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QCD phase diagram and the critical point

Search for the critical
point: ongoing effort
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QCD phase diagram and the critical point

Search for the critical
point: ongoing effort
at RHIC (Beam Energy
Scan)

Will be extended by
future experiments at
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QCD phase diagram and the critical point

Search for the critical
point: ongoing effort
at RHIC (Beam Energy
Scan)

Will be extended by
future experiments at
FAIR, J-PARC, NICA

Neutron star observa-
tions give complemen-
tary information at high
density
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QCD phase diagram: theoretical results
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QCD phase diagram: theoretical results

» Lattice data only available at zero/small chemical potentials
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QCD phase diagram: theoretical results

» Lattice data only available at zero/small chemical potentials
> Effective field theory works at small densities
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QCD phase diagram: theoretical results

» Lattice data only available at zero/small chemical potentials
> Effective field theory works at small densities
» Perturbative QCD: only at high densities and temperatures

Perturbative QCD
Lattice QCD

(2N

N Quark
S matter
\

\
Nuclear y
atter \'u

4/35



QCD phase diagram: theoretical results

» Lattice data only available at zero/small chemical potentials

> Effective field theory works at small densities
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> At intermediate densities no first-principles methods available
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QCD phase diagram: theoretical results

» Lattice data only available at zero/small chemical potentials

> Effective field theory works at small densities

» Perturbative QCD: only at high densities and temperatures

> At intermediate densities no first-principles methods available
— lots of open questions
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cores

» This region is highly relevant for neutron star physics!
» Improving theoretical predictions important!
» Strongly coupled physics — use the gauge/gravity duality?
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Gauge/gravity duality for QCD

> Motivated by the original
AdS/CFT correspondence for
N = 4 Super Yang-Mills

» Strongly coupled gauge
theory <+ classical 5D gravity
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Gauge/gravity duality for QCD

> Motivated by the original
AdS/CFT correspondence for
N = 4 Super Yang-Mills

» Strongly coupled gauge
theory <+ classical 5D gravity

> Field theory lives on the

boundary of the 5D geometry '/ el
» Instead of conformality,
. ~_ holographic
confinement: UV IR

coordinate

non-AdS/non-CFT duality

» Operators O;(x*) <« classical bulk fields ¢;(x*, r)

Zgrav((bi’bdry:Ji(Xu)) — /D eiSQCD+I'fd4xJ"(x#)O,'(X}L)

» Thermodynamics of QCD <> thermodynamics of a planar bulk
black hole
5/35



Why use holography for dense matter?

Already various models available in the literature — perhaps the
gauge/gravity duality is just another uncontrolled approximation?
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Why use holography for dense matter?

Already various models available in the literature — perhaps the
gauge/gravity duality is just another uncontrolled approximation?

There is however strong motivation for this approach:

» Strongly coupled physics: holography may work better than
many other approaches
» Different phases (quark, nuclear, color superconducting,
quarkyonic ... ) in the same footing or even in a single model
» Typically not achieved in the literature
» Gives rise to predictions for phase transitions
> As it turns out, predictions do make sense!

» Highly nontrivial — as the precise holographic dual for QCD is
not known, these model cannot be derived
» | will show examples later in this talk
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2. Holographic equation of state (EOS)

» Holographic quark matter
» Holographic nuclear matter
» Hybrid model

7/35



The approach

Goal: construct a state-of-the-art EOS, to be used

mwn

to describe (isolated) neutron stars

in simulations of neutron star mergers

in simulations of core collapse supernovae
when analyzing heavy-ion collisions (?)

[Based on Demircik, Ecker, MJ 2112.12157 (PRX) + earlier work]
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The approach

Goal: construct a state-of-the-art EOS, to be used
1. to describe (isolated) neutron stars
2. in simulations of neutron star mergers
3. in simulations of core collapse supernovae
4. when analyzing heavy-ion collisions (?)

| choose a specific holographic model (V-QCD) Mk :
» Many other approaches available, | will cover onIy th|s one
» Some parts could also be covered using simpler models (e.g.

quark matter using Einstein-Maxwell-dilaton)

Main ingredients are
1. Holographic model for quark matter
2. (Slightly adjusted) holographic model for
nuclear matter
3. Nuclear theory model for hadronic phase
— at low density holography not very useful
[Based on Demircik, Ecker, MJ 2112.12157 (PRX) + earlier work]

Holographic
Quarks
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Model for quark matter

V-QCD: a holographic bottom-up model for QCD

with backreacted quarks
» Combines model for glue (IHQCD) with

flavor (brane action) [Giirsoy, Kiritsis, Nitti]
[Bigazzi,Casero,Cotrone,Kiritsis, Paredes]
[MJ, Kiritsis 1112.1261]

uclear
heory

Holographic
Quarks

[Holographc
[Nucleons
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Model for quark matter

V-QCD: a holographic bottom-up model for QCD
with backreacted quarks

Holographic

> Combines model for glue (IHQCD) with .
flavor (brane action) [Giirsoy, Kiritsis, Nitti] ! A
. . C ucicar [Holographc
[Bigazzi,Casero,Cotrone,Kiritsis, Paredes] heory [\ cleons

[MJ, Kiritsis 1112.1261]
» Quark matter chirally symmetric =
203 [ g5 4 (0N)?
SV*QCD = NCM /d X\/E R — g )\2 -+ Vg(A)

—NfNC/\/I3/d5X Vio(A)\/— det(gap + w(N)Fap)
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Model for quark matter

V-QCD: a holographic bottom-up model for QCD
with backreacted quarks

. . Holographic
» Combines model for glue (IHQCD) with e
flavor (brane action) [Giirsoy, Kiritsis, Nitti] !
. . C ucicar [Holographc
[Bigazzi,Casero,Cotrone,Kiritsis, Paredes] heory [\ cleons

_ [MJ, Kiritsis 1112.1261]
» Quark matter chirally symmetric =

4 (ON)?
Sv_qcp = N>M3 / d°x /g {R — 5( )\2) + Vg(/\)}

—N¢N M3 / d®x Vio(N)y/— det(gap + w(\)Fap)
Effective model: choose potentials by comparing to QCD at pu ~ 0

(e=3p)IT* X6l T?
0.30]
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Model for quark matter

V-QCD: a holographic bottom-up model for QCD
with backreacted quarks

. . Holographic
» Combines model for glue (IHQCD) with e
flavor (brane action) [Giirsoy, Kiritsis, Nitti] !
. . C ucicar [Holographc
[Bigazzi,Casero,Cotrone,Kiritsis, Paredes] heory [\ cleons

_ [MJ, Kiritsis 1112.1261]
» Quark matter chirally symmetric =

4 (0N)?
SV*QCD = N3M3 / dSX\/E |:R - g( )\2) + Vg(A):|

—NfNC/\/I3/d5X Vio(A)\/— det(gap + w(N)Fap)
Effective model: choose potentials by comparing to QCD at pu ~ 0

(e=3p)IT* X6l T?
0.30]
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Equation of state obtained numerically from black hole
thermodynamics of charged black holes 9/35



Phase diagram with quark matter

T/MeV
150}
Quark gluon plasma
Black hole
100} Deconfined
Thermal gas Chirally symmetric
50} Confined
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> With quark matter only, expected phase diagram

» Cold QM EOS and location of the T = 0 phase transition
agree with constraints
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Model for nuclear matter

Standard method for baryons in holographic models: Each baryon

maps to a solitonic 5D “instanton” of gauge fields

» Already constructing an isolated instanton
solution is nontrivial

» Such instantons have been studied in many
models, including V-QCD

[MJ, Kiritsis, Nitti, Préau 2209.05868; 2212.06747]

» Dense nuclear matter requires studying

— Holographic
Quarks

;‘f‘}':dc‘" Ho]ograp\ﬁ
O INucleons

many-instanton solutions . .. extremely challenging!
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Model for nuclear matter

Standard method for baryons in holographic models: Each baryon

maps to a solitonic 5D “instanton” of gauge fields A
— Holographic
» Already constructing an isolated instanton Qe
solution is nontrivial rheory Hologf'dp\ﬁ
INucleons

» Such instantons have been studied in many

models, including V-QCD
[MJ, Kiritsis, Nitti, Préau 2209.05868; 2212.06747]

» Dense nuclear matter requires studying
many-instanton solutions . .. extremely challenging!

» Qur approach: V-QCD with two flavors and a homogeneous
gauge field, mimicking dense solitons: A" = h(r)o’
[Rozali, Shieh, Van Raamsdonk, Wu 0708.1322]

[Ishii, MJ, Nijs, 1903.06169]

11/35



Homogeneous nuclear matter in V-QCD

Nuclear matter in the probe limit: consider full brane action
S = Spgi + Scs where

[Bigazzi, Casero, Cotrone, Kiritsis, Paredes; Casero, Kiritsis, Paredes]

Spel = —%M3Nc Tr/d5x V,ro()\)e’T2 < —det AD) 4 /—det A(R)

A = g + TN (1) + SR w(N'(r) + wV)F

gives the dynamics of the solitons (will be expanded in F(t/R)) and

Ne

Scs = /¢(r)6_bT2dt A (F(L) AFE — FR) A F(R) )

sources the baryon number for the solitons
» Extra parameter, b > 1, to ensure regularity of solutions

Set Nf = 2 and consider the homogeneous SU(2) Ansatz
[Rozali, Shieh, Van Raamsdonk, Wu 0708.1322]

AL = —Ak = h(r)o’
[Ishii, MJ, Nijs, 1903.06169]
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Discontinuity and smeared instantons

With the homogeneous Ansatz A?(r) = h(r)o? baryon number
vanishes for any smooth h(r):

Np /drjr [CS —term] =0

How can this issue be avoided? Q4
» Smearing the BPST soliton in

singular Landau gauge: R _OZL
(A7) ~ / ( =

dr2 +x2 4+ p?)(6r? 4+ x?) oo

62 or
\VOr?+ p? + |or] o ,

» This suggests a solution: introduce o

a discontinuity in h(r) at r = rc t os 1?0 s

~

» The discontinuity sources nonzero baryon charge!
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Phase diagram after including nuclear matter
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Adjusting the nuclear matter model

The V-QCD nuclear matter EOS as such is
however not fully satisfactory:

» Temperature dependence is absent in the confined phases, and
therefore also for holographic nuclear matter

» This is likely to be a good first approximation, but not enough
for a state-of-the-art model

15/35



Adjusting the nuclear matter model

The V-QCD nuclear matter EOS as such is
however not fully satisfactory:

» Temperature dependence is absent in the confined phases, and
therefore also for holographic nuclear matter

» This is likely to be a good first approximation, but not enough
for a state-of-the-art model

Our solution: we extrapolate the holographic nuclear matter EOS
to nonzero T by a using a van der Waals approach

» Gas of protons, neutrons and electrons with an excluded

volume correction and a potential term
[Demircik, Ecker, MJ 2112.12157]
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Combining the building blocks: the hybrid model

» For low density nuclear matter, Hempel-Schaffner-Bielich DD2

(Traditional)
Nuclear
Model

[Hempel, Schaffner-Bielich 0911.4073
[Typel, Ropke, Klahn, Blaschke, Wolter 0908.2344

Extrapolated
Nuclear
Matter

Holog
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Combining the building blocks: the hybrid model

» For low density nuclear matter, Hempel-Schaffner-Bielich DD2
[Hempel, Schaffner-Bielich 0911.4073
[Typel, Ropke, Klahn, Blaschke, Wolter 0908.2344

Extrapolated
Nuclear
Matter

(Traditional)
Nuclear Holographic
Model

n;
Covers regions relevant for neutron stars and heavy-ion collisions!
» One of the most ambitious attempts to describe the QCD
EOS to date, in any approach
» Consistent with theoretical and observational constraints
» Pick three variants (soft, intermediate, stiff) — different fits of
the holographic model to lattice data — published in the
CompOSE database of EOSs [http://compose.obspm.frly g /35



Cold EoS and known constraints

» Three choices of EoSs: soft, intermediate, and stiff <

the degrees of freedom of V-QCD left free by fit to lattice data
» Compared to bands of all feasible cold matter EoS:

and holography

04k Nuce Holographic Phase Holographic
Theory Nuclear Matter Transition Quark Matter -
. - P
~ 1000 V
> e
2
S 100 0 Mroy
] © 1.64 M
2 — soft P
4 37
= —— interm.
— stiff
V-QCD
1 nucl.th.
100 500 1000 5000 10

Energy density [MeV /fm®]

17/35



essure [MeV /fm |
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» Three choices of EoSs: soft, intermediate, and stiff <

the degrees of freedom of V-QCD left free by fit to lattice data
» Compared to bands of all feasible cold matter EoS:
holography

Cold EoS and known constraints

B
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0 Moy
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» Plug EoSs in TOV: neutron star M(R) curves (left plot)
» Compares well with mass/radius observations
» No stable quark cores inside neutron stars

[Ecker, MJ, Nijs, van der Schee 1908.03213

[Jokela, MJ, Nijs, Remes 2006:01141
[Demircik, Ecker, MJ 2112.12157]17/35



Advantages of the model

The model has various nice features:

1. Precise fit of lattice data possible
» Mild parameter dependence,
works with simple potentials
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Agreement with FRG

Close agreement with functional renormalization group (FRG)
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Agreement with FRG

Close agreement with functional renormalization group (FRG)
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» Critical point
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Agreement with FRG

Close agreement with functional renormalization group (FRG)
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3. Holographic neutron star mergers

» Production of quark matter
» Prompt collapse to a black hole
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Neutron star mergers

» Significant sources of gravitational radiation
» Microscopic properties of dense matter encoded in the
gravitational waves and the electromagnetic signal
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Neutron star mergers

» Significant sources of gravitational radiation
» Microscopic properties of dense matter encoded in the
gravitational waves and the electromagnetic signal
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black hole + torus(5 — GkHz) black hole (6 — TkHz)

binary (= 1kHz) HMNS/SMNS (2 — 4kHz black hole + torus (5 — 6kHz) black hole (6 — TkHz)

(1 —2kHz) black hole/NS?
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[picture: Baiotti, Rezzola 1607.03540]
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Neutron star mergers

» Significant sources of gravitational radiation
» Microscopic properties of dense matter encoded in the

gravitational waves and the electromagnetic signal
M/M,., ¢~1

binary (< 1kHz) black hole + torus (5 — (kHz) black hole (6 — TkHz)
2 T é

binary (< 1kHz)  HMNS/SMNS (2 - 4kilz)  black hole + torus (5 — 6kF1z) black hole(6 — 7kiz)

L5 5;

binary (< 1kHz)  SMNS (diff. rot.)(2 — 4kilz) SMNS (WM TOE.)(1 — 2kHz) black hole/NS?

gl @ ﬂ c é
V
[10° — 107 y1] [1ms —15] [1—-10%g

[picture: Baiotti, Rezzola 1607.03540]

One good event (GW170817) and a few other events already
observed! [LIGO/Virgo, 1710.05832]
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Simulating neutron star mergers

Have to solve the 3+1D General Relativistic hydrodynamics equations:

1
R/l,l/ - ERg/w = 871Gy T/u/ s V/l, ™ = 07 V/I,J'u =0

with initial state modelling a neutron star binary system
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Have to solve the 3+1D General Relativistic hydrodynamics equations:

1
R/l,l/ - ERg/w = 871Gy T/u/ s V/l, ™ = 07 V/I,J'u =0

with initial state modelling a neutron star binary system
» Equation of state as input — use V-QCD hybrid EOS

> Spectral code Frankfurt University/Kadath (FUKA) for initial data
[Papenfort, Tootle, Grandclement, Most, Rezzolla 2103.09911]

» Frankfurt/lllinois (FIL) code for binary evolution with tabulated EOS
[Most, Papenfort, Rezzolla 1907.10328]
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Simulating neutron star mergers

Have to solve the 3+1D General Relativistic hydrodynamics equations:

1
R/l,l/ - ERg/w = 871Gy T/u/ s V/l, ™ = 07 V/I,J'u =0

with initial state modelling a neutron star binary system
» Equation of state as input — use V-QCD hybrid EOS

> Spectral code Frankfurt University/Kadath (FUKA) for initial data
[Papenfort, Tootle, Grandclement, Most, Rezzolla 2103.09911]

» Frankfurt/lllinois (FIL) code for binary evolution with tabulated EOS
[Most, Papenfort, Rezzolla 1907.10328]

» Implemented in the Einstein Toolkit
[http://einsteintoolkit.org)

v

Need supercomputing!

22/35



, warm and cold quarks

Warm quarks

.3 1ms t

After-merger quark matter production (GW170817 parameters):
Cold quarks

Hot quarks
=t

Soft EOS

Jkn

M
ML =0.7

10 -10

5

0 ‘ 0
k]  [km] x k]
[Tootle, Ecker, Topolski, Demircik, MJ, Rezzolla 2205.05691]23/35
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Threshold mass of prompt black hole formation

Analysis of mergers at high mass where the system collapses to a
black hole
» Idea: use curvature invariants for precise classification of
“prompt” collapse
> We choose to use the Kretschmann scalar

K1 = Rapeg R?P
Motivated by simulations, in particular

dependence of K7 on t and Migta, we define i
1. The critical mass

dter; A
Meie = min(M) : = <0V Myt > M,

- thotaI
where t. is the time of formation of an apparent horizon
2. Threshold masses of promptness p

dP
{Mt(r?) = min(Miotal) : ——max(K1) >0V t > tmerge}

dtP
[CE, Topolski, Jarvinen, Stehr 2402.11013p4 /35



Residual matter

» Significant drop in residual matter outside horizon at Mt

tftmmgnzlo ms
T

10—3

1074

nb/ns

30 -20

20
x [km] x [km]
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Residual matter

» Significant drop in residual matter outside horizon at Mt

t— tierge = 10 ms
e —

1074

nb/ Ny

Mg = My, Mg = M)
30 20 -0 0 10 20 30
x [km] x [km]
» Enhanced by the transition to quark matter
>

So Mt can potentially be measured precisely by observing
the EM counterpart

25/35



4. Modulated instabilities
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Inhomogeneity in holographic plasma?

Spatially modulated phases
[Nakamura, Ooguri, Park 0911.0679;
Ooguri, Park 1011.4144] |Im(w)>0

» Exponentially growing - —

perturbation at g # 0:
a quasi-normal mode with ——‘\\\\\\\\\\\\\\\\ﬁ___~
Imw >0

q

Im(w)
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Inhomogeneity in holographic plasma?

Spatially modulated phases

[Nakamura, Ooguri, Park 0911.0679;
Ooguri, Park 1011.4144] |Im(w)>0
» Exponentially growing _ e N
perturbation at g # 0: £
a quasi-normal mode with \
Imw >0
» The Chern-Simons term can drive a

a modulated instability at finite density
» Modulated 5D gauge fields dual to modulated
persistent chiral currents in field theory
» Somewhat different from “chiral density wave” s
no chiral condensate involved
Schematic fluctuation equation

f’ qn w? ¢
" / o / - =
SO+ + 5 ) O 0+ (5 - ) vl =0
— 5AX + 5Ay From CS term — hol hi d.
(0 L/R T I0AL /R r = holographic coor o7 /35



Instability in our setup

We checked the extent of the instability in V-QCD and
Einstein-Maxwell-dilaton models

» Note that CS terms required
by the anomalies in QCD

[Cruz Rojas, Demircik, MJ 2405.02399; Demircik, Jokela, MJ, Piispa 2405.02392]
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by the anomalies in QCD

» Instability surprisingly strong
> Extends to region reachable
by lattice and experiments
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by the anomalies in QCD — V-QCD 8 — V-QCD7a — V-QCD 5b

» Instability surprisingly strong 1607

Deconfined phase

> Extends to region reachable 140}

by lattice and experiments 1200

T(MeV)

P> Result largely
model-independent

1001
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80+
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Instability in our setup

We checked the extent of the instability in V-QCD and
Einstein-Maxwell-dilaton models

>

Note that CS terms required
by the anomalies in QCD
Instability surprisingly strong
Extends to region reachable
by lattice and experiments
Result largely
model-independent

However, might be sensitive
to strange quark mass
— requires further study

T(MeV)

— V-QCD 8 — V-QCD7a — V-QCD 5b

160

1a0f
120}
100}

80+

Confined phase

Deconfined phase

100

200 300 400 500

Ha(MeV)

[Cruz Rojas, Demircik, MJ 2405.02399; Demircik, Jokela, MJ, Piispa 2405.02392]
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5. Bulk viscosity
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Bulk viscosity in dense QCD matter

» Beyond equation of state: transport properties of dense matter

» Focus on bulk viscosity: resistance of a system towards
compression and expansion
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Bulk viscosity in dense QCD matter

Beyond equation of state: transport properties of dense matter

Focus on bulk viscosity: resistance of a system towards
compression and expansion
In dense quark matter, the contribution relevant to neutron
stars is due to weak interactions coupled to QCD matter

» Since ms > m, 4, compression or expansion leads to deviation

from (-equilibrium, ps # g

» Weak interaction v+ d = u + s acts to restore equilibrium
Twenty orders of magnitude larger than the pure QCD
viscosity for neutron star frequencies and temperatures
(kHz/MeV range)

Potentially affects significantly the aftermerger phase of

neutron star merger
[Alford, Bovard, Hanauske, Rezzolla, Schwenzer 1707.09475]
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Bulk viscosity for periodic compression

Straightforward analysis for periodic compression using weak
reaction rate to leading order in Gr and as

A\ A2
w? + (/\1 C1)2

with strong contributions given as

(=

_Omi _ Op ij=u.ds
opj  Opiduy ’ o

A Go=F({n} i) Xi

and weak contributions given through the rate
64 :
A1 = 53 G2 sin® . cos® Oy T?
» Sensitive to strange quark mass: ¢ ~ m?

s
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Estimating the susceptibilities

We computed the susceptibilities (that is, the coefficients A; and

Cl) using [Cruz Rojas, Gorda, Hoyos, Jokela, MJ, Kurkela
. Paatelainen, Sappi, Vuorinen 2402.00621 (PRL)]
1. Perturbative QCD

» Using a scheme where m; is a Z . //
perturbation  [Gorda, Sappi 2112.11472] ﬂ?,w //,f;;:/ e[S
. By £ D3-D7
2. Probe D3-D7 setup with quark masses 2 oo
; . : - Trecquats
matched with perturbation theory f.:l
» Simple analytic expressions Elo“ //% N
. = - 9]
3. V-QCD - turning on the strange quark Toop—" =
mass without refitting the model z —
» Numerical result, taking the "
derivatives of number densities Z -
Emﬁ__-,,,,,,ﬁ, g
2 =
§ 0 .
100 10! 102 10°
g [nsa]
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Estimating the susceptibilities

We computed the susceptibilities (that is, the coefficients A; and

Cl) using [Cruz Rojas, Gorda, Hoyos, Jokela, MJ, Kurkela
. Paatelainen, Sappi, Vuorinen 2402.00621 (PRL)]
1. Perturbative QCD

» Using a scheme where m; is a Z . //
perturbation  [Gorda, Sappi 2112.11472] 5 | -~ e[S
Tt Dé»D7 -
2. Probe D3-D7 setup with quark masses 2 e
matched with perturbation theory fl:
» Simple analytic expressions z . = B
. = - 9]
3. V-QCD - turning on the strange quark Toop—" =
mass without refitting the model z =
» Numerical result, taking the w
derivatives of number densities Z ~
%‘06#,,,,,,,§, g
» D3-D7 gives a reasonable extrapolation .2 %
of the perturbative results to low densities” N
. 100 10! 102 10°
» V-QCD underestimates A;? 5 ]

» Not surprising — our simplistic approach for the strange quark
mass also leads to tension with lattice data at small density 3535



Result for the bulk viscosity

Final results for the bulk viscosity at n ~ 5ng,t

» The D3-D7 result expected

182 , , , —
to be the best estimate -
10% 1kHz -~ \l/)%
» V-QCD qualitatively similar, = S
%] 7
but too low by a constant TE 08 e AT
PP R :
factor &% T L
= 10% o %
> Free quarks also give a > g
. 4l kY
reasonable estimate 0% 7
1074 1073 1072 107! 10° 10!

» Results for nuclear and
hyperonic matter shown for
comparison

T [MeV]
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Result for the bulk viscosity

» The D3-D7 result expected

to be the best estimate

» V-QCD qualitatively similar,

but too low by a constant
factor

> Free quarks also give a

reasonable estimate

» Results for nuclear and

hyperonic matter shown for
comparison

Final results for the bulk viscosity at n ~ 5ng,t

102 F

1030 .

1028

10%

{lgem™s7!]

T S

(=

The best estimate (D3-D7) takes a simple form
Ay py (M2 — M3)?

Ki
K3K2w? + w23 (Kg + Ks)?

107 10T 100
T [MeV]
=3u3 — M?
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Conclusion

» Holographic description of dense QCD works well:
v Precise fit of lattice thermodynamics at =~ 0
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v/ Simultaneous model for nuclear and quark matter
v Stiff EOS for nuclear matter
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Conclusion

» Holographic description of dense QCD works well:
v Precise fit of lattice thermodynamics at =~ 0
v Extrapolated EOS for cold quark matter reasonable
v/ Simultaneous model for nuclear and quark matter
v Stiff EOS for nuclear matter
» Constructed an extensive EOS model at finite temperature
and density using V-QCD + other models
» Predictions for binary neutron star mergers from
state-of-the-art simulations using our model
» Holographic QCD has surprisingly strong modulated
(Nakamura—Ooguri—Park) instability
» Computed predictions for the bulk viscosity both using
perturbation theory and holography
» Ongoing/future improvements: careful analysis of
strange quark mass, more transport (e.g. neutrino
transport), isospin asymmetry, color superconducting
phases, improving predictions for spatial modulation . ..
35/35



Thank you!



Recent progress on dense holographic QCD

For quark matter, use D3-D7 top down model: ¢ = 3p + %ﬁ
[Karch, O'Bannon, 0709.0570]
» N =4 SYM + Ny = 3 probe hypermultiplets in the

fundamental representation
For nuclear matter use with stiff, , and

“extrapolations” of EFT results
[K. Hebeler, J. M. Lattimer, C. J. Pethick, A. Schwenk 1303.4662]

2.5F .
600} - /I:
e 2.0 /
£ Soof _ e ;
> Lo} ’
2 400f =15 /
H = ;
o 3 '/
2 3000 s J
2 = 10f i
8 200} {
o b ..
100} 0.5 ~ee ]
[i]2 : . . . . . . 0.0 . . L
350 400 450 500 550 600 650 8 10 12 14 16
Quark chemical potential [MeV] Radius [km]

» Strong first order nuclear to quark matter transitions
» Neutron stars with “holographic” quark matter core (black
curves) are unstable
[Hoyos, Rodriguez, Jokela, Vuorinen 1603.02943]37/35



Varying the quark mass m one can get quark stars and hybrid stars
[Annala, Ecker, Hoyos, Jokela, Rodriguez-Fernandez, Vuorinen 1711.06244]

» Sizeable deviations from universal I-Love-Q relations
[Yagi, Yunes, 1303.1528]

Including running of the quark mass + color superconductivity
[Bitaghsir Fadafan, Cruz Rojas, Evans, 1911.12705; 2009.14079]

» Possibility of an intermediate xYSB deconfined phase
» Stiffer holographic equations of state (high speed of sound)
» Quark matter cores

Using Einstein-Maxwell-dilaton for quark matter
[Mamani, Flores, Zanchin, 2006.09401]

(Largish) quark stars also studied in Witten-Sakai-Sugimoto and in

D4-D6 models [Burikham, Hirunsirisawat, Pinkanjanarod, 1003.5470

Kim, Shin, Lee, Wan, 1108.6139, 1404.3474]

This talk: towards more realistic model of quark matter?
38/35



Constraining the potentials

In the UV (A — 0):
» UV expansions of potentials matched with perturbative QCD
beta functions = asymptotic freedom and logarithmic flow of

the coupling and quark mass, as in QCD
[Giirsoy, Kiritsis 0707.1324; MJ, Kiritsis 1112.1261]

In the IR (A — o0): various qualitative constraints
» Linear confinement, discrete glueball & meson spectrum,
linear radial trajectories
» Existence of a “good” IR singularity
» Correct behavior at large quark masses
» Working potentials often string-inspired power-laws, multiplied

by logarithmic corrections (i.e, first guesses usually work!)
[Giirsoy, Kiritsis, Nitti 0707.1349; MJ, Kiritsis 1112.1261; Arean, latrakis, MJ, Kiritsis

1309.2286, 1609.08922; MJ 1501.07272]

Final task: determine the potentials in the middle, A = O(1)
» Qualitative comparison to lattice/experimental data
39/35



Ansatz for potentials, (x = 1)

9%
Ve(A) = 12 [H VI —22 4 Vige A (M /X0)*/3/log(1 + )\/)\0)}

1+ X/ o

W2)\2 -\
Vio(\) = Wo + WA+ —22 o+ W, o/ A/Ao)?
ro(N) o+ Wi +1+)\/)\0+ IR€E (M o)
wiA/ Ao — _—Xo/Aw. (Ws)\//\o)d'/3
— 1 0 s
Wiy T T T eE log(1 + ws\/Xo)
o 4619
V7 orr20 2T 4665674
W, 4 W,
W1:8+3 0. W2:688+999 A

e 1555274

Fixed UV/IR asymptotics = fit parameters only affect details in
the middle
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Constraining the model at 1 ~ 0

Standard recipe (charged black holes) = lots of numerical work
= description of hot and dense quark matter
Fit to lattice data near =10 [MJ, Jokela, Remes, 1809.07770]
» Many parameters already fixed by requiring qualitative
agreement with QCD
> Results only weakly dependent of remaining parameters
» Good description of lattice data — nontrivial result!

Interaction measure 6}3”, Baryon number ,
2+1 flavors susceptibility xp= ZTIQ) o
[Data: Borsanyi et al. 1309.5258] [Data: Borsanyi et al. 1112.4416]
(e=3p)/T* X8l T
0.30
0.25
0.20
0.15
0.10
0.05‘
= L

1.0 15 20 25 T 41/35



Extrapolated EOSs of cold quark matte

The V-QCD cold quark matter result compares nicely to known
constraints:

[MJ, Jokela, Remes, 1809.07770]

» Band of allowed 10°
equations of state o
. E 1000
(EOSs) (gray, polytropic 3
interpolations) S 100
> Stiff, cand &
o
nuclear EOSs
[Hebeler, Lattimer, Pethick, 1

100 500 1000 5000 10%

Schwenk 1303.4662] Energy density [MeV/fm®]

Approach similar in spirit to studies of the QCD critical point

[DeWolfe,Gubser,Rosen 1012.1864; Knaute,Yaresko,Kampfer 1702.06731;
Critelli, Noronha, Noronha-Hostler, Portillo, Ratti, Rougemont, 1706.00455;

Cai, He, Li, Wang 2201.02004]
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Van der Waals model

Ideal gas of protons, neutrons and electrons with
» Excluded volume correction for nucleons

fjex(Ta {,u/}) = pid(Ta {/]/}) .

fii = pi — vopex(T, {pi}) (i =p, n)
vop ~ volume of one nucleon

» (Mostly) attractive potential term to match with (APR and)
V-QCD at T =0
Puaw (T, {1i}) = pex(T, {pi}) + Ap({ni})
schematically:
Ap({pi}) = pv—qeo(T = 0, {ni}) = pex(T = 0, {1i})

[Rischke, Gorenstein, Stoecker, Greiner, Z Phys. C 51, 485 (1991)]
[Vovchenko, Gorenstein, Stoecker, 1609.03975]

[Vovchenko, Motornenko, Alba, Gorenstein, Satarov, Stoecker, 1707.09215]
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esults: critical poi

¢;2/c* at —equilibrium (soft) ¢/%/c* at -equilibrium (intermediate) ¢*/c at p—equilibrium (stiff) atfet
140 0.50
120 0.45
0.40
_ ~ - 100 035
g z : o0
= =4 B 0.25
0.20
0.15
0.10
0.05
05 1 5 10
np/ng np/ng ny/ns
1400
110 MeV S TC 5 130 MeV 1200 tiff
1000 interm.
0.3ns S ne < 0.6ns o

Ae[MeVfm—3]

20 40 60 80

TIMeV]

Critical point is determined by fitting the latent heat in the region
of strong phase transition and extrapolating




Results: thermal index

B-equilibrium

2.0 LED) ]

th

T=20 MeV

—— T=50 MeV
051 o100 MeV
—— T=150 MeV

0.0 ‘ : :

0.5 1 5 10

ny/ N

(o, T) = 1+ ECF=2oro)

P Values in expected range

» Low values in the mixed phase
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Modulated instability in V-QCD

The region where instability exists ¢,y Rojas, Demircik, MJ 2405.02399]

» Estimate for transition and critical point from earlier work
[Demircik, Ecker, MJ 2112.12157]

150 - ) 1
Deconfined phase
Unstable
*. .
100 ""%e
IS
B =2
3 %,
= ‘({%
= %
%
50 “
Confined phase Unstable
0 . . . . S .
0 100 200 300 400 500 600 700

p[MeV]

» The Chern-Simons term is strong enough to create an
instability of the charged black hole in V-QCD (unsurprising)

» Instability is found at low T and large density — region
relevant for neutron stars (expected)

» Instability is also found at higher T, near the regime with

critical point?! (a big surprise) 46/35



How does the instability arise?

Deconfined phase

Looks quite different from Nakamura- -
Ooguri-Park, where the onset was at
fixed p/ T...what is going on?

Confined phase Unstable

» Also differs from result in

Witten-Sakai-Sugimoto LT
[Ooguri, Park 1011.4144]

» Look at the fluctuation equation

' gn w? ¢
o (A4 )+ g+ (- F) =

» Values of ¢ largest near horizon, and grow for smaller black
holes

» Smallest black holes found near the deconfinement transition
[Alho, MJ, Kajantie, Kiritsis, Rosen, Tuominen 1312.5199]

» Z(¢) determined by fit to x»: fast increase of yp with T
= fast decrease of Z with ¢
» Enhances instability strongly for small black holes
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Rapidly spinning holographic neutron stars

GW190814: LIGO/Virgo observed a merger of a 23My, black hole
with a 2.6 M, compact object
[2006.12611]
> 2.6M falls in the “gap”: a black hole or a neutron star?

intermediate
30 My

GW190814 [1]

» Holographic EQSs easily 25 4,
compatible with the 20 -
neutron star

J0740+6620 [5)
Ref. [9]

MM,

interpretation 1(: Norfuedn /= 1R
» However requires fast -
rotation, f 2 1 kHz 02 > Kepler
0% 12 14 16 18 20

R, [km]

[Demircik, Ecker, MJ, 2009.10731]
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Mechanical Toy Model

[Takami, Rezzolla, Baiotti 1412.3240]
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