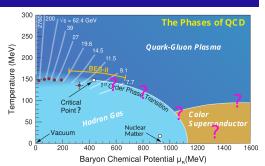
Predictions for dense matter and neutron stars from the gauge/gravity duality

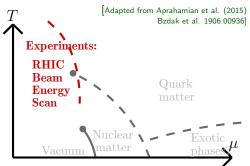
Matti Järvinen

INPP Demokritos—APCTP meeting and HOCTOOLS—II mini-workshop — 30 September 2024

Outline

- 1. Introduction and motivation
- 2. Holographic equation of state
 - Holographic quark matter
 - Holographic nuclear matter
 - ► Hybrid model
- 3. Holographic neutron star mergers
 - Production of quark matter
 - Prompt collapse to a black hole
- 4. Modulated instabilities
- 5. Bulk viscosity
- 6. Conclusion

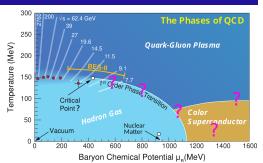

Outline


1. Introduction and motivation

- 2. Holographic equation of state
 - ► Holographic quark matter
 - ► Holographic nuclear matter
 - ► Hybrid model
- 3. Holographic neutron star mergers
 - ► Production of quark matter
 - ► Prompt collapse to a black hole
- 4. Modulated instabilities
- 5. Bulk viscosity
- 6. Conclusion

QCD phase diagram and the critical point

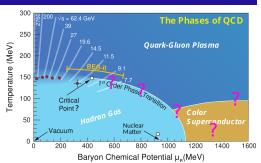
Search for the critical point: ongoing effort at RHIC (Beam Energy Scan)



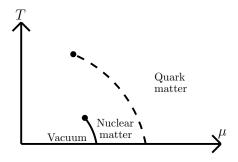
QCD phase diagram and the critical point

Search for the critical point: ongoing effort at RHIC (Beam Energy Scan)

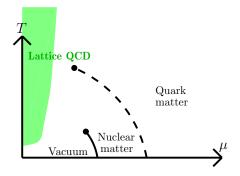
Will be extended by future experiments at FAIR, J-PARC, NICA

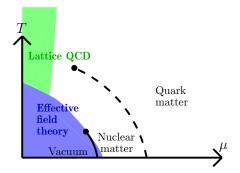


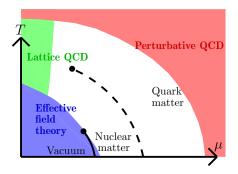
QCD phase diagram and the critical point

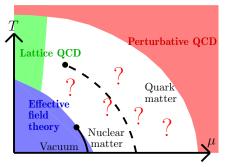

Search for the critical point: ongoing effort at RHIC (Beam Energy Scan)

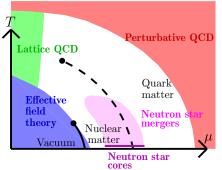
Will be extended by future experiments at FAIR, J-PARC, NICA


Neutron star observations give complementary information at high density



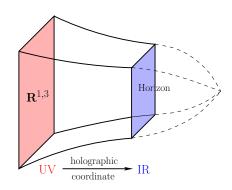

▶ Lattice data only available at zero/small chemical potentials


- ► Lattice data only available at zero/small chemical potentials
- ► Effective field theory works at small densities


- Lattice data only available at zero/small chemical potentials
- ► Effective field theory works at small densities
- Perturbative QCD: only at high densities and temperatures

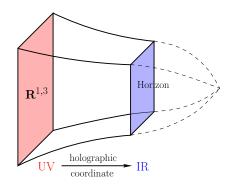
- Lattice data only available at zero/small chemical potentials
- ► Effective field theory works at small densities
- Perturbative QCD: only at high densities and temperatures
- ▶ At intermediate densities no first-principles methods available
 - lots of open questions

- Lattice data only available at zero/small chemical potentials
- Effective field theory works at small densities
- Perturbative QCD: only at high densities and temperatures
- ▶ At intermediate densities no first-principles methods available
 - lots of open questions


- ► This region is highly relevant for neutron star physics!
- Improving theoretical predictions important!
- ► Strongly coupled physics use the gauge/gravity duality?

Gauge/gravity duality for QCD

- Motivated by the original AdS/CFT correspondence for N = 4 Super Yang-Mills
- ► Strongly coupled gauge theory ↔ classical 5D gravity


Gauge/gravity duality for QCD

- Motivated by the original AdS/CFT correspondence for $\mathcal{N}=4$ Super Yang-Mills
- Strongly coupled gauge theory ↔ classical 5D gravity
- Field theory lives on the boundary of the 5D geometry
- Instead of conformality, confinement: non-AdS/non-CFT duality

Gauge/gravity duality for QCD

- Motivated by the original AdS/CFT correspondence for $\mathcal{N}=4$ Super Yang-Mills
- Strongly coupled gauge theory ↔ classical 5D gravity
- Field theory lives on the boundary of the 5D geometry
- Instead of conformality, confinement: non-AdS/non-CFT duality

▶ Operators $O_i(x^{\mu}) \leftrightarrow$ classical bulk fields $\phi_i(x^{\mu}, r)$

$$Z_{\mathsf{grav}}(\phi_i|_{\mathsf{bdry}} = J_i(x^\mu)) = \int \! \mathcal{D} \, e^{i S_{QCD} + i \int d^4 x J^i(x^\mu) O_i(x^\mu)}$$

lackbox Thermodynamics of QCD \leftrightarrow thermodynamics of a planar bulk black hole

Why use holography for dense matter?

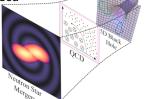
Already various models available in the literature – perhaps the gauge/gravity duality is just another uncontrolled approximation?

Why use holography for dense matter?

Already various models available in the literature – perhaps the gauge/gravity duality is just another uncontrolled approximation?

There is however strong motivation for this approach:

- Strongly coupled physics: holography may work better than many other approaches
- ▶ Different phases (quark, nuclear, color superconducting, quarkyonic . . .) in the same footing or even in a single model
 - Typically not achieved in the literature
 - Gives rise to predictions for phase transitions
- As it turns out, predictions do make sense!
 - Highly nontrivial as the precise holographic dual for QCD is not known, these model cannot be derived
 - ► I will show examples later in this talk


Outline

- 1. Introduction and motivation
- 2. Holographic equation of state (EOS)
 - ► Holographic quark matter
 - Holographic nuclear matter
 - ► Hybrid model
- 3. Holographic neutron star mergers
 - ► Production of quark matter
 - ► Prompt collapse to a black hole
- 4. Modulated instabilities
- 5. Bulk viscosity
- 6. Conclusion

The approach

Goal: construct a state-of-the-art EOS, to be used

- 1. to describe (isolated) neutron stars
- 2. in simulations of neutron star mergers
- 3. in simulations of core collapse supernovae
- 4. when analyzing heavy-ion collisions (?)

The approach

Goal: construct a state-of-the-art EOS, to be used

- 1. to describe (isolated) neutron stars
- 2. in simulations of neutron star mergers
- 3. in simulations of core collapse supernovae
- 4. when analyzing heavy-ion collisions (?)

I choose a specific holographic model (V-QCD)

 Some parts could also be covered using simpler models (e.g. quark matter using Einstein-Maxwell-dilaton)

The approach

Goal: construct a state-of-the-art EOS, to be used

- 1. to describe (isolated) neutron stars
- 2. in simulations of neutron star mergers
- 3. in simulations of core collapse supernovae
- 4. when analyzing heavy-ion collisions (?)

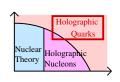
I choose a specific holographic model (V-QCD)

- Many other approaches available, I will cover only this one
- Some parts could also be covered using simpler models (e.g. quark matter using Einstein-Maxwell-dilaton)

Main ingredients are

- 1. Holographic model for quark matter
- (Slightly adjusted) holographic model for nuclear matter
- 3. Nuclear theory model for hadronic phase
 - at low density holography not very useful

Holographic
Quarks
Nuclear
Theory
Nucleons

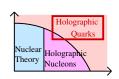

[Based on Demircik, Ecker, MJ 2112.12157 (PRX) + earlier work]

V-QCD: a holographic bottom-up model for QCD with backreacted quarks

Combines model for glue (IHQCD) with flavor (brane action) [Gürsoy, Kiritsis, Nitti]

[Bigazzi, Casero, Cotrone, Kiritsis, Paredes]

[MJ, Kiritsis 1112.1261]



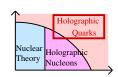
V-QCD: a holographic bottom-up model for QCD with backreacted quarks

Combines model for glue (IHQCD) with flavor (brane action) [Gürsoy, Kiritsis, Nitti]

[Bigazzi, Casero, Cotrone, Kiritsis, Paredes]

[MJ, Kiritsis 1112.1261]

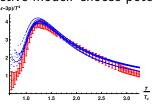
■ Quark matter chirally symmetric ⇒

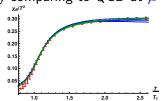

$$S_{V-QCD} = N_c^2 M^3 \int d^5 x \sqrt{g} \left[R - \frac{4}{3} \frac{(\partial \lambda)^2}{\lambda^2} + V_g(\lambda) \right]$$
$$-N_f N_c M^3 \int d^5 x \ V_{f0}(\lambda) \sqrt{-\det(g_{ab} + w(\lambda)F_{ab})}$$

V-QCD: a holographic bottom-up model for QCD with backreacted quarks

Combines model for glue (IHQCD) with flavor (brane action) [Gürsoy, Kiritsis, Nitti]

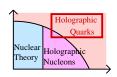
[Bigazzi, Casero, Cotrone, Kiritsis, Paredes]


[MJ, Kiritsis 1112.1261]

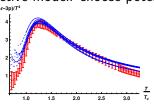


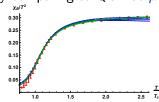
Quark matter chirally symmetric ⇒

$$S_{V-QCD} = N_c^2 M^3 \int d^5 x \sqrt{g} \left[R - \frac{4}{3} \frac{(\partial \lambda)^2}{\lambda^2} + \frac{V_g(\lambda)}{g} \right]$$
$$-N_f N_c M^3 \int d^5 x \ V_{f0}(\lambda) \sqrt{-\det(g_{ab} + w(\lambda)F_{ab})}$$


Effective model: choose potentials by comparing to QCD at $\mu \approx 0$

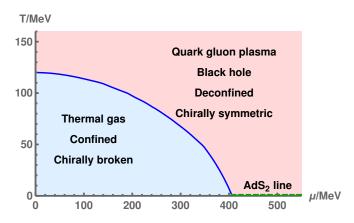
V-QCD: a holographic bottom-up model for QCD with backreacted quarks


Combines model for glue (IHQCD) with flavor (brane action) [Gürsoy, Kiritsis, Nitti] [Bigazzi, Casero, Cotrone, Kiritsis, Paredes] [MJ, Kiritsis 1112.1261]



Quark matter chirally symmetric ⇒

$$S_{V-QCD} = N_c^2 M^3 \int d^5 x \sqrt{g} \left[R - \frac{4}{3} \frac{(\partial \lambda)^2}{\lambda^2} + \frac{V_g(\lambda)}{s} \right]$$
$$-N_f N_c M^3 \int d^5 x \ V_{f0}(\lambda) \sqrt{-\det(g_{ab} + w(\lambda)F_{ab})}$$


Effective model: choose potentials by comparing to QCD at $\mu \approx 0$

Equation of state obtained numerically from black hole thermodynamics of charged black holes

Phase diagram with quark matter

- With quark matter only, expected phase diagram
- ► Cold QM EOS and location of the T = 0 phase transition agree with constraints

Model for nuclear matter

Standard method for baryons in holographic models: Each baryon maps to a solitonic 5D "instanton" of gauge fields

- Already constructing an isolated instanton solution is nontrivial
- Such instantons have been studied in many models, including V-QCD [MJ, Kiritsis, Nitti, Préau 2209.05868; 2212.06747]
- Dense nuclear matter requires studying many-instanton solutions . . . extremely challenging!

Ouarks

Nuclear Hologra

Theory

Model for nuclear matter

Standard method for baryons in holographic models: Each baryon maps to a solitonic 5D "instanton" of gauge fields

Holographic Models: Each baryon

- Already constructing an isolated instanton solution is nontrivial
- Such instantons have been studied in many models, including V-QCD [MJ, Kiritsis, Nitti, Préau 2209.05868; 2212.06747]
- Dense nuclear matter requires studying many-instanton solutions . . . extremely challenging!
- Our approach: V-QCD with two flavors and a homogeneous gauge field, mimicking dense solitons: $A^i = h(r)\sigma^i$

[Rozali, Shieh, Van Raamsdonk, Wu 0708.1322]

[Ishii, MJ, Nijs, 1903.06169]

Ouarks

Nuclear Hologra

Theory

Homogeneous nuclear matter in V-QCD

Nuclear matter in the probe limit: consider full brane action

$$S = S_{\text{DBI}} + S_{\text{CS}}$$
 where

[Bigazzi, Casero, Cotrone, Kiritsis, Paredes; Casero, Kiritsis, Paredes]

$$S_{\text{DBI}} = -\frac{1}{2}M^{3}N_{c}\operatorname{Tr}\int d^{5}x V_{f0}(\lambda)e^{-\tau^{2}}\left(\sqrt{-\det A^{(L)}} + \sqrt{-\det A^{(R)}}\right)$$

$$A_{MN}^{(L/R)} = g_{MN} + \delta_{M}^{r}\delta_{N}^{r}\kappa(\lambda)\tau'(r)^{2} + \delta_{MN}^{rt}w(\lambda)\Phi'(r) + w(\lambda)F_{MN}^{(L/R)}$$

gives the dynamics of the solitons (will be expanded in $F^{(L/R)}$) and

$$S_{\text{CS}} = \frac{N_c}{8\pi^2} \int \Phi(r) e^{-\mathbf{b}\tau^2} dt \wedge \left(F^{(L)} \wedge F^{(L)} - F^{(R)} \wedge F^{(R)} + \cdots \right)$$

sources the baryon number for the solitons

Extra parameter, b > 1, to ensure regularity of solutions

Set $N_f = 2$ and consider the homogeneous SU(2) Ansatz

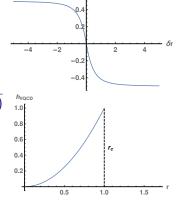
[Rozali, Shieh, Van Raamsdonk, Wu 0708.1322]

$$A_L^i = -A_R^i = h(r)\sigma^i$$

[Ishii, MJ, Nijs, 1903.06169]

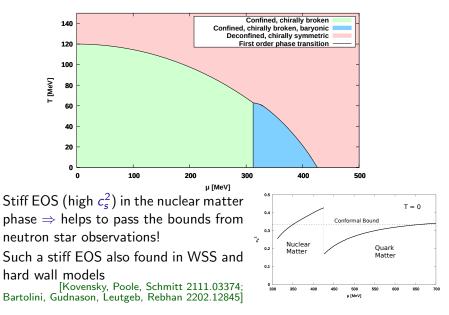
Discontinuity and smeared instantons

With the homogeneous Ansatz $A_i^a(r) = h(r)\delta_i^a$ baryon number vanishes for any smooth h(r):


$$N_b \propto \int dr \frac{d}{dr} \left[\mathsf{CS} - \mathsf{term} \right] = 0$$

How can this issue be avoided?

Smearing the BPST soliton in singular Landau gauge:


$$\begin{split} \langle A_i^a \rangle \sim \int \frac{d^3 x ~ \eta_{i4}^a ~ \delta r}{(\delta r^2 + x^2 + \rho^2)(\delta r^2 + x^2)} \\ \sim - \frac{\delta_i^a ~ \delta r}{\sqrt{\delta r^2 + \rho^2} + |\delta r|} \end{split}$$

- This suggests a solution: introduce a discontinuity in h(r) at $r = r_c$
- The discontinuity sources nonzero baryon charge!

hrpst

Phase diagram after including nuclear matter

Adjusting the nuclear matter model

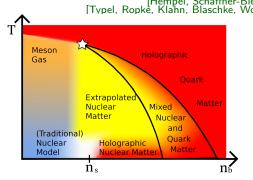
The V-QCD nuclear matter EOS as such is however not fully satisfactory:

- ► Temperature dependence is absent in the confined phases, and therefore also for holographic nuclear matter
- ► This is likely to be a good first approximation, but not enough for a state-of-the-art model

Adjusting the nuclear matter model

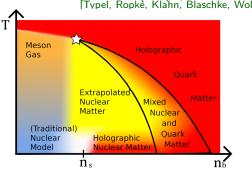
The V-QCD nuclear matter EOS as such is however not fully satisfactory:

- Temperature dependence is absent in the confined phases, and therefore also for holographic nuclear matter
- This is likely to be a good first approximation, but not enough for a state-of-the-art model


Our solution: we extrapolate the holographic nuclear matter EOS to nonzero T by a using a van der Waals approach

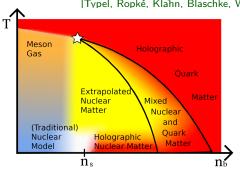
Gas of protons, neutrons and electrons with an excluded volume correction and a potential term

[Demircik, Ecker, MJ 2112.12157]


Combining the building blocks: the hybrid model

For low density nuclear matter, Hempel-Schaffner-Bielich DD2
[Hempel, Schaffner-Bielich 0911.4073]
[Typel, Ropke, Klahn, Blaschke, Wolter 0908.2344]

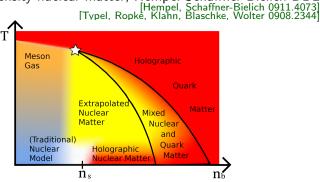
Combining the building blocks: the hybrid model


For low density nuclear matter, Hempel-Schaffner-Bielich DD2
[Hempel, Schaffner-Bielich 0911.4073]
[Typel, Ropke, Klahn, Blaschke, Wolter 0908.2344]

Covers regions relevant for neutron stars and heavy-ion collisions!

Combining the building blocks: the hybrid model

For low density nuclear matter, Hempel-Schaffner-Bielich DD2
[Hempel, Schaffner-Bielich 0911.4073]
[Typel, Ropke, Klahn, Blaschke, Wolter 0908.2344]

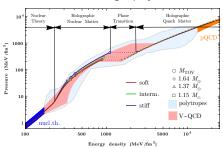


Covers regions relevant for neutron stars and heavy-ion collisions!

- One of the most ambitious attempts to describe the QCD EOS to date, in any approach
- Consistent with theoretical and observational constraints

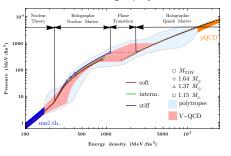
Combining the building blocks: the hybrid model

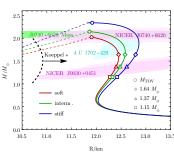
For low density nuclear matter, Hempel-Schaffner-Bielich DD2



Covers regions relevant for neutron stars and heavy-ion collisions!

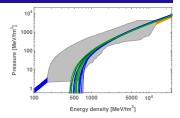
- One of the most ambitious attempts to describe the QCD EOS to date, in any approach
- Consistent with theoretical and observational constraints
- Pick three variants (soft, intermediate, stiff) different fits of the holographic model to lattice data – published in the CompOSE database of EOSs [http://compose.obspm.fr]_{16/35}


Cold EoS and known constraints

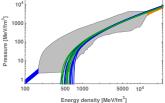

- ► Three choices of EoSs: soft, intermediate, and stiff ↔ the degrees of freedom of V-QCD left free by fit to lattice data
- Compared to bands of all feasible cold matter EoS: Without and with holography

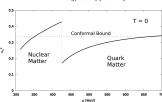
Cold EoS and known constraints

- ► Three choices of EoSs: soft, intermediate, and stiff ↔ the degrees of freedom of V-QCD left free by fit to lattice data
- Compared to bands of all feasible cold matter EoS: Without and with holography

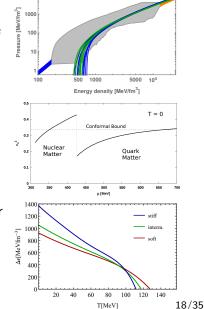


- ▶ Plug EoSs in TOV: neutron star M(R) curves (left plot)
- ► Compares well with mass/radius observations
- ► No stable quark cores inside neutron stars


[Ecker, MJ, Nijs, van der Schee 1908.03213] [Jokela, MJ, Nijs, Remes 2006:01141] [Demircik, Ecker, MJ 2112.12157]

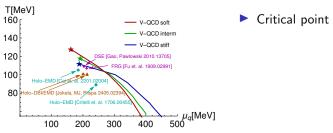

- 1. Precise fit of lattice data possible
 - Mild parameter dependence, works with simple potentials

- 1. Precise fit of lattice data possible
 - Mild parameter dependence, works with simple potentials
- 2. Extrapolated quark equation of state to high density reasonable
 - Quite nontrivial since there are strict bounds



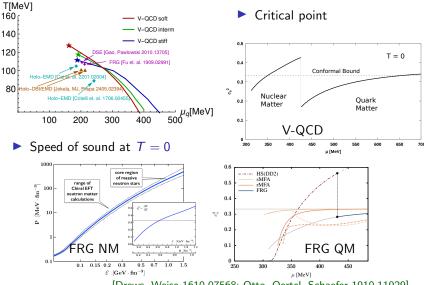
- 1. Precise fit of lattice data possible
 - Mild parameter dependence, works with simple potentials
- 2. Extrapolated quark equation of state to high density reasonable
 - Quite nontrivial since there are strict bounds
- Nuclear matter EOS is stiff (high speed of sound)
 - Easier to pass constraints from neutron star observations

- 1. Precise fit of lattice data possible
 - Mild parameter dependence, works with simple potentials
- 2. Extrapolated quark equation of state to high density reasonable
 - Quite nontrivial since there are strict bounds
- 3. Nuclear matter EOS is stiff (high speed of sound)
 - Easier to pass constraints from neutron star observations
- 4. Simultaneous modeling of nuclear and quark matter phases
 - Predictions for the phase transition



Agreement with FRG

Close agreement with functional renormalization group (FRG)


Agreement with FRG

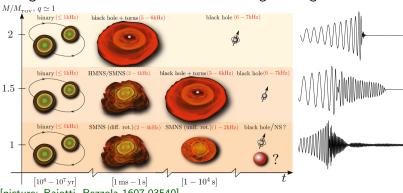
Close agreement with functional renormalization group (FRG)

Agreement with FRG

Close agreement with functional renormalization group (FRG)

[Drews, Weise 1610.07568; Otto, Oertel, Schaefer 1910.11929] $_{19/35}$

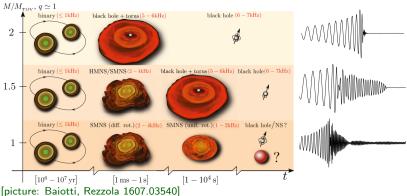
Outline


- 1. Introduction and motivation
- 2. Holographic equation of state
 - ► Holographic quark matter
 - ► Holographic nuclear matter
 - ▶ Hybrid model
- 3. Holographic neutron star mergers
 - ► Production of quark matter
 - ▶ Prompt collapse to a black hole
- 4. Modulated instabilities
- 5. Bulk viscosity
- 6. Conclusion

Neutron star mergers

- Significant sources of gravitational radiation
- Microscopic properties of dense matter encoded in the gravitational waves and the electromagnetic signal

Neutron star mergers


- Significant sources of gravitational radiation
- Microscopic properties of dense matter encoded in the gravitational waves and the electromagnetic signal

[picture: Baiotti, Rezzola 1607.03540]

Neutron star mergers

- Significant sources of gravitational radiation
- Microscopic properties of dense matter encoded in the gravitational waves and the electromagnetic signal

One good event (GW170817) and a few other events already observed! [LIGO/Virgo, 1710.05832]

Have to solve the 3+1D General Relativistic hydrodynamics equations:

$$R_{\mu\nu} - rac{1}{2} R \, g_{\mu\nu} = 8\pi \, G_N \, T_{\mu\nu} \, , \quad \nabla_\mu \, T^{\mu\nu} = 0 \, , \quad \nabla_\mu J^\mu = 0 \,$$

with initial state modelling a neutron star binary system

Have to solve the 3+1D General Relativistic hydrodynamics equations:

$$R_{\mu\nu} - rac{1}{2} R g_{\mu\nu} = 8\pi G_N T_{\mu\nu} \,, \quad \nabla_{\mu} T^{\mu\nu} = 0 \,, \quad \nabla_{\mu} J^{\mu} = 0$$

with initial state modelling a neutron star binary system

► Equation of state as input – use V-QCD hybrid EOS

Have to solve the 3+1D General Relativistic hydrodynamics equations:

$$R_{\mu\nu} - rac{1}{2} R g_{\mu\nu} = 8\pi G_N T_{\mu\nu} \,, \quad \nabla_{\mu} T^{\mu\nu} = 0 \,, \quad \nabla_{\mu} J^{\mu} = 0$$

with initial state modelling a neutron star binary system

- ► Equation of state as input use V-QCD hybrid EOS
- Spectral code Frankfurt University/Kadath (FUKA) for initial data [Papenfort, Tootle, Grandclement, Most, Rezzolla 2103.09911]
- Frankfurt/Illinois (FIL) code for binary evolution with tabulated EOS [Most, Papenfort, Rezzolla 1907.10328]

Have to solve the 3+1D General Relativistic hydrodynamics equations:

$$R_{\mu\nu} - rac{1}{2} R g_{\mu\nu} = 8\pi G_N T_{\mu\nu} \,, \quad \nabla_{\mu} T^{\mu\nu} = 0 \,, \quad \nabla_{\mu} J^{\mu} = 0$$

with initial state modelling a neutron star binary system

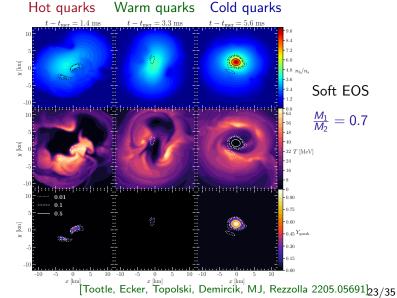
- ► Equation of state as input use V-QCD hybrid EOS
- Spectral code Frankfurt University/Kadath (FUKA) for initial data
 [Papenfort, Tootle, Grandclement, Most, Rezzolla 2103.09911]
- Frankfurt/Illinois (FIL) code for binary evolution with tabulated EOS [Most, Papenfort, Rezzolla 1907.10328]
- Implemented in the Einstein Toolkit

[http://einsteintoolkit.org]

Have to solve the 3+1D General Relativistic hydrodynamics equations:

$$R_{\mu\nu} - rac{1}{2} R g_{\mu\nu} = 8\pi G_N T_{\mu\nu} \,, \quad \nabla_{\mu} T^{\mu\nu} = 0 \,, \quad \nabla_{\mu} J^{\mu} = 0$$

with initial state modelling a neutron star binary system


- ► Equation of state as input use V-QCD hybrid EOS
- Spectral code Frankfurt University/Kadath (FUKA) for initial data [Papenfort, Tootle, Grandclement, Most, Rezzolla 2103.09911]
- Frankfurt/Illinois (FIL) code for binary evolution with tabulated EOS [Most, Papenfort, Rezzolla 1907.10328]
- Implemented in the Einstein Toolkit

[http://einsteintoolkit.org]

Need supercomputing!

Hot, warm and cold quarks

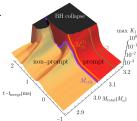
After-merger quark matter production (GW170817 parameters):

Analysis of mergers at high mass where the system collapses to a black hole

Idea: use curvature invariants for precise classification of "prompt" collapse

Analysis of mergers at high mass where the system collapses to a black hole

- Idea: use curvature invariants for precise classification of "prompt" collapse
- We choose to use the Kretschmann scalar


$$K_1 = R_{abcd} R^{abcd}$$

Analysis of mergers at high mass where the system collapses to a black hole

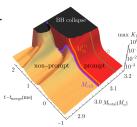
- Idea: use curvature invariants for precise classification of "prompt" collapse
- We choose to use the Kretschmann scalar

$$K_1 = R_{abcd} R^{abcd}$$

Motivated by simulations, in particular dependence of K_1 on t and M_{total} , we define

1. The critical mass

$$M_{\text{crit}} = \min(M) : \frac{dt_{\text{crit}}}{dM_{\text{total}}} < 0 \quad \forall M_{\text{total}} > M$$


where t_{crit} is the time of formation of an apparent horizon

Analysis of mergers at high mass where the system collapses to a black hole

- Idea: use curvature invariants for precise classification of "prompt" collapse
- We choose to use the Kretschmann scalar

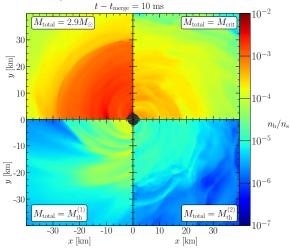
$$K_1 = R_{abcd} R^{abcd}$$

Motivated by simulations, in particular dependence of K_1 on t and M_{total} , we define

1. The critical mass

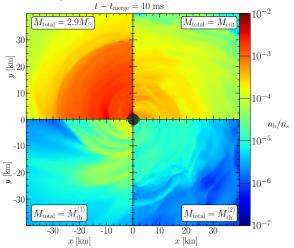
$$M_{\text{crit}} = \min(M) : \frac{dt_{\text{crit}}}{dM_{\text{total}}} < 0 \quad \forall M_{\text{total}} > M,$$

where $t_{\rm crit}$ is the time of formation of an apparent horizon


2. Threshold masses of promptness p

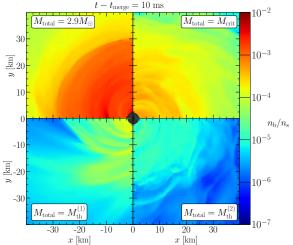
$$\left\{ M_{\mathsf{th}}^{(p)} = \mathsf{min}(M_{\mathsf{total}}) : rac{d^p}{dt^p} \mathsf{max}(K_1) \geq 0 \,\, orall \,\, t > t_{\mathsf{merge}}
ight\}$$

[CE, Topolski, Järvinen, Stehr 2402.11013]24/35


Residual matter

ightharpoonup Significant drop in residual matter outside horizon at $M_{\rm crit}$

Residual matter


Significant drop in residual matter outside horizon at M_{crit}

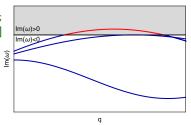
Enhanced by the transition to quark matter

Residual matter

Significant drop in residual matter outside horizon at M_{crit}

- Enhanced by the transition to quark matter
- ► So M_{crit} can potentially be measured precisely by observing the EM counterpart

Outline


- 1. Introduction and motivation
- 2. Holographic equation of state
 - ► Holographic quark matter
 - ► Holographic nuclear matter
 - ► Hybrid model
- 3. Holographic neutron star mergers
 - ► Production of quark matter
 - ► Prompt collapse to a black hole
- 4. Modulated instabilities
- 5. Bulk viscosity
- 6. Conclusion

Inhomogeneity in holographic plasma?

Spatially modulated phases

[Nakamura, Ooguri, Park 0911.0679; Ooguri, Park 1011.4144]

Exponentially growing perturbation at $q \neq 0$: a quasi-normal mode with $\operatorname{Im} \omega > 0$

Inhomogeneity in holographic plasma?

Spatially modulated phases

[Nakamura, Ooguri, Park 0911.0679; Ooguri, Park 1011.4144]

Exponentially growing perturbation at $q \neq 0$: a quasi-normal mode with $\text{Im } \omega > 0$

- ► The Chern-Simons term can drive a modulated instability at finite density
- Modulated 5D gauge fields dual to modulated persistent chiral currents in field theory
- Somewhat different from "chiral density wave" no chiral condensate involved

Inhomogeneity in holographic plasma?

Spatially modulated phases

[Nakamura, Ooguri, Park 0911.0679; Ooguri, Park 1011.4144]

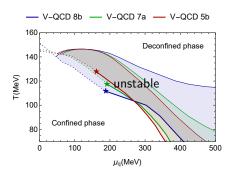
- Exponentially growing perturbation at $q \neq 0$:
 a quasi-normal mode with $\text{Im } \omega > 0$
- ► The Chern-Simons term can drive a modulated instability at finite density
- Modulated 5D gauge fields dual to modulated persistent chiral currents in field theory
- Somewhat different from "chiral density wave" no chiral condensate involved

r = holographic coord.

Schematic fluctuation equation

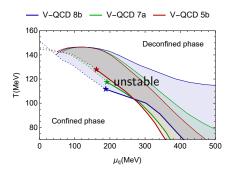
 $\psi = \delta A_{L/R}^{\mathsf{x}} \pm i \delta A_{L/R}^{\mathsf{y}}$

$$\psi''(r) + \left(A' + \frac{f'}{f}\right)\psi'(r) + \underbrace{\frac{qn}{M_p^3 f e^{2A} w(\phi)^2} \psi(r)}_{\text{From CS term}} + \left(\frac{\omega^2}{f^2} - \frac{q^2}{f}\right)\psi(r) = 0$$

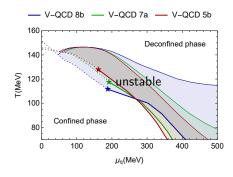

27/35

We checked the extent of the instability in V-QCD and Einstein-Maxwell-dilaton models

Note that CS terms required by the anomalies in QCD


We checked the extent of the instability in V-QCD and Einstein-Maxwell-dilaton models

- Note that CS terms required by the anomalies in QCD
- Instability surprisingly strong
- Extends to region reachable by lattice and experiments


We checked the extent of the instability in V-QCD and Einstein-Maxwell-dilaton models

- Note that CS terms required by the anomalies in QCD
- Instability surprisingly strong
- Extends to region reachable by lattice and experiments
- Result largely model-independent

We checked the extent of the instability in V-QCD and Einstein-Maxwell-dilaton models

- Note that CS terms required by the anomalies in QCD
- Instability surprisingly strong
- Extends to region reachable by lattice and experiments
- Result largely model-independent
- However, might be sensitive to strange quark mass
 - requires further study

Outline

- 1. Introduction and motivation
- 2. Holographic equation of state
 - ► Holographic quark matter
 - ► Holographic nuclear matter
 - ► Hybrid model
- 3. Holographic neutron star mergers
 - ► Production of quark matter
 - ► Prompt collapse to a black hole
- 4. Modulated instabilities
- 5. Bulk viscosity
- 6. Conclusion

- Beyond equation of state: transport properties of dense matter
- ► Focus on bulk viscosity: resistance of a system towards compression and expansion

- Beyond equation of state: transport properties of dense matter
- Focus on bulk viscosity: resistance of a system towards compression and expansion
- ► In dense quark matter, the contribution relevant to neutron stars is due to weak interactions coupled to QCD matter
 - Since $m_s \gg m_{u,d}$, compression or expansion leads to deviation from β -equilibrium, $\mu_s \neq \mu_d$
 - ▶ Weak interaction $u + d \rightleftharpoons u + s$ acts to restore equilibrium

- Beyond equation of state: transport properties of dense matter
- Focus on bulk viscosity: resistance of a system towards compression and expansion
- ► In dense quark matter, the contribution relevant to neutron stars is due to weak interactions coupled to QCD matter
 - Since $m_s\gg m_{u,d}$, compression or expansion leads to deviation from β -equilibrium, $\mu_s\neq\mu_d$
 - ▶ Weak interaction $u + d \rightleftharpoons u + s$ acts to restore equilibrium
- Twenty orders of magnitude larger than the pure QCD viscosity for neutron star frequencies and temperatures (kHz/MeV range)

- Beyond equation of state: transport properties of dense matter
- Focus on bulk viscosity: resistance of a system towards compression and expansion
- In dense quark matter, the contribution relevant to neutron stars is due to weak interactions coupled to QCD matter
 - Since $m_s \gg m_{u,d}$, compression or expansion leads to deviation from β -equilibrium, $\mu_s \neq \mu_d$
 - Weak interaction $u + d \rightleftharpoons u + s$ acts to restore equilibrium
- Twenty orders of magnitude larger than the pure QCD viscosity for neutron star frequencies and temperatures (kHz/MeV range)
- Potentially affects significantly the aftermerger phase of neutron star merger [Alford, Bovard, Hanauske, Rezzolla, Schwenzer 1707.09475]

Bulk viscosity for periodic compression

Straightforward analysis for periodic compression using weak reaction rate to leading order in G_F and α_s

$$\zeta = \frac{\lambda_1 A_1^2}{\omega^2 + (\lambda_1 C_1)^2}$$

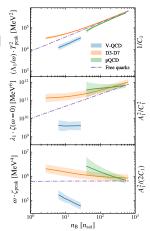
with strong contributions given as

$$A_1, C_1 = F(\{n_i\}, \{\chi_{ij}\})$$
 $\chi_{ij} = \frac{\partial n_i}{\partial \mu_i} = \frac{\partial^2 p}{\partial \mu_i \partial \mu_j}$ $i, j = u, d, s$

and weak contributions given through the rate

$$\lambda_1 = \frac{64}{5\pi^3} G_F^2 \sin^2 \theta_c \cos^2 \theta_c \mu_d^5 T^2$$

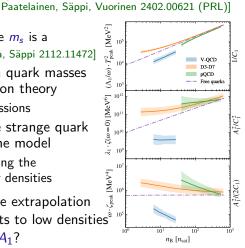
• Sensitive to strange quark mass: $\zeta \sim m_s^4$


Estimating the susceptibilities

We computed the susceptibilities (that is, the coefficients A_1 and

 C_1) using

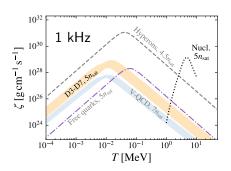
[Cruz Rojas, Gorda, Hoyos, Jokela, MJ, Kurkela Paatelainen, Säppi, Vuorinen 2402.00621 (PRL)]


- 1. Perturbative QCD
 - ► Using a scheme where m_s is a perturbation [Gorda, Säppi 2112.11472]
- 2. Probe D3-D7 setup with quark masses matched with perturbation theory
 - Simple analytic expressions
- 3. V-QCD turning on the strange quark mass without refitting the model
 - Numerical result, taking the derivatives of number densities

Estimating the susceptibilities

We computed the susceptibilities (that is, the coefficients A_1 and C_1) using [Cruz Rojas, Gorda, Hoyos, Jokela, MJ, Kurkela

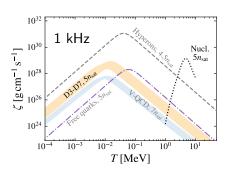
- 1. Perturbative QCD
 - ► Using a scheme where m_s is a perturbation [Gorda, Säppi 2112.11472]
- 2. Probe D3-D7 setup with quark masses matched with perturbation theory
 - Simple analytic expressions
- 3. V-QCD turning on the strange quark mass without refitting the model
 - Numerical result, taking the derivatives of number densities
- ► D3-D7 gives a reasonable extrapolation of the perturbative results to low densities of the perturbative results to low densities
- \triangleright V-QCD underestimates A_1 ?
- ► Not surprising our simplistic approach for the strange quark mass also leads to tension with lattice data at small density



32/35

Result for the bulk viscosity

Final results for the bulk viscosity at $n \sim 5 n_{\rm sat}$


- ► The D3-D7 result expected to be the best estimate
- V-QCD qualitatively similar, but too low by a constant factor
- Free quarks also give a reasonable estimate
- Results for nuclear and hyperonic matter shown for comparison

Result for the bulk viscosity

Final results for the bulk viscosity at $n \sim 5 n_{\rm sat}$

- ► The D3-D7 result expected to be the best estimate
- V-QCD qualitatively similar, but too low by a constant factor
- Free quarks also give a reasonable estimate
- Results for nuclear and hyperonic matter shown for comparison

The best estimate (D3-D7) takes a simple form

$$\zeta = \frac{4\lambda_1 \,\mu_d^6 \,(M_s^2 - M_d^2)^2}{K_d^2 K_s^2 \omega^2 + \pi^4 \lambda_1^2 \,(K_d + K_s)^2} \;, \qquad K_i \equiv 3\mu_d^2 - M_i^2$$

Outline

- 1. Introduction and motivation
- 2. Holographic equation of state
 - ► Holographic quark matter
 - ► Holographic nuclear matter
 - ► Hybrid model
- 3. Holographic neutron star mergers
 - ► Production of quark matter
 - ► Prompt collapse to a black hole
- 4. Modulated instabilities
- 5. Bulk viscosity
- 6. Conclusion

- ► Holographic description of dense QCD works well:
 - ✓ Precise fit of lattice thermodynamics at $\mu \approx 0$
 - ✓ Extrapolated EOS for cold quark matter reasonable
 - ✓ Simultaneous model for nuclear and quark matter
 - ✓ Stiff EOS for nuclear matter

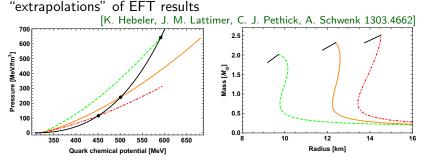
- ► Holographic description of dense QCD works well:
 - ✓ Precise fit of lattice thermodynamics at $\mu \approx 0$
 - ✓ Extrapolated EOS for cold quark matter reasonable
 - ✓ Simultaneous model for nuclear and quark matter
 - ✓ Stiff EOS for nuclear matter
- Constructed an extensive EOS model at finite temperature and density using V-QCD + other models

- ► Holographic description of dense QCD works well:
 - ✓ Precise fit of lattice thermodynamics at $\mu \approx 0$
 - ✓ Extrapolated EOS for cold quark matter reasonable
 - ✓ Simultaneous model for nuclear and quark matter
 - ✓ Stiff EOS for nuclear matter
- Constructed an extensive EOS model at finite temperature and density using V-QCD + other models
- Predictions for binary neutron star mergers from state-of-the-art simulations using our model

- ► Holographic description of dense QCD works well:
 - ✓ Precise fit of lattice thermodynamics at $\mu \approx 0$
 - ✓ Extrapolated EOS for cold quark matter reasonable
 - ✓ Simultaneous model for nuclear and quark matter
 - ✓ Stiff EOS for nuclear matter
- Constructed an extensive EOS model at finite temperature and density using V-QCD + other models
- Predictions for binary neutron star mergers from state-of-the-art simulations using our model
- Holographic QCD has surprisingly strong modulated (Nakamura–Ooguri–Park) instability

- ► Holographic description of dense QCD works well:
 - ✓ Precise fit of lattice thermodynamics at $\mu \approx 0$
 - ✓ Extrapolated EOS for cold quark matter reasonable
 - ✓ Simultaneous model for nuclear and quark matter
 - ✓ Stiff EOS for nuclear matter
- Constructed an extensive EOS model at finite temperature and density using V-QCD + other models
- Predictions for binary neutron star mergers from state-of-the-art simulations using our model
- Holographic QCD has surprisingly strong modulated (Nakamura–Ooguri–Park) instability
- Computed predictions for the bulk viscosity both using perturbation theory and holography

- Holographic description of dense QCD works well:
 - ✓ Precise fit of lattice thermodynamics at $\mu \approx 0$
 - ✓ Extrapolated EOS for cold quark matter reasonable
 - ✓ Simultaneous model for nuclear and quark matter
 - ✓ Stiff EOS for nuclear matter
- Constructed an extensive EOS model at finite temperature and density using V-QCD + other models
- ► Predictions for binary neutron star mergers from state-of-the-art simulations using our model
- Holographic QCD has surprisingly strong modulated (Nakamura-Ooguri-Park) instability
- Computed predictions for the bulk viscosity both using perturbation theory and holography
- Ongoing/future improvements: careful analysis of strange quark mass, more transport (e.g. neutrino transport), isospin asymmetry, color superconducting phases, improving predictions for spatial modulation . . .


Thank you!

Recent progress on dense holographic QCD

For quark matter, use D3-D7 top down model: $\epsilon=3p+\frac{\sqrt{3}m^2}{2\pi}\sqrt{p}$ [Karch, O'Bannon, 0709.0570]

 $\mathcal{N}=4$ SYM + $N_f=3$ probe hypermultiplets in the fundamental representation

For nuclear matter use with stiff, intermediate, and soft

- Strong first order nuclear to quark matter transitions
- ► Neutron stars with "holographic" quark matter core (black curves) are unstable

[Hoyos, Rodriguez, Jokela, Vuorinen 1603.02943]37/35

Varying the quark mass *m* one can get quark stars and hybrid stars [Annala, Ecker, Hoyos, Jokela, Rodriguez-Fernandez, Vuorinen 1711.06244]

➤ Sizeable deviations from universal I-Love-Q relations
[Yagi, Yunes, 1303.1528]

Including running of the quark mass + color superconductivity

[Bitaghsir Fadafan, Cruz Rojas, Evans, 1911.12705; 2009.14079]

- **Possibility** of an intermediate χSB deconfined phase
- Stiffer holographic equations of state (high speed of sound)
- Quark matter cores

Using Einstein-Maxwell-dilaton for quark matter [Mamani, Flores, Zanchin, 2006.09401]

(Largish) quark stars also studied in Witten-Sakai-Sugimoto and in D4-D6 models

[Burikham, Hirunsirisawat, Pinkanjanarod, 1003.5470
Kim, Shin, Lee, Wan, 1108.6139, 1404.3474]

This talk: towards more realistic model of quark matter?

Constraining the potentials

In the UV ($\lambda \rightarrow 0$):

► UV expansions of potentials matched with perturbative QCD beta functions ⇒ asymptotic freedom and logarithmic flow of the coupling and quark mass, as in QCD

[Gürsoy, Kiritsis 0707.1324; MJ, Kiritsis 1112.1261]

In the IR $(\lambda \to \infty)$: various qualitative constraints

- Linear confinement, discrete glueball & meson spectrum, linear radial trajectories
- Existence of a "good" IR singularity
- Correct behavior at large quark masses
- Working potentials often string-inspired power-laws, multiplied by logarithmic corrections (i.e, first guesses usually work!)

[Gürsoy, Kiritsis, Nitti 0707.1349; MJ, Kiritsis 1112.1261; Arean, Iatrakis, MJ, Kiritsis 1309.2286, 1609.08922; MJ 1501.07272]

Final task: determine the potentials in the middle, $\lambda = \mathcal{O}(1)$

Qualitative comparison to lattice/experimental data

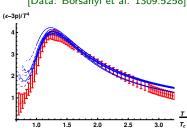
Ansatz for potentials, (x = 1)

$$\begin{split} V_g(\lambda) &= 12 \left[1 + V_1 \lambda + \frac{V_2 \lambda^2}{1 + \lambda/\lambda_0} + V_{\text{IR}} e^{-\lambda_0/\lambda} (\lambda/\lambda_0)^{4/3} \sqrt{\log(1 + \lambda/\lambda_0)} \right] \\ V_{f0}(\lambda) &= W_0 + W_1 \lambda + \frac{W_2 \lambda^2}{1 + \lambda/\lambda_0} + W_{\text{IR}} e^{-\lambda_0/\lambda} (\lambda/\lambda_0)^2 \\ \frac{1}{w(\lambda)} &= w_0 \left[1 + \frac{w_1 \lambda/\lambda_0}{1 + \lambda/\lambda_0} + \bar{w}_0 e^{-\lambda_0/\lambda w_s} \frac{(w_s \lambda/\lambda_0)^{4/3}}{\log(1 + w_s \lambda/\lambda_0)} \right] \\ V_1 &= \frac{11}{27\pi^2} , \quad V_2 &= \frac{4619}{46656\pi^4} \\ W_1 &= \frac{8 + 3W_0}{9\pi^2} ; \quad W_2 &= \frac{6488 + 999W_0}{15552\pi^4} \end{split}$$

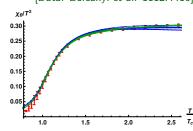
Fixed UV/IR asymptotics \Rightarrow fit parameters only affect details in the middle

Constraining the model at $\mu \approx 0$

Standard recipe (charged black holes) \Rightarrow lots of numerical work

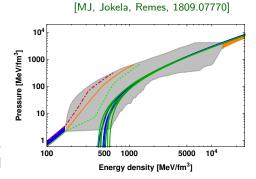

⇒ description of hot and dense quark matter

Fit to lattice data near $\mu = 0$ [MJ, Jokela, Remes, 1809.07770]


- Many parameters already fixed by requiring qualitative agreement with QCD
- Results only weakly dependent of remaining parameters
- Good description of lattice data nontrivial result!

Interaction measure $\frac{\epsilon - 3p}{T^4}$, 2+1 flavors

[Data: Borsanyi et al. 1309.5258]


Baryon number susceptibility $\chi_B = \frac{d^2p}{d\mu^2}\Big|_{\mu=0}$ [Data: Borsanyi et al. 1112.4416]

Extrapolated EOSs of cold quark matter

The V-QCD cold quark matter result compares nicely to known constraints:

- Band of allowed equations of state (EOSs) (gray, polytropic interpolations)
- Stiff, intermediate, and soft nuclear EOSs [Hebeler, Lattimer, Pethick, Schwenk 1303.4662]

Approach similar in spirit to studies of the QCD critical point

[DeWolfe, Gubser, Rosen 1012.1864; Knaute, Yaresko, Kämpfer 1702.06731; Critelli, Noronha, Noronha-Hostler, Portillo, Ratti, Rougemont, 1706.00455; Cai, He, Li, Wang 2201.02004]

Van der Waals model

Ideal gas of protons, neutrons and electrons with

Excluded volume correction for nucleons

$$p_{ex}(T, \{\mu_i\}) = p_{id}(T, \{\tilde{\mu}_i\})$$

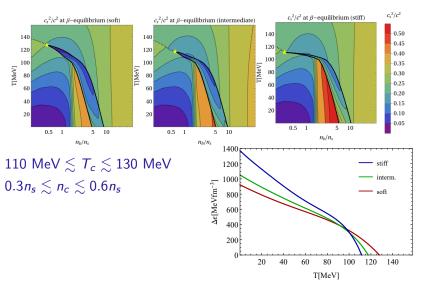
$$\tilde{\mu}_i = \mu_i - v_0 p_{ex}(T, \{\mu_i\}) \qquad (i = p, n)$$

 $v_0 \sim \text{volume of one nucleon}$

• (Mostly) attractive potential term to match with (APR and) V-QCD at T=0

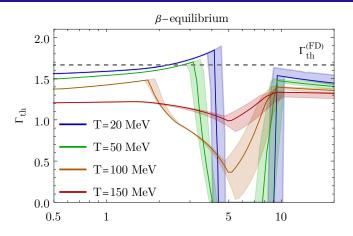
$$p_{\text{vdW}}(T, \{\mu_i\}) = p_{\text{ex}}(T, \{\mu_i\}) + \Delta p(\{\mu_i\})$$

schematically:


$$\Delta p(\{\mu_i\}) = p_{V-QCD}(T=0, \{\mu_i\}) - p_{ex}(T=0, \{\mu_i\})$$

[Rischke, Gorenstein, Stoecker, Greiner, Z Phys. C 51, 485 (1991)]

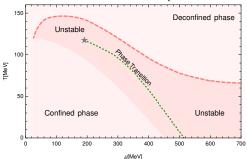
[Vovchenko, Gorenstein, Stoecker, 1609.03975]


[Vovchenko, Motornenko, Alba, Gorenstein, Satarov, Stoecker, 1707.09215]

Results: critical point

Critical point is determined by fitting the latent heat in the region of strong phase transition and extrapolating

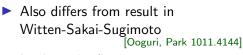
Results: thermal index

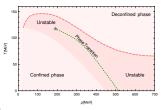

$$\Gamma_{
m th}(n_b,T) = 1 + rac{
ho(n_b,T) -
ho(n_b,0)}{e(n_b,T) - e(n_b,0)}$$

- ► Values in expected range
- ► Low values in the mixed phase

Modulated instability in V-QCD

The region where instability exists [Cruz Rojas, Demircik, MJ 2405.02399]


Estimate for transition and critical point from earlier work
[Demircik, Ecker, MJ 2112.12157]



- ► The Chern-Simons term is strong enough to create an instability of the charged black hole in V-QCD (unsurprising)
- ► Instability is found at low T and large density region relevant for neutron stars (expected)
- ► Instability is also found at higher *T*, near the regime with critical point?! (a big surprise)

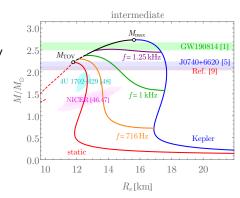
How does the instability arise?

Looks quite different from Nakamura-Ooguri-Park, where the onset was at fixed μ/T ... what is going on?

► Look at the fluctuation equation

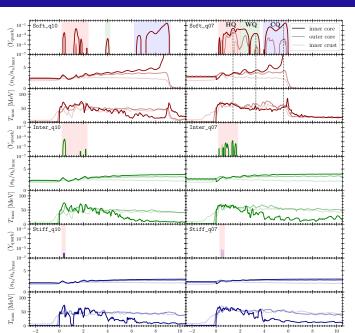
$$\psi'' + \left(A' + \frac{f'}{f}\right)\psi' + \frac{qn}{M_p^3 f e^{2A} Z(\phi)^2}\psi + \left(\frac{\omega^2}{f^2} - \frac{q^2}{f}\right)\psi = 0$$

- lacktriangle Values of ϕ largest near horizon, and grow for smaller black holes
- Smallest black holes found near the deconfinement transition [Alho, MJ, Kajantie, Kiritsis, Rosen, Tuominen 1312.5199]
- ▶ $Z(\phi)$ determined by fit to χ_2 : fast increase of χ_2 with T \Rightarrow fast decrease of Z with ϕ
- Enhances instability strongly for small black holes

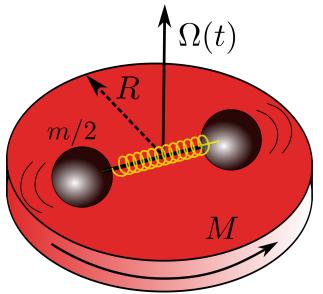

Rapidly spinning holographic neutron stars

GW190814: LIGO/Virgo observed a merger of a $23M_{\odot}$ black hole with a $2.6M_{\odot}$ compact object

[2006.12611]


▶ $2.6M_{\odot}$ falls in the "gap": a black hole or a neutron star?

- Holographic EOSs easily compatible with the neutron star interpretation
- ► However requires fast rotation, $f \gtrsim 1 \text{ kHz}$


[Demircik, Ecker, MJ, 2009.10731]

Details on quark formation

back

Mechanical Toy Model

[Takami, Rezzolla, Baiotti 1412.3240]