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Feynman graphs/integrals

Building blocks of theoretical predictions for collider physics.

More
recently also for gravitational wave physics.
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Landau singularities
Kinematic parameter values for which Feynman(-like) integrals become singular

Formulated as conditions for the contour of integration (A→ B) to
become trapped between two poles of integrand (×). [Landau’59]

They provide key information for Feynman integration:

A. Analytically
▸ Constrain or even predict symbol alphabets [Dlapa,Helmer,GP,Tellander’23]

▸ Simplify determination of canonical differential equations [Henn’13]

▸ Enable bootstrap methods [SAGEX Review Ch.5: GP’22]

▸ Expansion by regions: Find regions [Gardi,Herzog,Jones,Ma+Schlenk;22-24]

B. Numerically: Sector decomposition [Binoth,Heinrich’00]

G.Papathanasiou — Landau Singularities from Whitney Stratifications Introduction and Motivation 3/22



Landau singularities
Kinematic parameter values for which Feynman(-like) integrals become singular

Formulated as conditions for the contour of integration (A→ B) to
become trapped between two poles of integrand (×). [Landau’59]

They provide key information for Feynman integration:

A. Analytically
▸ Constrain or even predict symbol alphabets [Dlapa,Helmer,GP,Tellander’23]

▸ Simplify determination of canonical differential equations [Henn’13]

▸ Enable bootstrap methods [SAGEX Review Ch.5: GP’22]

▸ Expansion by regions: Find regions [Gardi,Herzog,Jones,Ma+Schlenk;22-24]

B. Numerically: Sector decomposition [Binoth,Heinrich’00]

G.Papathanasiou — Landau Singularities from Whitney Stratifications Introduction and Motivation 3/22



Landau singularities
Kinematic parameter values for which Feynman(-like) integrals become singular

Formulated as conditions for the contour of integration (A→ B) to
become trapped between two poles of integrand (×). [Landau’59]

They provide key information for Feynman integration:

A. Analytically
▸ Constrain or even predict symbol alphabets [Dlapa,Helmer,GP,Tellander’23]

▸ Simplify determination of canonical differential equations [Henn’13]

▸ Enable bootstrap methods [SAGEX Review Ch.5: GP’22]

▸ Expansion by regions: Find regions [Gardi,Herzog,Jones,Ma+Schlenk;22-24]

B. Numerically: Sector decomposition [Binoth,Heinrich’00]

G.Papathanasiou — Landau Singularities from Whitney Stratifications Introduction and Motivation 3/22



Landau singularities
Kinematic parameter values for which Feynman(-like) integrals become singular

Formulated as conditions for the contour of integration (A→ B) to
become trapped between two poles of integrand (×). [Landau’59]

They provide key information for Feynman integration:

A. Analytically
▸ Constrain or even predict symbol alphabets [Dlapa,Helmer,GP,Tellander’23]

▸ Simplify determination of canonical differential equations [Henn’13]

▸ Enable bootstrap methods [SAGEX Review Ch.5: GP’22]

▸ Expansion by regions: Find regions [Gardi,Herzog,Jones,Ma+Schlenk;22-24]

B. Numerically: Sector decomposition [Binoth,Heinrich’00]

G.Papathanasiou — Landau Singularities from Whitney Stratifications Introduction and Motivation 3/22



Landau singularities
Kinematic parameter values for which Feynman(-like) integrals become singular

Formulated as conditions for the contour of integration (A→ B) to
become trapped between two poles of integrand (×). [Landau’59]

They provide key information for Feynman integration:

A. Analytically
▸ Constrain or even predict symbol alphabets [Dlapa,Helmer,GP,Tellander’23]

▸ Simplify determination of canonical differential equations [Henn’13]

▸ Enable bootstrap methods [SAGEX Review Ch.5: GP’22]

▸ Expansion by regions: Find regions [Gardi,Herzog,Jones,Ma+Schlenk;22-24]

B. Numerically: Sector decomposition [Binoth,Heinrich’00]

G.Papathanasiou — Landau Singularities from Whitney Stratifications Introduction and Motivation 3/22



Landau singularities
Kinematic parameter values for which Feynman(-like) integrals become singular

Formulated as conditions for the contour of integration (A→ B) to
become trapped between two poles of integrand (×). [Landau’59]

They provide key information for Feynman integration:

A. Analytically
▸ Constrain or even predict symbol alphabets [Dlapa,Helmer,GP,Tellander’23]

▸ Simplify determination of canonical differential equations [Henn’13]

▸ Enable bootstrap methods [SAGEX Review Ch.5: GP’22]

▸ Expansion by regions: Find regions [Gardi,Herzog,Jones,Ma+Schlenk;22-24]

B. Numerically: Sector decomposition [Binoth,Heinrich’00]

G.Papathanasiou — Landau Singularities from Whitney Stratifications Introduction and Motivation 3/22



Landau singularities
Kinematic parameter values for which Feynman(-like) integrals become singular

Formulated as conditions for the contour of integration (A→ B) to
become trapped between two poles of integrand (×). [Landau’59]

They provide key information for Feynman integration:

A. Analytically
▸ Constrain or even predict symbol alphabets [Dlapa,Helmer,GP,Tellander’23]

▸ Simplify determination of canonical differential equations [Henn’13]

▸ Enable bootstrap methods [SAGEX Review Ch.5: GP’22]

▸ Expansion by regions: Find regions [Gardi,Herzog,Jones,Ma+Schlenk;22-24]

B. Numerically: Sector decomposition [Binoth,Heinrich’00]

G.Papathanasiou — Landau Singularities from Whitney Stratifications Introduction and Motivation 3/22



Landau singularities
Kinematic parameter values for which Feynman(-like) integrals become singular

Formulated as conditions for the contour of integration (A→ B) to
become trapped between two poles of integrand (×). [Landau’59]

They provide key information for Feynman integration:

A. Analytically
▸ Constrain or even predict symbol alphabets [Dlapa,Helmer,GP,Tellander’23]

▸ Simplify determination of canonical differential equations [Henn’13]

▸ Enable bootstrap methods [SAGEX Review Ch.5: GP’22]

▸ Expansion by regions: Find regions [Gardi,Herzog,Jones,Ma+Schlenk;22-24]

B. Numerically: Sector decomposition [Binoth,Heinrich’00]

G.Papathanasiou — Landau Singularities from Whitney Stratifications Introduction and Motivation 3/22



How to compute kinematic/Landau singularities in practice?

1. HyperInt [Panzer’14]

← provides spurious singularities

2. PLD [Fevola,Mizera,Telen’23]

←misses singularities

▸ Algorithm for complete+non-redundant set of Landau singularities

▸ Based on Whitney stratifications. ∃ software implementation

▸ Bonus: Also yields singularities in kinematic limits (e.g. p2i → 0)
of original integral

This Work
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Starting point: Lee-Pomeransky representation

For Feynman integral with n edges and L loops,

I = ∫
Rn
+

(
n

∏
i=1

xνii dxi

xiΓ(νi)
) 1

GD/2
, G = U +F ,

▸ First & second Symanzik polynomial: Of degree L, L + 1 in xi.
Constant, kinematic-dependent coefficients.

▸ D ∶= 4 − 2ϵ (dimensional regularisation)

▸ Integers νi: Generalised propagator powers

▸ Depends on p2v,m
2
e for each external leg v, internal edge e.

G.Papathanasiou — Landau Singularities from Whitney Stratifications Feynman Integrals and their Singularities 7/22



Starting point: Lee-Pomeransky representation

For Feynman integral with n edges and L loops,

I = ∫
Rn
+

(
n

∏
i=1

xνii dxi

xiΓ(νi)
) 1

GD/2
, G = U +F ,

▸ First & second Symanzik polynomial: Of degree L, L + 1 in xi.
Constant, kinematic-dependent coefficients.

▸ D ∶= 4 − 2ϵ (dimensional regularisation)

▸ Integers νi: Generalised propagator powers

▸ Depends on p2v,m
2
e for each external leg v, internal edge e.

G.Papathanasiou — Landau Singularities from Whitney Stratifications Feynman Integrals and their Singularities 7/22



Starting point: Lee-Pomeransky representation

For Feynman integral with n edges and L loops,

I = ∫
Rn
+

(
n

∏
i=1

xνii dxi

xiΓ(νi)
) 1

GD/2
, G = U +F ,

▸ First & second Symanzik polynomial: Of degree L, L + 1 in xi.
Constant, kinematic-dependent coefficients.

▸ D ∶= 4 − 2ϵ (dimensional regularisation)

▸ Integers νi: Generalised propagator powers

▸ Depends on p2v,m
2
e for each external leg v, internal edge e.

G.Papathanasiou — Landau Singularities from Whitney Stratifications Feynman Integrals and their Singularities 7/22



Starting point: Lee-Pomeransky representation

For Feynman integral with n edges and L loops,

I = ∫
Rn
+

(
n

∏
i=1

xνii dxi

xiΓ(νi)
) 1

GD/2
, G = U +F ,

▸ First & second Symanzik polynomial: Of degree L, L + 1 in xi.
Constant, kinematic-dependent coefficients.

▸ D ∶= 4 − 2ϵ (dimensional regularisation)

▸ Integers νi: Generalised propagator powers

▸ Depends on p2v,m
2
e for each external leg v, internal edge e.

G.Papathanasiou — Landau Singularities from Whitney Stratifications Feynman Integrals and their Singularities 7/22



Starting point: Lee-Pomeransky representation

For Feynman integral with n edges and L loops,

I = ∫
Rn
+

(
n

∏
i=1

xνii dxi

xiΓ(νi)
) 1

GD/2
, G = U +F ,

▸ First & second Symanzik polynomial: Of degree L, L + 1 in xi.
Constant, kinematic-dependent coefficients.

▸ D ∶= 4 − 2ϵ (dimensional regularisation)

▸ Integers νi: Generalised propagator powers

▸ Depends on p2v,m
2
e for each external leg v, internal edge e.

G.Papathanasiou — Landau Singularities from Whitney Stratifications Feynman Integrals and their Singularities 7/22



The homogenized Lee-Pomeransky representation

Render integral projective, as is done in Feynman parameterization:
[Panzer’15]

Insert 1 = ∫ xν00 δ(1 − x0)dx0 in I, rescale remaining xi → xi/x0 ⇒ . . .⇒

I ∝ ∫
Pn
+

∏n
i=0 x

νi
i

GD/2h

Ω , Gh ∶= Ux0 +F ,

▸ Ω = ∑n
i=0(−1)n−1−i dx0

x0
∧⋯ ∧ d̂xi

xi
∧⋯ ∧ dxn

xn
, with hatted term omitted

▸ ν0 = (L + 1)D/2 −∑n
i=1 νi, ensures projective invariance

▸ Pn
+ = {(x0, . . . , xn) ∼ (λx0, . . . , λxn) ∈ Rn+1, λ ≠ 0∣xi ≥ 0, i = 0, . . . , n}

positive real projective space
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The Landau equations

In homogenized Lee-Pomeransky representation, Landau equations
describing the entrapment of the integration contour become:

Gh = 0 and xi
∂Gh
∂xi
= 0 ∀ i = 0, 1, . . . , n.

Solving them remains a challenge!

▸ Generically nonlinear

▸ Solutions with different xi → 0 scalings, /∃ systematics of finding them
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Our strategy

Instead, rely on robust definition of Landau singularities due to Pham,
“Landau variety”.

Essentially boils down to considering Gh = 0 as a variety
with respect to integration variables xi, and detecting values of the
external (kinematic) parameters for which this changes topology.

Toy Example: Gh = (x2 − 1)2 − (x1 − z)x12

1

2
x2

−1 1

x1

(a) z = −1 < 0

1

2
x2

−1 1

x1

(b) z = 0

↑

Topology change=
Landau singularity

1

2
x2

−1 1

x1

(c) z = 1/2 > 0

Such topology changes algorithmically captured by Whitney stratifications.
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Whitney stratification of a variety

▸ Stratification of a variety X of dim. d: Decomposition
X0 ⊂ . . . ⊂Xd ∶=X so that Xi/Xi−1 are (open) smooth manifolds ∀i

▸ Whitney stratification of X: Whitney’s B condition additionally holds
for all pairs of connected components or strata of these manifolds.

Definition

A pair of strata, M,N , whose closures obey M ⊂ N , satisfy Whitney’s
condition B at a point x ∈ M with respect to N if for every sequence
{pℓ} ⊂M and {qℓ} ⊂ N limiting to x, the limit of secant lines between
pℓ, qℓ is contained in the limit of tangent planes to N at qℓ.
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Example: The Whitney cusp X=V(x2 + z3 − y2z2)∗ ⊂ R3

y

z

x

Origin: Different topology. Fails B-condition: secant line /∈ tangent plane

↰

place in separate stratum.

∗Notation: V(g1, . . . , gr) ∶= {x⃗ ∣ g1(x⃗) = ⋯ = gr(x⃗) = 0} for polynomials gi in x⃗.
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y

z
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A stratification of X ∶X ⊃V(x, z)
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Whitney stratification of algebraic map f ∶X → Y

If X,Y varieties and X●, Y● their stratifications, this is defined as the pair
(X●, Y●) with one additional condition:

For each stratum M of X there is a stratum N of Y with f(M) ⊂ N such
that the differential df ∣M of the map f ∣M ∶M → N is surjective.

∃ unique minimal Whitney stratification ∀ complex algebraic variety
[Teissier’81]

⇒ ∃ unique minimal Whitney stratification of a map [Helmer,Nanda’23]
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The Landau variety

Based on these concepts, rephrase definition [Pham’11] of this subspace of
external kinematics where a Feynman integral becomes singular, as:

Definition

Consider a Feynman integral in homogenized Lee-Pomeransky form, with
(x0, . . . , xn) ∈ Pn

x projective integration variables and (z1, . . . , zm) ∈ Cm
z

external kin. parameters. Set X =V(x0⋯xnGh) ⊂ Pn
x×Cm

z and consider
the projection map π ∶X → Cm

z . The Landau variety is the variety Ym−1
appearing in the minimal Whitney stratification (X●, Y●) of the map π.

Virtue: ∃ algorithms for Whitney stratifications of maps, implemented in
WhitneyStratifications Macauley2 package. [Helmer,Nanda’23]

⇓

Fully algorithmic calculation of Landau singularities!
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Example Usage of WhitneyStratifications
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Generic 1-loop bubble

(x0, x1, x2) ∈ P2 ,

(m2
1,m

2
2, p

2) ∈ C3 =∶ Y ,

Gh = x0(x1 + x2) + (m2
1 +m2

2 − p2)x1x2 +m2
1x

2
1 +m2

2x
2
2 ,

X =V(x0x1x2Gh) ⊂ P2 ×C3

p

m1

−p

m2

Minimal stratification of projection π ∶X → Y gives Y● with Y3 = Y and

Y2 =V(m2
1) ∪V(m2

2) ∪V(p2)
∪V(p4 +m4

1 +m4
2 − 2p2m2

1 − 2p2m2
2 − 2m2

1m
2
2),

Y1 =V(p2, m2
1 −m2

2) ∪V(m2
2 − p2, m2

1) ∪V(m2
2, m

2
1 − p2)

∪V(p2, m2
1) ∪V(p2, m2

2) ∪V(m2
2, m

2
1),

Y0 =V(p2, m2
1, m

2
2).

Landau variety
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Generic 1-loop bubble II

Bonus: Landau variety of kinematic limits
of integral contained in lower-dim. strata!

p

m1

−p

m2

E.g. in m2
1 → 0, Landau variety V(m2

2 − p2) ∪V(p2) ∪V(m2
2)

.

Minimal stratification of projection π ∶X → Y gives Y● with Y3 = Y and

Y2 =V(m2
1) ∪V(m2

2) ∪V(p2)
∪V(p4 +m4

1 +m4
2 − 2p2m2

1 − 2p2m2
2 − 2m2

1m
2
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Y1 =V(p2, m2
1 −m2

2) ∪V(m2
2 − p2, m2

1) ∪V(m2
2, m

2
1 − p2)

∪V(p2, m2
1) ∪V(p2, m2

2) ∪V(m2
2, m

2
1),

Y0 =V(p2, m2
1, m

2
2).
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Two-mass hard slashed box

p23 ≠ 0, p24 ≠ 0, everything else massless.

(x0, . . . , x5) ∈ P5 ,

(p23, p24, s = (p1 + p2)2, t = (p2 + p3)2) ∈ C4 =∶ Y ,

X =V(x0⋯x5Gh) ⊂ P5 ×C4

p4p1

p2 p3

Minimal stratification of projection π ∶X → Y gives Landau variety,

Y3 =V(p23) ∪V(s) ∪V(st + t2 − tp23 − tp24 + p23p24)
∪V(t − p24) ∪V(s2 − 2sp23 + p43 − 2sp24 − 2p23p24 + p44)
∪V(t − p23) ∪V(t) ∪V(p24) ∪ .

▸ missed by PLD

▸ agrees with HyperInt + known analytic expression for integral �
[Henn,Melnikov,Smirnov’14]

G.Papathanasiou — Landau Singularities from Whitney Stratifications Example Computations 20/22



Two-mass hard slashed box

p23 ≠ 0, p24 ≠ 0, everything else massless.

(x0, . . . , x5) ∈ P5 ,

(p23, p24, s = (p1 + p2)2, t = (p2 + p3)2) ∈ C4 =∶ Y ,

X =V(x0⋯x5Gh) ⊂ P5 ×C4

p4p1

p2 p3

Minimal stratification of projection π ∶X → Y gives Landau variety,

Y3 =V(p23) ∪V(s) ∪V(st + t2 − tp23 − tp24 + p23p24)
∪V(t − p24) ∪V(s2 − 2sp23 + p43 − 2sp24 − 2p23p24 + p44)
∪V(t − p23) ∪V(t) ∪V(p24) ∪ .

▸ missed by PLD

▸ agrees with HyperInt + known analytic expression for integral �
[Henn,Melnikov,Smirnov’14]

G.Papathanasiou — Landau Singularities from Whitney Stratifications Example Computations 20/22



Two-mass hard slashed box

p23 ≠ 0, p24 ≠ 0, everything else massless.

(x0, . . . , x5) ∈ P5 ,

(p23, p24, s = (p1 + p2)2, t = (p2 + p3)2) ∈ C4 =∶ Y ,

X =V(x0⋯x5Gh) ⊂ P5 ×C4

p4p1

p2 p3

Minimal stratification of projection π ∶X → Y gives Landau variety,

Y3 =V(p23) ∪V(s) ∪V(st + t2 − tp23 − tp24 + p23p24)
∪V(t − p24) ∪V(s2 − 2sp23 + p43 − 2sp24 − 2p23p24 + p44)
∪V(t − p23) ∪V(t) ∪V(p24) ∪V(p24 − s − t).

▸ missed by PLD

▸ agrees with HyperInt + known analytic expression for integral �
[Henn,Melnikov,Smirnov’14]

G.Papathanasiou — Landau Singularities from Whitney Stratifications Example Computations 20/22



Two-mass hard slashed box

p23 ≠ 0, p24 ≠ 0, everything else massless.

(x0, . . . , x5) ∈ P5 ,

(p23, p24, s = (p1 + p2)2, t = (p2 + p3)2) ∈ C4 =∶ Y ,

X =V(x0⋯x5Gh) ⊂ P5 ×C4

p4p1

p2 p3

Minimal stratification of projection π ∶X → Y gives Landau variety,

Y3 =V(p23) ∪V(s) ∪V(st + t2 − tp23 − tp24 + p23p24)
∪V(t − p24) ∪V(s2 − 2sp23 + p43 − 2sp24 − 2p23p24 + p44)

∪V(t − p23) ∪V(t) ∪V(p24) ∪ V(p24 − s − t) .

▸ missed by PLD

▸ agrees with HyperInt + known analytic expression for integral �
[Henn,Melnikov,Smirnov’14]

G.Papathanasiou — Landau Singularities from Whitney Stratifications Example Computations 20/22



Two-mass hard slashed box

p23 ≠ 0, p24 ≠ 0, everything else massless.

(x0, . . . , x5) ∈ P5 ,

(p23, p24, s = (p1 + p2)2, t = (p2 + p3)2) ∈ C4 =∶ Y ,

X =V(x0⋯x5Gh) ⊂ P5 ×C4

p4p1

p2 p3

Minimal stratification of projection π ∶X → Y gives Landau variety,

Y3 =V(p23) ∪V(s) ∪V(st + t2 − tp23 − tp24 + p23p24)
∪V(t − p24) ∪V(s2 − 2sp23 + p43 − 2sp24 − 2p23p24 + p44)

∪V(t − p23) ∪V(t) ∪V(p24) ∪ V(p24 − s − t) .

▸ missed by PLD

▸ agrees with HyperInt + known analytic expression for integral �
[Henn,Melnikov,Smirnov’14]

G.Papathanasiou — Landau Singularities from Whitney Stratifications Example Computations 20/22



Parachute

Example with initially overlooked singularity,
[Berghoff,Panzer’22]

p23(m2
4−p22)(m2

3−p21)+(m2
3−m2

4−p21+p22)(m2
3p

2
2−m2

4p
2
1)

p3

p2

p1

m4

m1

m3

m2

Currently too taxing for WhitneyStratifications: 7 kin. parameters.

However can restrict to {m2
2 =m2

3 = p22 = 0, m2
1 =m2

4/2 = −p21 = 1}, p23 free.

Whitney stratification in this limit yields Landau variety:

Y0 =V(p23) ∪V(p23 + 2) ∪V(p23 − 2)∪

▸ Limit of above singularity! Also checked with direct integration �
▸ missed by PLD
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Conclusions and Outlook

Algorithm for complete+non-redundant set of singularities ∀ integral!

▸ From Whitney stratification of projection map on its integrand.

▸ ∃ software package. Applied to nontrivial examples at two loops.

▸ Also yields singularities in limits (e.g. p2i → 0) of original integral.

Next Stage

1. Efficieny improvements?

2. Values of integr. variables xi on singularities?
Needed for method of regions, num. integration.

3. Application to intersection theory for Feynman integrals?
[Mastrolia,Mizera’19]

4. Extend to predict alphabet and prove cluster-algebraic structures?
[Chicherin,Henn,GP’20][Aliaj,GP’24]
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Symanzik Polynomials

U = ∑
T a spanning

tree
†
of G

∏
e/∈T

xe,

F = U ∑
e∈E

m2
exe − ∑

F a spanning

2−forest
‡
of G

p(F )2∏
e/∈F

xe,

†Connected subgraph of G containing all vertices but no loops.
‡Defined similarly, but with 2 connected components.
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