $\mathbf n$ the antiferred antiferred and $\mathbf n$ e K f_a $\overline{}$ $\overline{}$ \cup or r e c **t and Jun K** $\mathfrak{b} \setminus \ ___\mathfrak{u}$ o $\frac{1}{1}$ \mathbf{n} \mathbf{A} e \wedge n m/ u a \sqrt{u} ys an import $e \t n$ t h romagnetic K c ald. He shows that the shows that the shows that $\mathbf w$ a/\sqrt{a} f e \cup (*y* / t range. Even c h **K K** u i $i \rightarrow s$ n i u g u h t s n e h a and ferroma c w w f f \qquad \qquad t é at the present of e h in the set of $\mathbf h$ i d s_{Ω} 1

diverges:

Anderson's poor man's scaling(1970) —> $\displaystyle\leftarrow$ **F** \leftarrow : numerical RG (1975) $\frac{22}{}$ k creates a conduction $\sum_{k=1}^{\infty} E_d + U$ critic and origin at the origin, where $\frac{1}{\sqrt{2}}$ is the conduction in the conduction.

sea interacts with local moment via an antiferromagnetic contact interaction of strength *J*. The

 $\text{Hence } \mathbf{F} \setminus \{ \mathbf{F} \}$ is a small contribution on $\text{Hence } \mathbf{F} \setminus \{ \mathbf{F} \}$ higher order processes will modify the -function. Nevertheless, we can use the new energy $\overline{E_d}$ + $\overline{E_d}$ + \overline{U} is only valid for small constants $\overline{E_d}$ (4.075) $h^{(1)}(n)$ -function. Nevertheless, we can use the new $\frac{1}{2}$ *s ^k c*† *k*

scale to express the running coupling constant *g*(*D*⁰

 $T_K = D_0 e^{-1/2g_0} = D_0 e^{-1/\rho_0 J}$

lectrons, for i t

rming the si tic impurity. The $\mathbf t$

nglet state of \overline{a}

o e

el

e i he oⁿ he e i

 \mathbf{c} n and a sensitive se
Sensitive sensitive
 he i. re

> a al

s a spin glass $\mathbf s$ erman-Kitte e n h h o d h u e

c c r n ph n i e r $\mathbf x$ is a set of $\mathbf x$

metal and a the electrical contractions of \mathbf{a}

t s \mathbf{R} e n p h g d d u

f c t r m_p c_n whether the thermal set n x

t m s a term to s

s t c R e e m p e g r d

the book of $\mathbf f$ d t l m t c am not sure that α c n

d t h $/7$

g s h c s e e m a e a r

when I ready set $\mathbf w$ f d Ω_{α} ² 1 ewy t e a book of Mac

 i° d $\sqrt{\nabla} h$

^d ln *^D* ⁼ 2*g^xg^y* (38c)

. $\begin{array}{ccc}\n\cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot \\
a\n\end{array}$

Classification of Multi Kondo : Random vs regular impurities

single Kondo

Figures and Captions

 Kondo Lattice Both heavy fermion/ Kondo insulator

RKKY weak coupling

Random imp.

Kondo-Conden:

gap

III.2. Discovery of a tiny gap in a dirty semiconductor

Physics revision 심사 중). (A) 측정 set-up 및 (B,C) 측정된 저항(Rd)–온도(^T)/자기장(^B) 특성 곡선.

Difficulty of our system as Kondo lattice

• If no periodicity—> No momentum ! No band.

The whole picture of Kondo-lattice break down.

- No calculational scheme.
- In fact, random singlet picture
- \rightarrow No gap!
- However, ……

A gap is found in random impurity similar to Indirect gap of Kondo lattice

lattice point group symmetry either to a quartet and doublet in cubic crystal, or three Kramers doublets in a tetragonal environment. Taking into a single Kramers doublet only a single Kramers doublet on the Overlapping Kondo cloud => Kondo condensation : Our proposal: dense Random multi-Kondo

$$
H = \sum_{i\sigma}\varepsilon_i^f f_{i\sigma}^\dagger f_{i\sigma} + U n_{i\uparrow} n_{i\downarrow} + \sum_{\vec{k}\sigma}\varepsilon_{\vec{k}\sigma} c_{\vec{k}\sigma}^\dagger c_{\vec{k}\sigma} + \sum_{i,\vec{k},\sigma} V_k \left(g_{\rm I}^{i\vec{k}\vec{R}_i} f_{\rm II}^\dagger c_{\rm II} + g_{\rm II}^{i\vec{k}\vec{R}_i} c_{\rm III}^\dagger f_{\rm III} + g_{\rm III}^{i\vec{k}\vec{R}_i} c_{\rm III}^{\dagger} c_{\rm III}^{\dagger} c_{\rm III} + g_{\rm III}^{i\vec{k}\vec{R}_i} c_{\rm III}^{\dagger} c_{\rm III}^
$$

- Cooper pair=cc $\cdot \cdot \langle c \rangle \times (0) \rightarrow 0$ superconductivity explain some basic properties of HF materials [24], a more realistic description realistic description require
The more requires the more realistic description requires the more realistic description requires the more rea
- \blacksquare • Kondo pair = $f^{\dagger}c$: $\langle f^{\dagger}c \rangle \neq 0 \rightarrow$ Kondo condensation effects are clearly seen in the specific heat or transport measurements [24].

Famamoto et. al.
"Observation of the Kondo screening cloud" Yamamoto et. al. Nature 2020

extension of the Anderson model (PAM) and the Anderson model (PAM) and the Anderson model (PAM) and the Anders
The Anderson model (PAM) and the Anderson model (PAM) and the Anderson model (PAM) and the Anderson model (PAM

Kondo condensation model and its result The action for the fermion for the fermion and the real spacetime is given by S155 dimensional spacetime is gi
S155 dimensional spacetime is given by S155 dimensional spacetime is given by S155 dimensional spacetime is gi Kondo condensation model and its result similar approach is true when we fix *ψ*−. The former defines the standard quantisation, and le condensation model and it \blacksquare

! + 3R!) (C. 7)

S8.2. Spectral function and density of state in holographic theory

where $T_{\rm B}$ is the BH temperature chosen to be $T_{\rm B}$ and μ \sim 2 μ \sim 2 μ \sim 2 μ \sim 2 μ

E-@E0AB/1 = 3-0 . The subscript *D* denotes the Dirac fermion and the covariant

4 (2NOS) + 24N
O5 (2NO5 + 24N)
O5 (2NO5 + 24N)

 $\frac{1}{2}$

A±

 \mathbf{F}

%3 =

lm

,

$$
S_D = \int d^{d+1}x \sqrt{-g} \overline{\psi} (\Gamma^M D_M - m - \Phi) \psi + \int d^{d+1}x \sqrt{-g} \left(|\partial_\mu \Phi|^2 - m^2 \Phi^2 \right)
$$

$$
D_M = \partial_M + \frac{1}{4} \omega_{abM} \Gamma^{ab} - iqA_M,
$$

$$
\Phi = \frac{\Phi^{(0)}}{r} + \frac{\Phi^{(1)}}{r^2} + \cdots
$$
\n
$$
\Phi^{(0)} = 0, \quad \Phi^{(1)} = M_0 \sqrt{1 - T/T^*}
$$
\n
$$
f(r) = 1 - \frac{r_0^3}{r^3} - \frac{r_0 \mu^2}{r^3} + \frac{r_0^2 \mu^2}{r^4}.
$$

nature physics

Article https://doi.org/10.1038/s41567-022-01930-3

Article Article and the actual of the state of the state of the state of the https://doi.org/10.1038/s41567-022-01930-3

, Jonathan R. Prance ⁶

Observation of Kondo condensation in a degenerately doped silicon metal Observation of Kondo in a degenerately doped silicon metal

Yuri A. Pashkin ⁶

Hyungsang Kim¹, Eun Ky⊌Kim®³⊠, and the same of the songs, and the same of the same o Yonuk Chong ⁴ , Woon Song5 Taewon Yuk3 , Sang-Jin Sin ³ , Soonjae Moon3 , Jonathan R. Prance ⁶ , , Sang-Jin Sin ³ , Soonjae Moon3 Yuri A. Pashkin [®] & Jaw-Shen Tsai^{2,7} **Hyunsik Im 1,2 , Dong Uk Lee ³ , Yongcheol Jo1 , Jongmin Kim1 ,**

 Check for updates Ω \sim

 \bullet \boxtimes

Remark: random vs lattice Remark: random vs lattice K-condensation vs K-insulator R and R set-up R set-up R of Kondo hybridization between the Sm local moments and the conduction electrons and is consistent with \sim

tibility deviates from high-temperature independent-spin

gaplike features in the low-temperature point-contact spectroscopy, but definitive explanations of the shape and the temperature evolution are lacking. In our study, the temperature dependence of the differential point-contact conductance data, dI=dV, measured using a Ag-SmB6 junction, is summarized in Fig. 1(c). Below 100 K, the local term in Fig. 1(c). Below 100 K, the local term in

K-lattice : asymmetric gap K-cond: symmetric gap V lattice, is corresponded con \ldots iaconco \ldots ac \ldots 1. \ldots and \ldots \ldots **f** 1 \blacksquare $\boldsymbol{\mathsf{\Omega}}$ \blacktriangledown Ceco(In0.9985Hg). The Ceco(In0.9985Hg) is the Ceco(In0.9985Hg). \blacksquare \sim \sim the corresponding surface \mathcal{L} of \mathcal{L} at 20 K (dashed line). B, Averaged line). B, Averaged line $t_{\rm m}$ metric son $K_{\rm m}$ $\sum_{i=1}^n$

 SLP Si:P larger than the amplitude of the hybridization with the in-plane spd

150 mk 이다. (C) 양자 상전이 phase diagram 및 각 phase 에서 측정된 DOS 스펙트럼. \blacksquare directly probe the energy of \blacksquare **dual in the 115 material symmetric** stap troscopic map \mathcal{L} mapping with the STM that enables us to visualize μ momentum σ γ illiliclic gap discrete Fourier transforms ($\frac{1}{\sqrt{2}}$ corresponding surface B of CeRhIn5 at 20 K (dashed line). c, d, Tunnelling

III.3 Physics of Kondo lattice

Essence of the Kondo Lattice physics:

Electron trapped and propagate rarely from site to site.

On a larger length scale, a very slow coherent motion

a quasi-particle with a large effective mass.

Assumed on refs. [44], MET for the Kondo lattice in refs. [44], we consider the Kondo lattice in relationships a non-relationships a non-relationships a non-relationships a non-relationships a non-relationships a non-rela ~) *·* (*†* MFT for the Kondo lattic ² (*†* $\mathbf{F} = \mathbf{F} \mathbf{$ matrices. *g^l* is the light-light coupling constant. *g^s* and *g^v* are the scalar- and vector-type **heavy-light coupling coupling coupling coupling coupling coupling coupling the Fierz identity, we can write the Fierz iden** ζ and α + ζ 2*m* ⁺ *^g^l* ² *^gs*(*†*

i

@*^t*

i.

² (*†*

@*^t* ⁺

2*m*

@*^t*

) *gv*(*†*

~) *·* (*†*

is the mass of the light fermion. *µ* is the chemical potential for the light fermion. is

) *gv*(*†*

$$
\mathcal{L} = \psi^{\dagger} \left(i \frac{\partial}{\partial t} + \frac{\nabla^2}{2m} + \mu \right) \psi + \chi^{\dagger} \left(i \frac{\partial}{\partial t} - \lambda \right) \chi + \frac{g_l}{2} (\psi^{\dagger} \psi)^2 - g_s(\psi^{\dagger} \psi)(\chi^{\dagger} \chi) - g_v(\psi^{\dagger} \vec{\sigma} \psi) \cdot (\chi^{\dagger} \vec{\sigma} \chi).
$$

+ *†*

Using the Fierz identity, *g* Fierz identity.

2.1 Setup

continuum limit as follows:

✓

@

L = *†*

) *gv*(*†*

◆

i

@*^t* ⁺

2*m*

the energy level of the heavy fermion without hybridization. ~ = (1*,* 2*,* 3) are the Pauli

+ *µ*

+ *†*

)(*†*

$$
\mathcal{L} = \psi^{\dagger} \left(i \frac{\partial}{\partial t} + \frac{\nabla^2}{2m} + \mu \right) \psi + \chi^{\dagger} \left(i \frac{\partial}{\partial t} - \lambda \right) \chi \n+ \frac{g_l}{2} (\psi^{\dagger} \psi)^2 + g_s' (\psi^{\dagger} \chi)(\chi^{\dagger} \psi) + g_v' (\psi^{\dagger} \vec{\sigma} \chi) \cdot (\chi^{\dagger} \vec{\sigma} \psi), \qquad g_s' \coloneqq \frac{g_s + 3g_v}{2}, \quad g_v' \coloneqq \frac{g_s - g_v}{2}.
$$
\n
$$
\mathcal{L}_{\text{MF}} = \Psi^{\dagger} D \Psi - U,
$$

$$
\Psi^{\dagger} := (\psi^{\dagger} \chi^{\dagger}), \quad \Psi := \begin{pmatrix} \psi \\ \chi \end{pmatrix}, \qquad \langle \psi^{\dagger} \psi \rangle \equiv -\frac{M}{g_l}, \quad \langle \psi^{\dagger} \chi \rangle \equiv \frac{\Delta_s}{g_s'}, \quad \langle \psi^{\dagger} \vec{\sigma} \chi \rangle \equiv \frac{\vec{\Delta}_v}{g'_v},
$$
\n
$$
D := \begin{pmatrix} i\frac{\partial}{\partial t} + \frac{\nabla^2}{2m} + \mu - M \Delta_s^* + \vec{\sigma} \cdot \vec{\Delta}_v^* \\ \Delta_s + \vec{\sigma} \cdot \vec{\Delta}_v & i\frac{\partial}{\partial t} - \lambda \end{pmatrix},
$$
\n
$$
U := \frac{M^2}{2g_l} + \frac{|\Delta_s|^2}{g'_s} + \frac{|\vec{\Delta}_v|^2}{g'_v}.
$$
\n31

MFT for the Kondo lattice (continued)

 $T_K \sim V^2/D$: 1 − *Kondo Temp*.

FS in gap- $>$ K insulator, otherwise (a) $\omega(p)$ without condensation. (b) $\omega(p)$ with condensation. **Heavy Fermion w/ larger FS**

MFT for the Kondo lattice 2 *|v|* = 0. Black and blue lines show the direct and indirect hybridization gaps, respectively. **The direct gap is approximately linear in** \mathbb{M} **is a for the Kondo lattice 2.** *G*1(!*, p*~) := ! *^p*² ²*^m* + *µ M* ⇤ *^s* ⁺ ~ *·* [~] ⇤ *v* e Kondo lat *,* (2.10) *^s* ⁺ ~ *·* [~] *^v* !

!

^s ⁺ ~ *·* [~] ⇤

[! !*i*(*p*~)]*.* (2.11)

²

|s| = 0, *|v|* = 0, ✓ = 0. (b) *M* = 0*.*1, *|s|* = 0*.*1, *|v|* = 0*.*05, ✓ = 1. (c) *M* = 0,

²*^m* + *µ M* ⇤

$$
\Omega = U + \frac{1}{V} \sum_{|\vec{p}| < \Lambda} \sum_{i=1}^{4} \left\{ -\frac{1}{2} |\omega_i(\vec{p})| - \frac{1}{\beta} \ln \left[1 + e^{-\beta |\omega_i(\vec{p})|} \right] \right\}
$$

=
$$
U - \frac{1}{4\pi^2} \int_0^{\Lambda} dp p^2 \sum_{i=1}^{4} |\omega_i(p)| - \frac{1}{2\pi^2 \beta} \int_0^{\Lambda} dp p^2 \sum_{i=1}^{4} \ln \left[1 + e^{-\beta |\omega_i(p)|} \right],
$$

det *^G*1(!*, ^p*~) ⌘ ^Y

a
Ma

i=1

! *^p*²

$$
\omega_{i=1,\dots,4} = \mathcal{E}_+ \pm \sqrt{\mathcal{E}_-^2 + |\Delta_s|^2 + |\vec{\Delta}_v|^2 \pm \sqrt{(|\Delta_s|^2 + |\vec{\Delta}_v|^2)^2 - |\Delta_s^2 - \vec{\Delta}_v \cdot \vec{\Delta}_v|^2}},
$$

$$
\mathcal{E}_\pm \coloneqq \frac{1}{2} \left[\left(\frac{p^2}{2m} - \mu + M \right) \pm \lambda \right].
$$

33 (a) Ω versus $|\Delta|$. (b) Ω with strong $g'_s > g'_v > g_c$. (c) Ω with strong $g'_v > g'_s >$ 3

Holographic Kondo Lattice probe spinor fields (1*,*2) in AdS4:

Consider a metric field *g*, a *U*(1) gauge field *A*, two neutral real scalar fields s*,*ps, and two

$$
S_{\text{tot}} = S_{\text{bg}} + S_{\text{spin}},
$$

\n
$$
S_{\text{bg}} = S_{\text{bg},\text{bdy}} + \int d^4x \sqrt{-g} \left(R + \frac{6}{L^2} - \frac{1}{4} F_{\mu\nu} F^{\mu\nu} \right)
$$

\n
$$
+ \int d^4x \sqrt{-g} \left[-(\partial_{\mu} \Phi_8)(\partial^{\mu} \Phi_8) - m_8^2 \Phi_8^2 - (\partial_{\mu} \Phi_{\text{ps}})(\partial^{\mu} \Phi_{\text{ps}}) - m_{\text{ps}}^2 \Phi_{\text{ps}}^2 \right],
$$

\n
$$
S_{\text{spin}} = S_{\text{spin},\text{bdy}} + \sum_{j=1}^2 \int d^4x \sqrt{-g} i \bar{\psi}^{(j)} \left[\frac{1}{2} \left(\vec{B}^{(j)} - \vec{B}^{(j)} \right) - m_j \right] \psi^{(j)}
$$

\n
$$
+ \int d^4x \sqrt{-g} \left(\frac{\bar{\psi}^{(1)}}{\bar{\psi}^{(2)}} \right)^T \left(g_1 \Phi_{\text{ps}} \cdot \mathbf{r}^5 \ \mathbf{V} \Phi_8 \cdot i \mathbb{I}_4 \right) \left(\psi^{(1)} \right),
$$

\n
$$
S_{\text{spin},\text{bdy}} = \frac{1}{2} \int d^3x \sqrt{-h} [\bar{\psi}^{(1)}(i\mathbb{I}_4) \psi^{(1)} + \bar{\psi}^{(2)} \Gamma^{\text{XX}} \psi^{(2)}],
$$

\n
$$
\psi^{(j)} = \Gamma^a e_a^B \left(\partial_B + \frac{1}{4} \omega_{\text{bed}} \Gamma^{cd} - i q_j A_B \right),
$$

\n
$$
\mu = g g^{ua},
$$

\n
$$
L = 1,
$$

\n
$$
\bar{\psi}^{(j)} = \psi^{(j) \dagger} \Gamma^{\text{t}}_{\text{sp}}
$$

 $i\sigma_2$ 0

 \setminus

 $\Gamma^{\underline{u}} = \sigma_3 \otimes \sigma_0 =$

2

 $[\Gamma^a,\Gamma^b]$

 $\Gamma^{ab} = \frac{1}{2}$

 $0\,\,\,\sigma_3$

 σ_3 0

 $\sqrt{ }$

 $\Gamma^\mathrm{Y} = \sigma_1 \otimes \sigma_3 =$

 $\Gamma^5 = i\Gamma^{\underline{t}}\Gamma^{\underline{X}}\Gamma^{\underline{Y}}\Gamma^{\underline{u}}.$

] . 24

 \setminus

, (3.7)

 σ_1 0

 σ_0 0

 $0 - \sigma_0$

 $\sqrt{ }$

^y ⁼ ¹ ⌦ ³ ⁼ $\overline{\mathbf{S}}$ $=$ 3 \pm 3 \pm = *i*txyu *, ab* **1 Molographic Kondo Latti** [*^a , ^b* nor
2 iphic Kon do Lattice 2 *D/* (*j*) ⌘ Holographic Kondo Lattice 2

, u

⁰ 0

] *.* (3.9)

(*j*)

, (3.8)

0 ³

j=1

5

$$
+ \int \mathrm{d}^4x \sqrt{-g} \Bigg(\frac{\bar{\psi}^{(1)}}{\bar{\psi}^{(2)}} \Bigg)^{\prime} \, \Bigg(\frac{g_1 \Phi_{\mathrm{ps}} \cdot \Gamma^5}{V \Phi_{\mathrm{s}} \cdot i \mathbb{I}_4} \, \frac{V \Phi_{\mathrm{s}} \cdot i \mathbb{I}_4}{g_2 \Phi_{\mathrm{s}} \cdot i \mathbb{I}_4} \Bigg) \Bigg(\frac{\psi^{(1)}}{\psi^{(2)}} \Bigg),
$$

• g_1 is the coupling strength of $\psi^{(1)}(\Phi_{ps} \cdot \Gamma^5)\psi^{(1)}$ that makes a hyperbolic spectrum of the light fermion dual to $\psi^{(1)}$ (to see why we have not chosen the scalar-type interaction, see appendix D). 1 Z $\frac{1}{\sqrt{2}}$ *x*upli ng strength of $\psi^{(1)}(\Phi_{\text{ps}} \cdot \Gamma^5)\psi^{(1)}$ that makes a hyperbolic spectrum

 \overline{z}

- We consider the standard-mixed quantization to flatten the spectrum of the heavy fermion dual to $\psi^{(2)}$ (see eq. (3.4) and refs. [70, 71, 83]). The flat spectrum comes from the cancellation of the spinor components making the compact localized states (CLS) [71, 84]. $\frac{1}{2}$
- g_2 is the coupling strength of $\bar{\psi}^{(2)}(\Phi_s \cdot i\mathbb{I}_4)\psi^{(2)}$ that isolates the flat spectrum from others (see appendix D and ref. [71]).
- *V* is the coupling constant of the inter-flavor interaction $\bar{\psi}^{(1)}(\Phi_s \cdot i\mathbb{I}_4)\psi^{(2)}$ hybridizing the light and heavy fermions.

10 Holographic Kondo Lattice 3)((*j*) *ⁱ*u) (*j*)

*S*spin = (equations of motion term)

j=1

$$
\left[\begin{pmatrix} \overrightarrow{D} - m_1 & 0 \\ 0 & \overrightarrow{D} - m_2 \end{pmatrix} - i \begin{pmatrix} g_1 \Phi_{\text{ps}} \cdot \Gamma^5 & V \Phi_{\text{s}} \cdot i \mathbb{I}_4 \\ V \Phi_{\text{s}} \cdot i \mathbb{I}_4 & g_2 \Phi_{\text{s}} \cdot i \mathbb{I}_4 \end{pmatrix} \right] \begin{pmatrix} \psi^{(1)} \\ \psi^{(2)} \end{pmatrix} = 0.
$$

IV. Topology in interacting system

• Topological Hamiltonian Method and Eigenvectors $(\omega = 0)$

$$
\mathcal{H}_t(\boldsymbol{k}) = -\mathbb{G}^{-1}(0,\boldsymbol{k})
$$

where eigenvector of H_t and H share the same eigenvector, $|n\rangle$.

$$
\mathcal{F}_c = \nabla \times \langle n | \partial_{\mathbf{k}} | n \rangle \tag{2}
$$

Alternative method: "Cubic of Green's function"

$$
\mathcal{F}_c = \frac{1}{3!} \int_{-\infty}^{\infty} \frac{d\omega}{2\pi} \epsilon_{\mu\nu\rho c} \text{Tr} \left[\mathbb{G} (\partial_{\mu} \mathbb{G}^{-1}) \mathbb{G} (\partial_{\nu} \mathbb{G}^{-1}) \mathbb{G} (\partial_{\rho} \mathbb{G}^{-1}) \right]
$$
(3)

Monopole Number:

$$
C_n = \oint \mathcal{F}_c \cdot dS = i \oint \nabla \times \langle n | \partial_{\mathbf{k}} | n \rangle \cdot dS
$$

Critical case $(\Phi = 0)$ For zero temperature, we use the Green's function derived in our previous work, which in our previous work, which Figure 1: $\text{Critical case (} \mathbb{Q} = 0 \text{)}$ ²*k*3*/*² **¹** (5.4) *Fkz,k^x* = *Fkx,k^z* = *ky* ²*k*3*/*² **¹** (5.5)

$$
\mathcal{A}^{11} = \mathcal{A}^{22} = \frac{|\mathbf{k}| - k_x}{2|\mathbf{k}|(k_y^2 + k_z^2)} (0, -k_z, k_y)^{\mathrm{T}}
$$
(5.1)

$$
\mathcal{A}^{33} = \mathcal{A}^{44} = \frac{|\mathbf{k}| + k_x}{2|\mathbf{k}| (k_y^2 + k_z^2)} (0, -k_z, k_y)^{\mathrm{T}}
$$
(5.2)

$$
\mathcal{A}^{13} = \mathcal{A}^{24} = \mathcal{A}^{31*} = \mathcal{A}^{42*} = \frac{\sqrt{k^2 - k_x^2}}{2k^2(k_y^2 + k_z^2)} (-i(k_y^2 + k_z^2), ik_x k_y + |\mathbf{k}|k_z, ik_x k_z - |\mathbf{k}|k_y)^{\mathrm{T}}
$$
\n(5.3)

F=dA+A^A =>for Abelian case, denote F= $F = dA + A^A A =$ curvature in the will consider the seeding of the *1-a2* α Ω = *Fky,k^x* = *kz* $L-d\Lambda$ $\Lambda\Lambda$ \rightarrow for Λ holian case, denote L

(a) Berrey Curvature with closed integral surface (b) Phase Diagram

temperature with closed surface. The curvature shows the same feature with the dirac monopole.

$$
\Omega = \frac{1}{k^{3/2}} (k_x, k_y, k_z)^{\text{T}} \qquad \text{flux} = \int_{\mathcal{S}} \Omega \cdot dS = 2\pi
$$

Topological Liquid : scalar order without gap

$$
S_{\psi} = \int d^5 x \sum_{j=1}^2 \sqrt{-g} \ \overline{\psi}^{(j)} \Big(\frac{\overrightarrow{\not{D}} - \overleftarrow{\not{D}}}{2} - m^{(j)} \Big) \psi^{(j)}, \tag{5}
$$

$$
S_{g,\Phi} = \int d^5x \sqrt{-g} \Big(R - 2\Lambda - \nabla_M \Phi^2 - m_{\Phi}^2 |\Phi|^2 \Big) \tag{6}
$$

$$
S_{int} = \int d^5 x \sqrt{-g} \Big(i \Phi \bar{\psi}^{(1)} \psi^{(2)} + h.c \Big). \tag{7}
$$

where $D\!\!\!\!/\,\,=\Gamma^M D_M$, $D_M=(\partial_M-i q A_M + \frac{1}{4} \omega_{M\alpha\beta} \Gamma^{\alpha\beta})$

Spectrum is pole type, differ from critical case. *^k*² !² (1)

 S Berrey Curvature with S Fermion

!
!!
!!

 $A_{\rm eff}$ the fermions propagator shows as Γ

for both cases

coupled Fermion (b) Berry curvature density in momentum space where *k*² = *k*²

 $\overline{A_0}$ However, Berry Curvature is Identical to critical case. Before trace over occupied bands, we get following curvature The same Dirac monopole

Scalar Interaction case (SA quantization) future work.

- Gapped spectrum
- •Trivial topology The main feature of this interaction is the gap generation, as it was noticed in [24, 38,

$$
\text{Tr}\,\mathbb{G}_{M_0}^{(SA)}=\frac{4\omega}{\sqrt{\bm{k}^2-\omega^2+M_0^2}},
$$

that the chirality cannot be defined in odd dimensions. We postpone this problem to the

Vector Interaction : Separated Dirac monopole BB@ 0 *^k^y* 2 (*bxkx*)2+*k*² *^y*+*k*² *z* ³*/*² C
CCA
CCA 1990 - Paris Maria M

2 \overline{a}

i
L

(*bx*+*kx*)2+*k*²

(*bx*+*kx*)2+*k*²

^y+*k*²

Berry curvature *^y*+*k*² Berry curvatu

³*/*² ⁰

³*/*² ⁰

$$
\Omega = \frac{1}{2((b_x + k_x)^2 + k_y^2 + k_z^2)^{3/2}} (k_x + b_x, k_y, k_z)^{\mathrm{T}} + \frac{1}{2((b_x - k_x)^2 + k_y^2 + k_z^2)^{3/2}} (k_x - b_x, k_y, k_z)^{\mathrm{T}}
$$

Spectrum

(a) $B_x^{(0)(55)}, \omega$ - k_x (b) Berry curvature on k_z - k_x plane

$$
S_{\psi} = \int d^5 x \sum_{j=1}^2 \sqrt{-g} \, \bar{\psi}^{(j)} \Big(\frac{\vec{D} - \vec{D}}{2} - m^{(j)} \Big) \psi^{(j)}, \tag{8}
$$

$$
S_{g,B_{\mu\nu}} = \int d^5 x \sqrt{-g} \Big(R - 2\Lambda - |D_M \Phi_I|^2 - m_\Phi^2 |\Phi|^2 \Big), \tag{9}
$$

$$
S_{int} = \int d^5x \sqrt{-g} \Big(B_{\mu\nu} \bar{\psi}^{(1)} \Gamma^{\mu\nu} \psi^{(2)} + h.c \Big). \tag{10}
$$

where $D\!\!\!\!/\,\,\,=\Gamma^M D_M$, $D_M=(\partial_M+\frac{1}{4}\omega_{M\alpha\beta}\Gamma^{\alpha\beta})$, and $B=B_{xy}(u)\;dx\wedge dy$

Topology of Flat band

Summary (AdS_5 or 3d topology)

Single monopole

Separated monopole

AdS_4 : scalar vs pseudo-scalar In AdS4, 2-flavors always gives zero curvature so that the topology is trivial. However, the topology is trivial. However, $\mathcal{A} = \mathcal{I} \mathcal{L} \mathcal{L}$ One can see that there is gap-gappless phase transition where sign of *M*⁰ see figure 7 . ΔdS regions of Δs In contrast, the 1-flavor with psudo scalar *·* ⁼ 5*M*⁵ can give a gap phase also.

regradless of spectral functions.

!

⁵)3*/*² (7.5)

the scalar $\Gamma \cdot \Phi = iM_0$ Green's function is given by

$$
\mathbb{G} = \begin{pmatrix} \frac{k_x + \omega}{-M_0 + \sqrt{k_x^2 + k_y^2 + M_0^2 - \omega^2}} & \frac{k_y}{M_0 - \sqrt{k_x^2 + k_y^2 + M_0^2 - \omega^2}}\\ \frac{k_y}{M_0 - \sqrt{k_x^2 + k_y^2 + M_0^2 - \omega^2}} & \frac{k_x + \omega}{M_0 - \sqrt{k_x^2 + k_y^2 + M_0^2 - \omega^2}} \end{pmatrix}
$$

Tr $\mathbb{G} = \frac{2\omega}{-M_0 + \sqrt{k_x^2 + k_y^2 + M_0^2 - \omega^2}}$

Therefore, even in the case that the spectral function look similar the spectral function look similar the top

regrades of spectral functions.
The spectral functions of spectral functions. Iopological Liquid (8⁻0) Topological Liquid (g<0)

1-flavor cases are non-trivial topology.

7.1 scalar vs pseudo-scalar

But in b But in both case $Q = 0$ *^k^x* ⁺ ! *k^y* ⁺ *iM*⁵ $\frac{y}{2}$ $\Omega_{\mathbf{x}\mathbf{y}}=0$

1 by the 1-flavor with psudo scalar $\Gamma \cdot \Phi = \Gamma^5 M_5$ can give a gap for with psudo scalar $\Gamma \cdot \Phi = \Gamma^5 M_5$ can give a gap if

In this case, the Green function gives σ the Green function gives σ that the topology is trivial, σ

In this case, this case, this case, the Green function gives σ that the topology is trivial, the topology is trivial, σ

$$
\int \mathbb{G} = \frac{1}{\sqrt{k_x^2 + k_y^2 + M_5^2 - \omega^2}} \begin{pmatrix} k_x + \omega & -k_y + iM_5 \ -k_y - iM_5 & -k_x + \omega \end{pmatrix},
$$

Tr $\mathbb{G} = \frac{2\omega}{\sqrt{k_x^2 + k_y^2 + M_5^2 - \omega^2}}$

Spectrum->	gap	(g>0)
Topological	Liquid	(g<0)
But in both case	$\Omega = \frac{M_5}{2(k_x^2 + k_y^2 + M_5^2)^{3/2}}$	
$c_1 = \frac{1}{2\pi} \int F = 1$		

By using topological Hamiltonian method we get the curvature:

Topology in finite temperature

1. Non-interacting (single particle) theory: Finite temperature is ensemble average. Each band has its own topological number c_n . Therefore the topological number $=$ average of c_n : Actually Uhlmann defined a T-dependent c. $c(T) = \sum p_n(T) c_n$

Q: But does it make sense for a topology to be dependent on T, a continuous deformation?

Q: What holography says about it?

Monopole number at Finite T in holography

Findite Temperature Monopole Temperature Monopole Number of Temperature Monopole International Method 1: A & F are T-independent, though G depends on T. Method 2: GdG^{-1} depends on T.

Figure: monopole numbers over the evolution of temperature by various integration sphere radius.

Figure: Monopole charge with increasing of temperature, with a fixed sphere surface

Flux over Large enough Surface => temperature independent result.

Observation

```
1. In holography, c_1(T) = c_1(0).
```
2. Why this happen? In AdS/CFT dictionary, finite temperature \sim black hole \sim (a pure) state!

Conclusion

- 1. Lattice = symmetry breaking mechanism =>spectrum generation CLS=Atom, essence of both=localization of electron identify f orbital = flat band by CLS.
- 2. Topology of strongly interaction can be handled and holography gives a T-independent Topology.
- 3. Kondo lattice = flat band hybridized with s-band.

Thank you