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   Defects are (external or dynamical) probes of a Quantum Field Theory 

   The simplest, point (p=0) defects correspond to the insertion of local operators

    Line (p=1) defects have played an important role in the history of QFT: 

   Magnetic impurity in a metal (Kondo model):  birth of Wilson's Renormalization Group

   Wilson loops  (heavy quarks):  order parameter for confinement

   Quantum dots:  Key ingredients in many quantum devices

  1.  Introduction:  AdS/D(efect)CFT 



  More generally in d spacetime dimensions can have defects stretching along 

Gaiotto, Kapustin, Seiberg, Willett, arXiv:1412.5148 [hep-th]

  Introduction:  AdS/DCFT 

   Volume (p=3) defects: domain walls between coexisting phases

   p=0,1, . . ,d-1  of them. Defects extend the set of observables way beyond

 the correlation functions of local operators, and have become an important  

component of modern QFT. They are e.g. at the basis of the generalized
& non- invertible symmetries that are being systematically studied nowadays



  Introduction:  AdS/DCFT 

    Defects made their way very early in holography (alias AdS/CFT) as

CB, de Boer, Dijkgraaf, Ooguri, arXiv:0111210 [hep-th]

Karch,Randall, arXiv:0105132 [hep-th]

Maldacena, arXiv:9803002 [hep-th]

DeWolfe, Freedman, Ooguri, arXiv:0111135 [hep-th]

   anchors of p-branes in the dual gravitational theory.

e.g. a string worldsheet (p=1) intersects
 the boundary of AdS (holographic screen)
 on a defect line



  Introduction:  AdS/DCFT 

    At first the branes were considered as classical and thin, but in a full-fledged

   quantum theory of gravity they are thick and quantized. A cartoon of a smooth

   gravitational domain wall is here. Note that because of the infinite blueshift at

   the bnry the anchor is always thin.

   a large number of exact sugra
   solutions dual to DCFTs. The list
∃

   is long, see in particular
Gutperle, D'Hoker and collaborators



  Introduction:  AdS/DCFT 

   In this talk I will focus on a specific question that arises in the context 

   Is there an invariant definition of p-brane tension in gravity ?

   of AdS/DCFT: 

   This is based on work with my student Zhongwu Chen

CB, Chen, arXiv:2404.14998 [hep-th]

   and ongoing work also with Lorenzo Bianchi



  2.  Mass in AdS 

 Begin by recalling that there is no local definition of mass/energy in gravity

But in asymptotically-flat spacetime this can be given an invariant meaning

in terms of the fall-off of the metric at infinity, 

Arnowitt, Deser, Misner 1960

E =
1

16πG ∫S2 at ∞
(∂khjk − ∂ jhkk) d2Sj

gμν = ημν + hμν



  Mass in AdS

 AdS with reflecting (Diriclhlet) boundary conditions is a trap, so no such problem.

 The ADM definition must be revised when gravitational radiation escapes at null ∞

 An ADM-like definition is therefore possible in terms of the asymptotic metric 

Abbott, Deser 1982 
Hawking, Horowitz 1996

            ADM Energy in aAdS         
Δ

In AdS/CFT: 

dilatation charge       of CFT operator
that creates the dual state𝒪



  Mass in AdS 

  For a free scalar particle in unit-radius  

Δ =
3
2

+ m 2
0 +

9
4

= m0 [ 1 +
3

2m0
+

9
8m 2

0
+ ⋯

⋯ +GNm0 + (GNm0)2 + ⋯ ]

λ Compton ≪ 1

rSchwarzschild ≪ 1

  & taking into account gravitational backreaction :  

quantum, negligible if 

negligible if 

AdS4



  Mass in AdS 

In CFT compute Δ as a Noether charge: 

S(d−1)

Δ𝒪 := ∮ dsj xk ⟨Tkj 𝒪⟩

dilatation current

The           are part of the invariant CFT dataΔ𝒪



  Mass in AdS 

    first glimpse of the UV structure of Black Holes

yx x y

"banana geometry"

⟨𝒪(x)𝒪(y)⟩ =
1

|x − y |Δ
In gravity can compute Δ from

Strominger, Vafa 1996

holo screen

interior

⟹

probe particle worldline backreacting

  For given  Δ count the microscopic entropy  S(Δ) in CFT

+ corrections



   Quantum gravity is (believed to be) a theory of relativistic extended objects 

  Does their tension,      , admit a similar invariant definition like mass ?σ

The bare tension is a parameter in the effective Lagrangian of a thin brane

ℒeff = σ0 ∫ dp+1ζ det (gμν∂aYμ∂bYν)

 One expects               for a classical probe brane; beyond this limit there   σ ≃ σ0

   are classical gravitational and quantum corrections, suppressed by powers

   3. Two invariant tensions 

   of Gσ0 and 1/σ0   . How to resum them in an invariant way ?



  Two invariant tensions 

  In contrast to the case of point-particles,     for  0< p < d-1   two natural and∃
   independent definitions of invariant tension :         

 I.  Gravitational (`ADM like') tension         

 II.  Stiffness (`inertial' tension)         

  Given by the 1-point function of the dilatation current in the DCFT vacuum;      
 related in gravity to the asymptotic behaviour

  Given by the 2-point function of the displacement field which deforms the defect      

  worldvolume in the CFT; related to the collective coordinates of the solution in the  

of the metric far from the defect    

  dual AdS gravity    



S(d−p−1)

ℝd

ℝp𝒥 σ (gr) := ( d − 1
d − p − 1 ) ∮ dsj ⟨𝒥j⟩D

dilatation current

∂AdSd+1 = holographic screen

(agrees with ADM mass for p=0)

xk ⟨Tkj⟩D = aT (universal)

(piece of DCFT data) 
vev of em tensor

  Two invariant tensions 

I.  Gravitational



  Two invariant tensions 

II.  Stiffness (does not exist for point particles) 

ℝp

Di

Dj

ℝ(d − p)

σ (stiff) := CD

πp/2 Γ( p
2 + 1)

(p + 2) Γ(p + 1)

displacement norm

⟨Dj(x)Dk(y)⟩ ∼
CD δ jk

(x − y)p+1

(piece of DCFT data) 



  Two invariant tensions 

   Remark 1: The DCFT data is guaranteed to be invariant. Howwever the existence of           
   a dual DCFT is not necessary; it can be only a proxy for the asymptotic behaviour         
   of the gravitational fields.    

   Remark 2: The definition of           reduces to (and generalizes) early efforts       
  to define an invariant brane tension by assuming `transverse asymptotic'    
  flat or AdS metrics.    

σ (gr)

Harmark, Obers, arXiv:0403103 [hep-th]

Townsend, Zamaklar, arXiv:0107228 [hep-th]

Deser, Soldate  1989

Myers, arXiv:9903203 [hep-th]

Traschen, Fox, arXiv:0103106 [gr-cq]



  Two invariant tensions 

   Remark 3: The DCFT data includes the 1pt functions of all defect operators and        
  their scaling dimensions; their norms can be normalized by convention to 1.       
  The displacement operator is an exception because of the Ward identity  

∂iTij = δD(x) Dj

   Remark 4:  Key in the above definitions are the two prefactors marked in yellow.       
 They were fixed from the relevant  Witten diagrams of the effective gravitational theory 

 classical probe limit 

σ(gr) ≃ σ(stiff) ≃ σ0

 and the requirement that in the

1
16πG ∫ gR + σ0 ∫D

̂g



  Two invariant tensions 

  What makes this computation non-trivial is the absence of global

Fefferman-Graham coordinates in which the standard AdS/CFT dictionary
 is defined. For  one uses the standard
 Poincaré coordinates

⟨Tij⟩CFT ∼ ⟨hij⟩grav

ds2
AdS =

δμν dyμdyν

(y0)2
with μ, ν = 0,1,⋯, d

 and the brane sitting at y⊥ = (yp+1, ⋯, yd) = 0 .

 But in these coordinates the residual SO(2,p) × SO(d − p)  symmetry  

 is not manifest,  and                is not the dual of the displacement operator.   Y⊥(ζ)

 A better choice is ⟨DjDk⟩CFT ∼ ⟨X⊥
j X⊥

k⟩grav



  Two invariant tensions 

ds2
AdS =

δαβ dxαdxβ

(x0)2 (
1 + 1

4 x⊥2

1 − 1
4 x⊥2 )2 +

δij dxidxj

(1 − 1
4 x⊥2)

with α, β = 0,1,⋯, p and i, j = p + 1,⋯, d

Giombi, Roiban, Tseytlin arXiv:1706.00756 [hep-th]

Thus there is no universal AdS cutoff for both bulk and brane fields, and the 
correct normalization of the displacement is not clear. We sidestepped this 
difficulty by checking explicitly the (broken and unbroken) conformal Ward
identities that equate schematically

⟨TD⟩ to ⟨T⟩ + ⟨DD⟩

Billo, Goncalves, Lauria, Meineri arXiv:1601.02883 [hep-th]



  4. Examples 

   Maldacena-Wilson line in                SYM

CD = − 18aT =
6
π2

λ∂λ log⟨W⊙⟩

The two relevat pieces of DCFT data can be computed exactly,  
using supersymmetric localization, for all values of          and                 .

 The result is given by a modified Laguerre polynomial 

𝒩 = 4

λ = g2NcNc

W⊙ =
1
Nc

eλ/8Nc L1
Nc−1(−

λ
4Nc

)where

Correa, Henn, Maldacena, Sever  arXiv:1202.4455 [hep-th]

Pestun  arXiv:0906.0638 [hep-th]
Erickson, Semenoff, Zarembo  arXiv:0003055 [hep-th]
Drukker et al

heavy quark
coupling to scalars



  Examples 

λ, Nc → ∞ σ(gr) = σ(stiff) ≃
λ

2π

  F-string tension

Expanding the Laguerre polynomial gives an infinite series of quantum

In the limit one finds

and gravitational corrections, but surprisingly the equality σ(gr) = σ(stiff)

persists. Will come back to this in the following section.

Note that B =
CD

12
is the Bremsstrahlung function that controls the radiation

of an accelerating quark, ℰrad = 2πB∫ dt a2



  Examples 

   Interfaces in 1+1 dimensions
q − wire junctions

constrictions of Hall fluids

Here the codim=1,  so only                               can be defined.σ(stiff) =
π
6

CD

      is an important parameter that gives the ratio of transmitted/reflected energy 
 at the interface; this latter is universal in 1+1 d

Quella, Runkel, Watts  arXiv:0611296 [hep-th]
Meineri, Penedones, Rousset  arXiv:1904.10974 [hep-th]

CD

 Together with the Affleck-Ludwig entropy                 , and the Cardy-Calabrese

 parameter            , it  controls key long-distance properties of an interface.  

log g
ceff



  Examples 

CD =
6σ0/π

1 + 4πGNσ0

 Note that in the limit  GN → 0 σ(stiff) ≃ σ0

One can compute          in holography, for a thin but fully back-reacting 

brane  on which geometries are matched by the Israel conditions, with 

CD

the result

CB, Chapman, Ge, Policastro  arXiv:2006.11333 [hep-th]
CB, Chen, V. Papadopoulos  arXiv:2107.00965 [hep-th]

CB, Baiguera, Chapman, Policastro, Schwartzman  arXiv:2212.14058 [hep-th]

Baig, Karch  arXiv:2206.01752 [hep-th]



  Examples 

   Graham-Witten anomalies

These are Weyl anomalies made out of the (intrinsic & extrinsic) curvatures 
of  p=2,4 defects. E.g. for surface defects (p=2)

Tm
m

Defect
=

1
24π (a(2)R + d (2)

1 K̄i
abK̄

ab
i − d (2)

2 Wab
ab)

Graham, Witten  arXiv: 9901021 [hep-th]

Schwimmer, Theisen  arXiv: 0802.1077  [hep-th]

The coefficients               can be related, respectively, to d1, d2 CD, aT

Furthermore, in the thin-probe limit, one can compute them with techniques
of conformal geometry (Willmore energy) with the result



  Examples 

d (2)
1 = d (2)

2 = 6πσ0

d (4)
1 = − π2σ0 ; d (4)

2 = −
π2σ0

d − 4

Chalabi, Herzog, O'Bannon, Robisnon, Sisti   arXiv: 2111.14713  [hep-th]

Graham, Reichert  arXiv: 1704.03852  [hep-th]

Collecting all numerical coefficients one can show that in all cases

σ(gr), σ(stiff) ≃ σ0

 in the classical probe limit.



 5. Supersymmetry 

 We have seen in the case of the Maldacena-Wilson line that σ(gr) = σ(stiff)

 is exact, despite the fact that each tension receives an infinite # of corrections. 

This follows from supersymmetry, which relates CD = − 18aT

L. Bianchi, Lemos, Meineri  arXiv: 1805.04111  [hep-th]

There is a related interesting physics conundrum: 

Lewkowycz, Maldacena arXiv: 1312.5682  [hep-th]

Fiol, Gerchkovitz, Komargodski arXiv: 1510.01332  [hep-th]

 is proportional to the energy radiated by an accelerating quark, whereas

to the energy collected at infinity.

CD

Supersymmetry makes these two energies are equal !

aT

Without it, separating the radiated from the self-energy for a constantly accelerating 
quark is problematic. 



 Supersymmetry 

L. Bianchi, Lemos  arXiv: 1911.05082  [hep-th]

There is no known such conundrum for  p>1  defects, but the same susy

argument seems to lead to a linear relation between         and            for all p,d.         

CB, L. Bianchi, Z. Chen  in progress

CD aT

Roughly speaking, conformal Ward identities fix a linear relation between the

CD = − aT
2(d − 1)(p + 2)Γ(p + 1)

d πp−d/2 Γ( p
2 + 1)Γ( d − p

2 )

corresponding quantities of the susy ancestors of           and           , which are
an R-symmetry current and a  scalar. These then descend to          and        

DjTij
⟨T⟩ ⟨DD⟩

thanks to supersymmetry.



 Supersymmetry 

Inserting this linear relation in our formulae gives

σ(gr) = σ(stiff)

i.e. supersymmetry implies the equality of gravitational tension and stiffness

  This is a peculiar  BPS protection (usually  mass = charge)

  It has the flavour of the principle of equivalence 

  Is it just a curiosity, or does it have a deeper meaning about the need
 for supersymmetry in the deep UV ? 



 6. Summary 

  Take away messages:

  There exist  two independent definitions of the tension of  extended  
  objects in AdS gravity, related to the metric and the displacement field.

  Supersymmetry equates them, why ? 

  Many thanks for your attention

  They control important properties of the holographic dual DCFTs


