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How large is the class of covariantly constant gauge fields

how large is the class of covariantly constant gauge fields defined by the equation

ab b
veGh, = 0.

VZbGZV = 0. By taking covariant derivative V§*  [Va, Vp]abew = 0.

Gy, G = 0.

the field strength tensor factorises into the product of Lorentz tensor G, (x) and colour unit vector n(x),

G () = G (2)n(2).

The solution has the following form
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[ et us consider the Cho Ansatz

1
Al = B,n" + gsabcnbﬁunc,

n*n® =1, n®o,n* = 0.

ab. b a abc Ab ¢
Vin' =0o,n" —geAn® =0,

and therefore [V, V,]%n’ = 0. V., V,]"n’ = —geaCbeu/nb = 0.

It follows that the field strength tensor factorises

a 1 a
G,uy — (FMV —+ gsluy) mn -,



Cho Ansatz

It follows that the field strength tensor factorises

a 1 a
G,ul/ — (FMV _I_ _SMV) n-,

g
where \ \

F,.,=0,B,—0,B,, Sy = eabcnaaﬂnbé’ync.

n® = (sin f cos ¢, sin # sin ¢, cos 6),

S, = sin0(9,00,¢ — 8,00,0).



In both cases the field strength tensor factorises !

The important property of the ansatz is that the field strength tensor factorises into the
Lorentz and colour structures. This factorisation is identical to the factorisation of covariantly

constant gauge fields. It is therefore natural to search solutions in this form.

a 1 .
G, (.CU) — G,uy(aj)na(ﬂj). G,uz/ — (F/u/ + gs'uy) n-,




Covariantly constant gauge fields should fulfil the following
equation
. 1
n“0,(F, + ESIU/) =0,
meaning that the sum of terms in the brackets should be a constant tensor:

1
G,uu — L =+ gs,ul/a

One can guess that the moduli space of covariantly constant gauge fields is much larger and

can be obtained by solving the following system of partial differential equations:

Slg — sin 0(81082gb — 82(981¢)
323 = sin 9(62(983¢ — 83(962¢)
513 = sin (9(81(903¢ — 83981§b),



General solution

X = a1T + a2y + a32 + CL()t, Y = b156—|—b2y—|—b32—|—b0t,

/ /

Sij = a; Nbjsin0(X) 0(X)x o(Y)y,

solutions with a constant tensor .5;;, then the following condition should be fulfilled:

179

/ /

sinf(X) 0(X)x oY)y =1,
so that

S@j — a; /N\ bj.

o (Frymmtrony) U (Fryaony) =GN

n (&) = {sin f(X)



General solution

1
Af = By (x)n®(z) + gsabcnb(x)(?“nc(x).
1
B, = 5 pv-ly
ar=n Y . . Y
n®(Z) = {sin f(X) cos (f’(X) sin(f(X)))’ sin(f(X)) sin (f'(X) sin(f(X)))’ cos(f(X))}.
X = a1x + agy + azz + aopt, Y = bix+by+b32+bgt,

We conclude that the moduli space of covariantly constant gauge fields is infinite-dimensional

because of the presence of an arbitrary function f(X).

In comparison, the moduli space Zj  of the YM self-duality equation in the Euclidean space

has the dimension dimZy y = 4kN for the SU(N) group.



Properties of General solution

The square of the field strength tensor is

1 a, b
_Ga Ga :_FVFI/ | H— pv=v |
4 U 4 Qv = g 2g2

where a, and b, are arbitrary constant Lorentz vectors

The magnetic energy density can be represented in the following form:
H - (@xb)+

Let us consider the solution when B, = F),, = 0, so that

a 1abcb C — 7\ 2
AM:§8 n’o,n’, 622—gz(a><b).



Properties of General solution

Let us considering the vectors a, = (0,a,0,0) and b, = (0,0,0,0), so that 8(x) = f(ax),
o(z,y) = by/f (ax)sin f(ax). The gauge field will take the following form:
( (0,0,0)
(byCOS s(f, Z?nf) — f sin(f Smf) + byf,2 cos(f) cos(f, Ziynf),
bysclff ' (f )+f COS(f )+byf,2 cos( f) sin(f,:iynf),
~by(cos(f) + L sin(f))

%( — cos(f) Cos(f,Z?nf), — cos( f) sin(f,l;?nf), sin f),
(0,0,0)

1
A%(x,y) = — <
(z,y) p

\

where the derivatives are over the whole argument axr. One can verify explicitly that it is a

solution of the Yang Mills equation.

the energy density of the chromomagnetic field is a space time constant

a2b?

2g2_
\

1 a a



Properties of General solution

The non-vanishing components of the conserved current Ji = = getbc AY GC

oooab’ /. by by |
= W(Sm(sinf)’_COS(sinf)’())’

1

Jy = gb (f cos f Cos(silff) - by cot fSin(S;yf) T byf,2 (Sil;zf))’
J5 = gb (f cos f sin(si[ff) — by cot f COS(siI])ayf) - by% COS(S:;yf))
J3 = ——bf' sin f.

Dy = 0, J¢ + 8,8 = 0

°This current is conserved on the solutions of the Yang Mills equation Vzb G/bw = 0.



Properties of General solution

Figure 1: The figure demonstrates a finite part of an infinite sheet of finite thickness % in the

direction of the x axis of the solution . It is filled by parallel chromomagnetic flux tubes.

Each tube of the square area %% carries the magnetic flux 2?”. The circuits show the flow of the

a __ abc Ab C
conserved current J7 = ge* A G .

the solution describes a condensate of superposed Nielsen-Olesen vortices of opposite mag-

netic fluxes and is a dual analog of the Cooper pairs condensate in a superconductor.

Flux Lines in a Superconductor



Properties of General solution — Magnetic Fluxes

The conserved topological current and the corresponding magnetic charge can be defined in
terms of the Abelian field strength G,

1 1
K,u — §€/u/>\pauG>\p — @EILU/APQVSA[)) a,uK,u — Oa Qm — /V KOdea
where F),, = 0. In terms of the tensor S, and of the colour unit vector n(z, y), the topological

charge will take the following equivalent forms:

1 1 abc, a b c
KO = %eijk@ﬂjk — %eijk&i(e n ajn 8kn ),
1 1

1
Q,, = 2 /V €€ O O Ond* s = 20 Jov €k n O On’do; = 59 Jov do; €ijkSik-

As far as the solution is homogeneous in z direction, we have to consider a topological charge
within the space volume V' that is a rectangular box with its two boundaries being parallel to
the (x,y) plane at the distance L from each other and the other four boundaries will be defined

for each particular solution individually.



Properties of General solution - Magnetic Fluxes
g

we can define the invariant magnetic flux in terms ot the surtace

1
Gm = — / ab dxdy.
g J(z,y,0)

27 (k+1) 4
/ dax/ dby = iy
_1 21 g



Properties of General solution — Magnetic Fluxes

Figure 3: The Lh.s figure shows the mapping defined by the vector n%(z,y) =
{sinx cos(y/sinx), sinxsin(y/sinxz), cosz} from the cylinder cells C% to the spheres S7. The
boundaries of the cylinders are defined by the equation y = 0, =« sin x. The positive topologi-
cal charges have the mapping of the cylinders y = 0, asinx , a € |0,27k]: (n(0,«) = (0,0,1),
n(m,a) = (0,0,—1), n(7/2,a) = (cosa, sina, 0), n(371/2,a) = (—cosa, —sina,0), n(27, o) =
(0,0,1)). The negative topological charges have the mapping of the cylinders y = 0, —asin z,
a € [0,27k]). The part of the full structure is shown on the r.h.s of the figure and reminds
the Abrikosov lattice of parallel Nielsen-Olesen magnetic vortices that are normal to the plane
(z,y) and have alternating magnetic charges.



[Landscape of Yang Mills theory vacuum

/\/ _ A A
n =U"nU, n=n"0".

The SU(2) matrix of the corresponding singular gauge transformation has the following form:

/ b / b 2b2
A13:_a_ya Gy = CL_) (=
g 29°

Acf — w(% — Oé)Acll +w(% + @)Ala
Ay = w(; — )4y ,

3= wiz—a)Ay Fw(z +a)Ag

B a*b? 2 2 2 w%wi

e(z, o) = 292<(2 —w ) wZ +wi +2(2 —wJw (1 +wJwy cos flax) + sin? f(ax) )’

—a) and wy = w(i+a).



[Landscape of Yang Mills theory vacuum

&(r, a)

— £(X,~0.5) — £(r,-0.5)
£(x,—0.4) £(r,-0.4)
£(x,-0.3) £(r,-0.3)
— £(X,~0.2) — £(r,-0.2)
— £(x,-0.1) — &(r,—0.1)
— &(x,0) — &(r,0)
—“10 —‘5 5 1‘0 * r 1 | 2 3 4 '
Figure 4: The lLh.s. graph shows the shape of the barrier e(z, a) when o parameter
. . 1 L 1 . E. L
changes in the interval |—3,0]. At o = —3 the energy density is equal to € = 1/2

(a =b=g=1). As o increases, the hight of the barrier increases and reaches its maximum
at a = 0, then it symmetrically decreases until o :%, where it again is equal to e = 1/2. The
r.h.s graph shows the shape of the potential barrier between the Chern-Pontryagin vacua

S — e

S i 7% — N\ — 2\OT
A(F) = U (D)VULD), U (F) = U, =U"
@)= U @VU@. D) =" 1

6A*(1 — 4a?)
G2(r2 + \2)4

1
e(r,a) = ZG%G% —
_



[Landscape of Yang Mills theory vacuum

The existence of an even larger class of covariantly constant gauge fields described above
pointed out to the fact that the Yang-Mills vacuum has even higher degeneracy ot vacuum field
configutations. Each covariantly constant gauge field configuration on its own contains a rich
diversity of emergent nonperturbative structures, and it is a challenging problem to investi-
gate possible tunneling transitions between these highly degenerate states and to calculate the

vacuum polarisation induced by the new class of covariantly constant gauge fields.



Comparison with the 't Hooft Polyakov monopole solution

The electromagnetic field strength is defined by 't Hooft as

1 1 a
G = n"“wa - —eabcnavunbvync =0,A, —0,A, + —eabcnaﬁunbﬁync, n® = gb_’ (1.1)
g g fal
where V,n* = 0,n* — ge“bCAZnC, A, = Ajn® and n® is a unit colour vector. It reduces

to G = 0,A) — 0,A3 in the space regions where the scalar field is in the third direction

ne = (0,0,1) and the Abelian field A, does not have Dirac string singularities.

the expression of the topologically conserved current is

1 1
KM = §€M,/)\pa,/G)\p — %eumpeabcﬁyn“@nbﬁpnc , a,uK,u = 0.

The 't Hoott-Polyakov solution has the following form:

¢* =u(r)n®, A = e“ijnja(r)

and has the following asymptotic properties



The scalar field ¢* vanishes at £ = 0 and the corresponding topological density Ky(x) vanishes
everywhere expect for % = 0 where it has singularity K, = 4?”63(5), which contributes to the

topological charge and is equal to the winding number of the map n®(x):

1 47
= dSZL‘K _ dzO'iEi' Eabcnaa_nbﬁ nt —
? RS Y29 s " "k g

induces a magnetic flux of a single monopole:

4
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Korean Japchae prepared by me !




