Two-loop QCD corrections to multiscale amplitudes: Progress towards ttj, Wγγ and Hbb final states

Simon Badger (University of Turin)

based on work with:

Becchetti, Brancaccio, Giraudo, Hartanto, Wu, Zhang, Zoia

APCTP-HOCTools meeting, Athens 3rd October 2024

motivation: where is the precision frontier?

part I: two-loop amplitudes - challenges and solutions

part II: new results for $W\gamma\gamma$, Hbb and ttj

precision at the LHC

hadron colliders are not the obvious choice for precision studies of fundamental interactions but it's what we have to work with... [LHC (-2025), HL-LHC (2030-2041)]

from theory to experiment

from theory to experiment: precison frontier - 1%

new technology required!

reduction techniques

strenuous computer alegbra

challenging integration

fixed order QCD N³LO 2→2 dσ N²LO 2 \rightarrow 3 d σ mixed QCD/EW

 $\langle |\mathcal{A}|^2$,

IR

 $d\sigma =$

"automation"

 $d\sigma^{\rm LO}$ $+ \alpha_s d\sigma^{\rm NLO}$ $+ \left| \alpha_s^2 d\sigma^{\text{NNLO}} \right|$ ~10-30 %

~|-|0 %

N³LO splitting functions, analytic resummation, SCET, beam functions, IR subtraction etc.

the precision wishlist

latest update LH2021 Huss, Huston, Jones, Pellen [2207.02122]

				process	known	desired
process	known	desired			NNLO _{QCD}	9
	$N^{3}LO_{HTL}$	$N^4 LO_{HT}$ (incl.)		$pp \rightarrow 2 {\rm jets}$	$NLO_{OCD} + NLO_{EW}$	$N^{3}LO_{QCD} + NLO_{EW}$
$pp \to H$	$NNLO_{QCD}^{(t)}$	$NNLO_{OCD}^{(b,c)}$		$pp \rightarrow 3 {\rm jets}$	$NNLO_{OCD} + NLO_{EW}$	
	$N^{(1,1)}LO^{(H1L)}_{QCD\otimes EW}$			Ta	ole 2: Precision wish list:	iet final states.
	$NNLO_{HTL}$		l			J
$pp \to H+j$	$\rm NLO_{QCD}$	$\mathrm{NNLO}_{\mathrm{HTL}} \otimes \mathrm{NLO}_{\mathrm{QCD}} + \mathrm{NLO}_{\mathrm{EW}}$				
	$\rm N^{(1,1)}LO_{QCD\otimes EW}$		$pp \rightarrow V + 2i$	NLO _{QCD}	$+ \text{NLO}_{\text{EW}}$ (QCD composition	nent) NNLOgga
	$\mathrm{NLO}_{\mathrm{HTL}} \otimes \mathrm{LO}_{\mathrm{QCD}}$			NLO _{QCD}	$+ NLO_{EW}$ (EW compone	ent)
$m \rightarrow H + 2i$	$N^{3}LO_{QCD}^{(VBF^{*})}$ (incl.)	$NNLO_{HTL} \otimes NLO_{QCD} + NLO_{EW}$ $N^{3}r \circ (VBF^*)$	$pp \rightarrow V + b\bar{b}$	NLO _{QCD}		$\rm NNLO_{QCD} + \rm NLO_{EW}$
$pp \rightarrow II + 2j$	$\mathrm{NNLO}_\mathrm{QCD}^{\mathrm{(VBF}^*)}$	$N LO_{QCD}$	$pp \rightarrow VV' + 1j$	NLO _{QCD}	$+ \mathrm{NLO}_{\mathrm{EW}}$	NNLO _{QCD}
	$\mathrm{NLO}_{\mathrm{EW}}^{(\mathrm{VBF})}$	NNLO _{QCD}				

$m \rightarrow q q \pm i$	$\rm NNLO_{QCD} + \rm NLO_{EW}$	
	$+ \mathrm{NLO}_{\mathrm{QCD}} (gg \text{ channel})$	
$pp \rightarrow \gamma \gamma \gamma$	NNLO _{QCD}	$\mathrm{NNLO}_{\mathrm{QCD}} + \mathrm{NLO}_{\mathrm{EW}}$

	$nn \rightarrow t\bar{t} \pm i$	$\rm NLO_{QCD}$ (off-shell effects)			
	$pp \rightarrow cc + j$	$\rm NLO_{EW}~(w/o~decays)$	$MNLO_{QCD} + NLO_{EW}$ (w/ decays)		
	$pp \to t\bar{t} + 2j$	$\rm NLO_{QCD}~(w/o~decays)$	$\rm NLO_{QCD} + \rm NLO_{EW}~(w/~decays)$		
	$pp \to t\bar{t} + V'$	$\rm NLO_{QCD} + \rm NLO_{EW}~(w/o~decays)$	$\rm NNLO_{QCD} + \rm NLO_{EW}~(w/~decays)$		
	$pp \to t \bar{t} + \gamma$	$\overline{\text{NLO}_{\text{QCD}}}$ (off-shell effects)			
	$pp \to t \bar{t} + Z$	$\overline{\text{NLO}_{\text{QCD}}}$ (off-shell effects)			
	$pp \to t \bar{t} + W$	$\overline{\text{NLO}_{\text{QCD}} + \text{NLO}_{\text{EW}}}$ (off-shell effects)			
L					

 $pp \rightarrow t\bar{t}t\bar{t}$ Full $NLO_{QCD} + NLO_{EW}$ (w/o decays)

 $NLO_{QCD} + NLO_{EW}$ (off-shell effects)

NNLO_{QCD}

the precision wishlist

latest update LH2021 Huss, Huston, Jones, Pellen [2207.02122]

			process known	desired
process	$\frac{1}{N^{3}LO_{HTL}}$ $N^{4}LO_{HTL} (incl.)$		$pp \rightarrow 2 \text{jets}$ NNLO _{QCD} NLO _{QCD} NLO _{QCD} NLO _{EW}	$V^{3}LO_{QCD} + NLO_{EW}$
$pp \to H$	$\frac{\text{NNLO}_{\text{QCD}}^{(b)}}{\text{N}^{(1,1)}\text{LO}_{\text{QCD}\otimes\text{EW}}^{(\text{HTL})}} \qquad \qquad \text{NNLO}_{\text{QCD}}^{(b,c)}$		$pp \rightarrow 3 \text{jets} \text{NNLO}_{\text{QCD}} + \text{NLO}_{\text{EW}}$	
TT	NNLO _{HTL}	. L	Table 2: Precision wish list: jet	final states.
$pp \rightarrow H + j$	$\frac{NL}{NL}$ fully differential	$\to V + 2j$	$NLO_{QCD} + NLO_{EW}$ (QCD comportent) $NLO_{QCD} + NLO_{EW}$ (EW component)) NNLO _{QCD}
$pp \rightarrow H + 2i$	^{N³} prodicitone accontial	$\to V + b\bar{b}$	NLO _{QCD}	$NNLO_{QCD} + NLO_{EW}$
	NN PIEUICILOIIS ESSEITUAI	$\to VV' + 1j$	$\rm NLO_{QCD} + \rm NLO_{EW}$	NNLO _{OCD}
	LHC analyses		see B	ayu's tal
		$pp \rightarrow t\bar{t} + j$	NLO_{QCD} (off-shell effects) NLO_{EW} (w/o decays)	$NNLO_{QCD} + NLO_{EW}$ (w/ decays)
$pp \to \gamma \gamma + j$	$NNLO_{QCD} + NLO_{EW}$ + NLO_{OCD} (<i>aa</i> channel)	$pp \rightarrow t\bar{t} + 2j$	j NLO _{QCD} (w/o decays)	$\rm NLO_{QCD} + \rm NLO_{EW}~(w/~decays)$
$p \rightarrow \gamma \gamma \gamma$	NNLO _{QCD} (gg channel) NNLO _{QCD} + NLO _{EW}	$pp \to t\bar{t} + V$	$MLO_{QCD} + NLO_{EW} (w/o decays)$	$\rm NNLO_{QCD} + \rm NLO_{EW}~(w/~decays)$
		$pp \rightarrow tt + \gamma$	NLO _{QCD} (off-shell effects)	
		$pp \rightarrow tt + Z$	NLO_{QCD} (off-shell effects)	

part 1: two-loop amplitudes - challenges and solutions

bare amplitudes
$$A^{(L),4-2\epsilon} = \sum_{i} c_i(\epsilon, \{p\}) \mathcal{F}_i(\epsilon, \{p\})$$

rational functions

integrals/special functions

finite remainders
$$F^{(L)} = A^{(L),4-2\epsilon} - \sum_{k=1}^{L} I^{(k),4-2\epsilon} A^{(L-k),4-2\epsilon}$$

universal IR/UV poles

[Catani (1998)][Becher, Neubert (2009)] [Magnea, Gardi (2009)]

'standard' approach

very large intermediate expressions poor scaling with loops/legs

new computational toolbox

numerical unitarity

all-in-one cuts to master integrals

on-shell methods

hidden simplicity and underlying geometry

momentum twistors

integrand reduction

syzygy relations optimising systems of IBP identities

finite fields

exact numerics - truncated over e.g. prime numbers

recursion relations

reusing common blocks to evaluate diagrams efficiently

automated numerical algorithms @ one-loop now standard in MC event generators [Integrals: QCDloop, OneLoop...] [Amplitudes: OpenLoops, HelacNLO,...]

finite field arithmetic

not a new idea - used in many computer algebra systems

solving IBP systems: e.g. FINRED [von Manteuffel], KIRA+FIREFLY [Maierhoefer, Usovitsch, Uwer, Klappert, Lange]

> framework for amplitude computations: FINITEFLOW [Peraro (2019)]

(* take some, reasonably large, prime number *)
FFPrimeNo[1]
(* all quantities evaluated modulo a prime number *)
Mod[-3,FFPrimeNo[1]]
Mod[87+FFPrimeNo[1],FFPrimeNo[1]][1]]
(* already implemented in Mathematica *)
Mod[87/3+FFPrimeNo[1],FFPrimeNo[1]]
9223 372 036 854 775 643
9223 372 036 854 775 640
87

 $\{\,b\rightarrow 29\,\}$

29

NB: multiplicative inverse

extremely efficient solutions to large linear algebra systems

$$A^{(L),4-2\epsilon} = \sum_{i} c_i(\epsilon, \{p\}) \mathcal{F}_i(\epsilon, \{p\})$$

rational functions

multiple numerical (mod prime) evaluations can used to reconstruct complete analytic information

Newton (polynomial) and Thiele (rational) interpolation

(* implement the Newton interpolation algorithm *)
NewtonReconstruct[z_, zvalues_List, fvalues_List, primeno_]:=Module[{res,maxdegree,aa,eqs,sol},
maxdegree = Length[zvalues]-1;
res = Sum[aa[r]*Product[(z-zvalues[[i+1]]),{i,0,r-1}],{r,0,maxdegree}];
eqs = Equal@@@Transpose[{res /. ({Rule[z,#]}&/@zvalues),fvalues}];
sol = Solve[eqs,Table[aa[i],{i,0,Length[fvalues]-1}],{Modulus->primeno}];
Return[res/. sol[[1]]];
]

fff[z_]:=15/2*z+119/6*z^2; values = {19,44,78}; FFRatMod[fff/@values,FFPrimeNo[0]] test = NewtonReconstruct[z,values,%,FFPrimeNo[0]] Collect[%,z,FFRatRec[#,FFPrimeNo[0]]&]

{6148914691236524491, 6148914691236555916, 121251}

 $6\,148\,914\,691\,236\,524\,491\,+\,1257\,\,(-\,19\,+\,z\,)\,\,+\,1\,537\,228\,672\,809\,129\,317\,\,(-\,44\,+\,z\,)\,\,(-\,19\,+\,z\,)$

 $\frac{15 z}{2} + \frac{119 z^2}{6}$

Rational external kinematics: e.g. Momentum Twistors (Hodges)

> Trivial parallelisation of sample points

finite fields for amplitudes

useful features:

- reconstruct exact results using chinese remainder theorem
- extremely efficient solutions to large linear systems
- reconstruct rational functions using Newton/Thiele interpolation
- modular approach in FiniteFlow allows us to link different algorithms and avoid large intermediate steps

analytic reconstruction over finite fields

new developments have allowed major breakthrougths in amplitude computations

$pp \rightarrow \gamma\gamma\gamma, 3j, Hbb, W+2j, W\gamma j, \gamma\gamma+j, \gamma+2j$

Agarwal, Buccioni, Devoto, Gambuti, von Manteuffel, Tancredi, Abreu, De Laurentis, Dormans, Febres Cordero, Ita, Kraus, Klinkert, Page, Pascual, Ruf, Sotnikov, SB, Brønnum-Hansen, Chicherin, Gehrmann, Hartanto, Henn, Krys, Marcoli, Moodie, Peraro, Zoia,...

refined sampling get reduce the number of points needed to fully reconstruct analytic behaviour

Q-linear relations, factor matching, partial fractioning,...

further reading: de Laurentis, Page [2203.04269], Liu [2306.12262], Chawdhry [2312.03672]

$$A^{(L),4-2\epsilon} = \sum_{i} c_i(\epsilon, \{p\}) \mathcal{F}_i(\epsilon, \{p\})$$

integrals/special functions

many ways to evaluate Feynman integrals:

secdec, Fiesta

Sector decomposition (numerical)[Binoth, Heinrich....]Differential equations[Kotikov, Gehrmann, Remiddi, Henn...]Mellin-Barnes[Smirnov, Tausk, Czakon, Kosower,...]Direct parametric integration[Panzer, Borinsky...]

Hyperint mbtools, ambre feyntrop

what type of functions? MPLs, elliptic or beyond

canonical form differential equations (DEQs)

[Henn (2013)]

$$\partial_x M_i = \epsilon A_{ij}(x) M_j \qquad d = 4 - 2\epsilon$$

 M_i integral basis usually called 'master integrals' (MIs)

 A_{ij} matrix depends on kinematic invariants

if
$$dA = \sum_{i} d\log(W_i)$$

 W_i alphabet

it is (relatively) easy to define a special function basis from iterated integrals

e.g. IM pentagon functions: Abreu, Chicherin, Ita, Page, Sotnikov, Tschernow, Zoia [2306.15431]

automated approaches to find canonical bases (Fuchsia, epsilon, initial, dlog...) often not sufficient to handle complicated kinematics Analytic forms for DEQ matrices, A can be obtained via IBP reduction over finite fields

optimized IBP systems

Even with finite field technology, IBP systems are computationally intensive using the Laporta algorithm

$$I_{n\geq 5}^{(2)} = \frac{2^{D-6}}{\pi^5 \Gamma(D-5)J} \int \prod_{i=1}^{11} \mathrm{d}z_i F(z)^{\frac{D-7}{2}} \frac{P(z)}{z_1 \cdots z_k}$$
$$bF - \sum_{i=1}^{k-c} b_{r_i} z_{r_i} \frac{\partial F}{\partial z_{r_i}} + \sum_{j=k-c+1}^{m-c} a_{r_j} \frac{\partial F}{\partial z_{r_j}} = 0$$

syzygy relations can be used to generate compact systems free of dotted propagators

Gluza, Kadja, Kosower (2011), Ita (2015), Larsen, Zhang (2015),...

automated tool: NeatIBP [Wu et al. 2305.08783]

even with all the new ideas, putting everything together is a real challenge... but no longer a proof of concept

> beyond leading colour, the number of **permutations** of each family can be very large

> **internal masses** are important for phenomenology but present serious technical problems

memory and **CPU** usuage can still be large need to build stable code framework

part II: new results for $W\gamma\gamma$, Hbb and ttj

SB, Hartanto, Wu, Zhang, Zoia [2409.08146]

$$0 \to \bar{u}(p_1, h_1) + d(p_2, h_2) + \gamma(p_3, h_3) + \gamma(p_4, h_4) + \nu_\ell(p_5, h_5) + \ell^+(p_6, h_6)$$

$$M_6^{(L)}(1_{\bar{u}}, 2_d, 3_\gamma, 4_\gamma, 5_\nu, 6_{\bar{\ell}}) = e^2 g_W^2 \left[(4\pi)^\epsilon e^{-\epsilon\gamma_E} \frac{\alpha_s}{4\pi} \right]^L \delta_{i_2}^{\ \bar{i}_1} A_6^{(L)}(1_{\bar{u}}, 2_d, 3_\gamma, 4_\gamma, 5_\nu, 6_{\bar{\ell}})$$

$$\begin{aligned} A_{6}^{(L)} &= \left[Q_{u}^{2} A_{6,uu}^{(L)} + Q_{u} Q_{d} A_{6,ud}^{(L)} + Q_{d}^{2} A_{6,dd}^{(L)} + \left(\sum_{q=1}^{n_{f}} Q_{q}^{2} \right) A_{6,q}^{(L)} \right] P(s_{56}) \\ &+ \left[Q_{u} Q_{\ell} A_{6,uu}^{(L)} + Q_{d} Q_{\ell} A_{6,du1}^{(L)} \right] P(s_{356}) + \left[Q_{u} Q_{\ell} A_{6,ud2}^{(L)} + Q_{d} Q_{\ell} A_{6,dd2}^{(L)} \right] P(s_{456}) \\ &+ \left[Q_{u} Q_{w} A_{6,uw1}^{(L)} + Q_{d} Q_{w} A_{6,dw1}^{(L)} \right] P(s_{356}) P(s_{56}) \\ &+ \left[Q_{u} Q_{w} A_{6,uw2}^{(L)} + Q_{d} Q_{w} A_{6,dw2}^{(L)} \right] P(s_{456}) P(s_{56}) \\ &+ \left[Q_{u} Q_{w} A_{6,uw2}^{(L)} + Q_{d} Q_{w} A_{6,dw2}^{(L)} \right] P(s_{456}) P(s_{56}) \\ &+ Q_{\ell} Q_{w} A_{6,\ellw1}^{(L)} P(s_{356}) P(s_{3456}) + Q_{\ell} Q_{w} A_{6,\ellw2}^{(L)} P(s_{456}) P(s_{3456}) \\ &+ Q_{\ell} Q_{w} A_{6,\ellw1}^{(L)} P(s_{56}) P(s_{3456}) + Q_{\ell} Q_{w} A_{6,\ellw2}^{(L)} P(s_{456}) P(s_{3456}) \\ &+ Q_{w}^{2} A_{6,\ellw1}^{(L)} P(s_{56}) P(s_{3456}) + Q_{w}^{2} A_{6,w2}^{(L)} P(s_{56}) P(s_{456}) P(s_{3456}) \\ &+ Q_{\ell}^{2} A_{6,\ell\ell}^{(L)} P(s_{3456}) + A_{6,\ellwy\gamma}^{2} P(s_{56}) P(s_{3456}) , \end{aligned}$$

colour structure is relatively simple, flavour structure more involved

tree-level diagrams representing the various subamplitude contributions

# of external particles	independent contracted helicity amplitudes				
5	$\tilde{A}_{5,uu;i}^{(L)+-++}, \tilde{A}_{5,uu;i}^{(L)+-+-}, \tilde{A}_{5,uu;i}^{(L)++}, \tilde{A}_{5,uu;i}^{(L)+}$				
$ \tilde{A}_{5,ud;i}^{(L)+-++}, \tilde{A}_{5,ud;i}^{(L)+-+-}, \\ \tilde{A}_{5,q;i}^{(L)+-++}, \tilde{A}_{5,q;i}^{(L)+-+-} $					
3	$\tilde{A}^{(L)+-}_{3\cdot i}$				
$F_{6,i}^{(L)} =$	$\lim_{\epsilon \to 0} \left[A_{6,i}^{(L)} - \mathcal{P}_{6,i}^{(L)} \right]$				
$F_{6,i}^{(L)} =$	$\lim_{\epsilon \to 0} \left[A_{6,i}^{(L)} - \mathcal{P}_{6,i}^{(L)} \right]$				

different multiplicites must be combined to get (QED) gauge invariant result

all non-planar integral families appear with different permutations pushes reduction technology to the limit

						# points	analutia
	original	stage 1	stage 2	stage 3	stage 4	# points ($\# \text{ primes}$)	expression
$\tilde{A}_{5,uu;1}^{(2),N_c^2}$	159/155	159/155	159/0	33/31	33/0	27728(2)	1
$\tilde{A}_{5,uu;2}^{(2),N_c^2}$	147/143	147/143	147/0	33/31	33/0	37132(2)	1
$\tilde{A}_{5,uu;3}^{(2),N_c^2}$	157/153	157/153	157/0	31/29	31/0	31610(2)	\checkmark
$\tilde{A}_{5,uu;4}^{(2),N_c^2}$	143/139	143/139	143/0	35/33	35/0	38710(2)	\checkmark
$\tilde{A}_{5,uu;1}^{(2),1/N_c^2}$	223/219	223/219	223/0	50/48	50/0	$134551 \ (?)$	×
$\tilde{A}_{5,uu;2}^{(2),1/N_c^2}$	208/204	208/204	208/0	41/42	41/0	81973~(?)	×
$\tilde{A}_{5,uu;3}^{(2),1/N_c^2}$	219/215	219/215	219/0	49/46	49/0	$130146 \ (?)$	×
$\tilde{A}_{5,uu;4}^{(2),1/N_c^2}$	202/199	202/199	202/0	48/49	48/0	$143320 \ (?)$	×
$\tilde{A}_{5,ud;1}^{(2),N_c^2}$	163/160	163/160	163/0	33/32	33/0	30371(2)	✓
$\tilde{A}_{5,ud;2}^{(2),N_c^2}$	167/165	167/165	167/0	35/34	34/0	37506(2)	\checkmark
$\tilde{A}_{5,ud;3}^{(2),N_c^2}$	150/147	150/147	150/0	33/29	31/0	29698~(2)	1
$\tilde{A}_{5,ud;4}^{(2),N_c^2}$	152/150	152/150	152/0	35/32	34/0	36726~(2)	1
$\tilde{A}_{5,ud;1}^{(2),1/N_c^2}$	219/217	217/215	217/0	55/53	55/0	173066 (?)	×
$\tilde{A}_{5,ud;2}^{(2),1/N_c^2}$	228/225	228/225	228/0	51/49	51/0	172337 (?)	×
$\tilde{A}_{5,ud;3}^{(2),1/N_c^2}$	218/213	216/211	216/0	47/45	47/0	118142 (?)	×
$\tilde{A}_{5,ud;4}^{(2),1/N_c^2}$	208/205	206/203	206/0	50/51	50/0	153605 (?)	×
$\tilde{A}_{5,q;1}^{(2),N_c}$	136/135	119/118	119/0	34/32	34/0	26059(2)	1
$\tilde{A}_{5,q;2}^{(2),N_c}$	137/137	122/122	122/0	51/52	51/0	194872(2)	1
$\tilde{A}_{5,q;3}^{(2),N_c}$	148/147	130/129	130/0	43/44	43/0	108803(2)	1
$\tilde{A}_{5,q;4}^{(2),N_c}$	136/135	130/129	130/0	47/48	47/0	147167(3)	1

univariate partial fraction in momentum twistor variables peforms quite well some sub-leading colour would take a lot of time to reconstruct

	original	stage 1	stage 2
$T_j^{\dagger} \cdot \tilde{A}_{5,uu,1}^{(2),1/N_c^2}$	100/97	100/97	100/0
$T_j^{\dagger} \cdot \tilde{A}_{5,uu,2}^{(2),1/N_c^2}$	99/96	99/96	99/0
$T_j^{\dagger} \cdot \tilde{A}_{5,uu,3}^{(2),1/N_c^2}$	101/97	101/97	101/0
$T_j^{\dagger} \cdot \tilde{A}_{5,uu,4}^{(2),1/N_c^2}$	101/97	101/97	101/0
$T_j^{\dagger} \cdot \tilde{A}_{5,ud,1}^{(2),1/N_c^2}$	97/93	96/92	96/0
$T_j^{\dagger} \cdot \tilde{A}_{5,ud,2}^{(2),1/N_c^2}$	97/93	97/93	97/0
$T_j^{\dagger} \cdot \tilde{A}_{5,ud,3}^{(2),1/N_c^2}$	97/93	96/92	96/0
$T_j^{\dagger} \cdot \tilde{A}_{5,ud,4}^{(2),1/N_c^2}$	97/93	96/92	96/0

projector method used to evaluate subleading colour on rationalized values of s_{ij}

since sub-leading colour is supressed - we can manage with few phase space points

smooth evaluation across phasespace slices

subleading colour effects peaked around 10% of VV as expected

pp-Hbb finite remainders

Leading colour: SB, Hartanto, Krys, Zoia [2107.14733] Full colour: SB, Hartanto, Wu, Zhang, Zoia [2410.xxxx]

pp→Hbb finite remainders

massless b, non-zero Yukawa

 $0 \to \overline{b}(p_1) + b(p_2) + g(p_3) + g(p_4) + H(p_5)$ $0 \to \overline{b}(p_1) + b(p_2) + \overline{q}(p_3) + q(p_4) + H(p_5)$ $0 \to \overline{b}(p_1) + b(p_2) + \overline{b}(p_3) + b(p_4) + H(p_5)$

through 'massification' methods can be used to approximate ttH in certain phase-space regions Catani et al. [2210.07846] Buonacore et al. [2306.16311]

pp→Hbb finite remainders

fully analytic expressions obtained: reconstruction summary

	$A_{34}^{(2),N_c^2} \qquad A_{34}^{(2),1}$		$A_{\delta}^{(2)}$	$),N_c$	$\begin{matrix} A_{\delta}^{(2),1/N_c} \\ \hline \vec{h}_g \end{matrix}$		
helicity	$ec{h}_g$	$ec{h}_g'$		$ec{h}_g$			
$x_1 = 1$	133/132	176/175	176/175	265/269	265/269	214/207	214/207
ansatz for linear relations	-	_	$A_{34}^{(2),1/N_c^2}$	_	$\begin{array}{c} A_{34}^{(2),1} \\ A_{43}^{(2),1} \\ A_{43}^{(2),1/N_c^2} \\ A_{34}^{(2),1/N_c^2} \\ A_{43}^{(2),1/N_c} \\ A_{\delta}^{(2),1/N_c} \end{array}$	_	$\begin{array}{c} A^{(2),1}_{34} \\ A^{(2),1}_{43} \\ A^{(2),1/N^2_c}_{34} \\ A^{(2),1/N^2_c}_{34} \\ A^{(2),1/N^2_c}_{43} \end{array}$
linear relations	133/132	176/175	110/109	233/233	121/115	141/140	135/130
number of coefficients	162	572	216	582	151	581	258
denominator matching	133/0	176/0	110/0	233/0	119/0	141/0	135/0
univariate partial fraction	32/25	38/33	25/22	36/33	36/33	32/28	32/28
factor matching	28/0	38/0	24/0	36/0	36/0	32/0	32/0
number of points	16711	47608	10382	38221	37002	21150	20337
evaluation time per point	t_0	$100t_{0}$	$67t_0$	$106t_0$	$57t_{0}$	$74t_0$	$62t_{0}$

towards pp-ttj helicity amplitudes

SB, Becchetti, Chaubey, Marzucca, Sarandrea [2201.12188] SB, Becchetti, Chaubey, Marzucca [2210.17477] SB, Becchetti, Giraudo, Zoia [2404.12325] SB, Becchetti, Brancaccio, Zoia [241x.xxxx]

Higgs pole mass M_h [GeV]

top quark helicity amplitudes

in this case the master integral basis was unknown...

integral basis for leading colour ttj

SB, Becchetti, Giraudo, Zoia [2404.12325]

high precision boundary values with Auxiliary Mass Flow (AMFLOW Liu '22)

integral basis for leading colour ttj

SB, Becchetti, Giraudo, Zoia [2404.12325]

dlog candidates for most integrals follow patterns seen in previous examples:

- local and extra-dim. numerator insertions
- square roots (e.g. Gram determinants)
 8 square roots in total
- algebraic letters of the form

problem sectors

 $\mathbf{2}$

nested square root required to rotate into ϵ factorised form

Picard-Fuchs analysis confirms it to contain an elliptic curve

technology for analytic representation of elliptic integrals not yet ready for example of this complexity: resort to numerical evaluation of the DEQs

$$\frac{a+\sqrt{b}}{a-\sqrt{b}}$$

solving differential equations numerically

B topology basis chosen such that $k_{max}=2$

 $dA^{(B)}(\vec{x},\varepsilon) = \sum_{k=0}^{k_{\max}} \sum_{i} \varepsilon^{k} \,\omega_{i}(\vec{x}) \,c_{k,i}^{(B)}$

 ω are linearly independent one-forms (135 of which 72 are dlog)

compact analytic representation (for all topologies) transport point x to point y using generalised series expansion

of the differential equations

[Moriello 1907.13234] [DIFFEXP Hidding 2006.05510]

Path split into segments: evaluation time per segment ~30s

Efficient phase-space integration possible if the number of segments between points is minimized (e.g. [Becchetti et al. 2010.09451])

defining a function basis

while the DEQ is not in ε -factorised form - we can do suprisingly well with the expansion around d=4

- most of the DEQ is in dlog form
- elliptic sectors only appear at order 4 in ε [check with BCs]

$$d\vec{g} = (dA^{(0)}(x) + \epsilon dA^{(1)}(x) + \epsilon dA^{(2)}(x))\vec{g} \qquad \vec{g} = \sum_{k=0} \epsilon^k \vec{g}^{(k)}$$
$$d\vec{g}^{(w)} = (dA^{(0)}\vec{g}^{(w)}) + dA^{(1)}\vec{g}^{(w-1)} + (dA^{(2)}\vec{g}^{(w-2)})$$

- $dA^{(0)}$ and $dA^{(2)}$ mostly zero's and up to ε^3 everything is dlog.
- elliptic sectors do not decouple at ε^4 so simply keep MI component as basis function (6x2 perms = 12 functions)

result is an (overcomplete) basis that can be evaluated via generalized series expansions

first amplitude level results

- first (numerical) evaluations in the physical remainder for the finite remainder of one helicity amplitude
- mass renormalization counter-terms to restore gauge invariance
- analytic cancellation of IR and UV poles

produced by Colomba Brancaccio for TOP2024

$A_{LC}^{2L}(++++;n_tn_{\bar{t}})[GeV^{-2}]$ Phase-Space points $d_{12} \rightarrow 0.1074, d_{23} \rightarrow 0.2719, d_{34} \rightarrow -0.1563,$ 19.028262 - 3.1078961 *i* $d_{45} \rightarrow 0.5001, d_{15} \rightarrow -0.03196, mt^2 \rightarrow 0.02502$ $d_{12} \rightarrow 0.3915, d_{23} \rightarrow 0.06997, d_{34} \rightarrow -0.06034,$ 0.07061470 - 0.00649655 i $d_{45} \rightarrow 0.5002, d_{15} \rightarrow -0.1293, mt^2 \rightarrow 0.02499$ $d_{12} \rightarrow 0.2167, d_{23} \rightarrow 0.02186, d_{34} \rightarrow -0.01149,$ -29.219122 - 27.542150 i $d_{45} \rightarrow 0.5007, d_{15} \rightarrow -0.04709, mt^2 \rightarrow 0.02502$ $d_{12} \rightarrow 0.2986, d_{23} \rightarrow 0.1599, d_{34} \rightarrow -0.05978,$ -0.97280521 + 0.86357506 i $d_{45} \rightarrow 0.4998, d_{15} \rightarrow -0.2899, mt^2 \rightarrow 0.02500$ $d_{12} \rightarrow 0.2882, d_{23} \rightarrow 0.04770, d_{34} \rightarrow -0.1080,$ -0.40407926 - 0.53165671 i $d_{45} \rightarrow 0.5000, d_{15} \rightarrow -0.1583, mt^2 \rightarrow 0.02502$

with $d_{ij} = p_i \cdot p_j$, normalised here w.r.t $2 p_4 \cdot p_5$

first test of full set of elements - not quite ready for pheno though

Conclusions

2L QCD corrections to 2→3 (massless) processes no longer present the same bottleneck they did 5 years ago thanks to **analytic reconstruction** techniques and well behaved **special function bases**

new results for Hbb and $W\gamma\gamma$ - first non-planar 5pt with an off-shell leg

some progress for ttj - more work to guarentee fast and stable evaluations for pheno. studies