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Introduction Plane-wave backgrounds

Plane-fronted gravitational waves with parallel rays (pp-waves)

Plane-fronted (gravitational) waves with parallel rays (or pp-waves) are solutions of the 4-dimensional (vacuum)
Einstein equations. In Brinkmann coordinates,

ds2 = 2dudv + H(u, x , y)du2 + dx2 + dy2, ∇2H(u, x , y) = 0.

Brinkmann (1925)

Equivalently, pp-waves can be defined as spacetimes that admit a covariantly constant null Killing vector:

∇mkn = 0, knkn = 0.

Ehlers-Kundt (1962)

Plane-fronted means that pp-waves can be completely covered by 2d wave fronts orthogonal to the wave vector k.
The wave fronts are planes which propagate parallel to each other in the direction of k = constant (”parallel rays”).

By choosing H(u, x , y), Brinkmann metric also solves Einstein-Maxwell theory... Plane waves are special pp-waves:

H(u, x , y) = a (u)
(
x2 − y2

)
+ 2b (u) xy + c (u)

(
x2 + y2

)
, (in vacuum, c (u) = 0),

gravitational analogs of plane electromagnetic waves... providing the field very far from finite gravity sources...
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Introduction Plane-wave backgrounds

Pp-waves & plane-waves in d + 1 dimensions

Most general metric of a d + 1 dimensional spacetime with a covariantly constant null Killing vector k:

ds2 = −2dx+dx− − F (x+, x i )dx+dx+ + 2Aj (x
+, x i )dx+dx j + gjk (x

+, x i )dx jdxk , x± ≡
1
√
2

(
x0 ± xd

)
,

where i , j = 1, 2, . . . d − 1 & F (u, x i ), Aj (u, x
i ), gjk (u, x

i ) are determined from the sugra equations of motion...

For Aj = 0, gjk = δjk , we retrieve the d + 1 dimensional Brinkmann metric:

ds2 = −2dx+dx− − F (x+, x i )dx+dx+ + dx idx i .

In this form, pp-waves are α′–exact solutions of supergravity & string theory...

Plane-waves are pp-waves for which F (x+, x i ) = fij (x
+)x ix j , Aj = 0 and gjk = δjk :

ds2 = −2dx+dx− − fij (x
+)x ix jdx+dx+ + dx idx i .

Homogeneous plane-waves have fij (x
+) = µ2

ij , constant:

ds2 = −2dx+dx− − µ2
ijx

ix jdx+dx+ + dx idx i .

Homogeneous and isotropic plane-waves have µij = µ:

ds2 = −2dx+dx− − µ2x ix idx+dx+ + dx idx i .
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Introduction Plane-wave backgrounds

Properties of plane waves

Pp and plane-wave spacetimes stand out thanks to a set of remarkable properties... Here’s an outline of them:

Penrose limit: d + 1 dimensional Brinkmann metric descends from any metric by blowing up spacetime around null
geodesics (”zooming in” to them)... New solutions of Einstein’s equations can be constructed from known ones...

Penrose (1976) & Güven (2000)

The d + 1 dimensional Brinkmann metric can be written in a form which resembles linearized gravity:

gmn = ηmn + hmn, hmn ≡ −F (x+, x i )kmkn,

and solves Einstein’s equations even when hmn is not small... As a consequence, many properties of flat Minkowski
spaces can be uplifted to pp-wave backgrounds with only minor modifications...

Pp-wave spacetimes are not globally hyperbolic (as opposed to Minkowski spaces)... no global Cauchy hypersurface...

Penrose (1965)

Pp and plane wave spacetimes cannot contain black holes & event horizons (Hubeny-Rangamani, 2002)... although
the opposite is always true: any singular spacetime has a (singularity-free) plane-wave limit...

Vanishing scalar invariant (VSI): spacetimes which admit covariantly constant null Killing vectors k have all their
scalar invariants (constructed from the Riemann tensor and its covariant derivatives) vanish...

Brinkmann spacetimes are α′-exact solutions of supergravity/string theory (with or without flux terms)...

Amati-Klimč́ık (1988), Horowitz-Steif (1990)
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Amati-Klimč́ık (1988), Horowitz-Steif (1990)

6 / 53

https://arxiv.org/abs/hep-th/0005061
https://doi.org/10.1103/RevModPhys.37.215
https://arxiv.org/abs/hep-th/0210234
https://doi.org/10.1016/0370-2693(88)90355-3
https://doi.org/10.1103/PhysRevLett.64.260


Introduction Plane-wave backgrounds

Properties of plane waves

Pp and plane-wave spacetimes stand out thanks to a set of remarkable properties... Here’s an outline of them:

Penrose limit: d + 1 dimensional Brinkmann metric descends from any metric by blowing up spacetime around null
geodesics (”zooming in” to them)... New solutions of Einstein’s equations can be constructed from known ones...

Penrose (1976) & Güven (2000)
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Introduction Plane-wave backgrounds

Properties of plane waves

Pp and plane-wave spacetimes stand out thanks to a set of remarkable properties... Here’s an outline of them:

Penrose-Güven limits preserve susy... maximally susy backgrounds of 11d/IIB sugra AdS4/5/7 × S7/5/4, give rise to
two maximally susy homogeneous plane-wave solutions in 10 & 11d...

Figueroa-O’Farrill & Papadopoulos (2003)

These backgrounds are known as Hpp-waves (Cahen-Wallach plane-waves with homogeneous fluxes)... along with
the 3 AdS solutions & flat space in 10 & 11d, these are the 7 maximally susy backgrounds in 10 & 11d...

In 11d, the maximally susy homogeneous plane-wave background is part of the Kowalski-Glikman (KG) solution:

ds2 = −2dx+dx− −

µ2

9

3∑
i=1

xixi +
µ2

36

6∑
j=1

yjyj

 dx+dx+ +
3∑

i=1

dxidxi +
6∑

j=1

dyjdyj , F123+ = µ.

Kowalski-Glikman (1984)

IIB superstring σ model exactly solvable & quantizable on the 10-dimensional maximally susy background...

Metsaev (2001), Metsaev-Tseytlin (2002)

BMN sector of AdS5/CFT4: Penrose limit of IIB string theory on AdS5 × S5 ↔ BMN limit of N = 4 SYM...

Berenstein-Maldacena-Nastase (2002)

7 / 53

https://arxiv.org/abs/hep-th/0211089
https://doi.org/10.1016/0370-2693(84)90669-5
https://arxiv.org/abs/hep-th/0112044
https://arxiv.org/abs/hep-th/0202109
https://arxiv.org/abs/hep-th/0202021


Introduction Plane-wave backgrounds

Properties of plane waves

Pp and plane-wave spacetimes stand out thanks to a set of remarkable properties... Here’s an outline of them:
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Introduction M-theory on a plane wave

M-theory on a plane wave

The matrix model of Berenstein, Maldacena and Nastase (BMN),

H = H0 +
R

2
· Tr

 3∑
i=1

m2

9
X2
i +

9∑
j=4

m2

36
X2
j +

3∑
i,j,k=1

2m

3
iϵijkXiXjXk −

m

2
iΨTγ123Ψ

 ,

Berenstein-Maldacena-Nastase (2002)

describes M-theory on the 11d maximally supersymmetric KG background (homogeneous plane-wave background)...

H0 is the Hamiltonian of the BFSS matrix model which describes M-theory in flat (µ = 0) space...

H0 =
R

2
· Tr

[
Ẋ
2 −

1

2
[XA,XB ]

2 −ΨTγA[XA,Ψ]

]
, A,B = 1, . . . , 9,

Banks-Fischler-Shenker-Susskind (1996)

where the vectors XA and 16d Majorana spinor Ψ are N×N Hermitian matrices... γA are the 9d (16× 16) Euclidean
Dirac matrices, R is the DLCQ compactification radius, and m ≡ µ/R...

The BMN matrix model constitutes a deformation of the BMN matrix model by mass terms and a Myers term...
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Introduction M-theory on a plane wave

M-theory on a plane wave from membranes

The mass terms of the BMN matrix model lift the flat directions of BFSS, making the supermembrane spectrum
discrete... On the other hand, the Myers term allows for static fuzzy sphere solutions:

Xi = r · Ji , i = 1, 2, 3 & Xj = 0, j = 4, . . . , 9,

where the matrices Ji furnish a N-dimensional representation of su (2). The radii,

r = 0, r =
µ

3
, r =

µ

6
,

correspond to the max susy vacuum Xi = 0, a 1/2-BPS solution and, an unstable, non-susy, positive-energy solution...

The BMN matrix model describes the discrete light-cone quantization (DLCQ) of M-theory on the KG background...

As shown by Dasgupta, Sheikh-Jabbari, Van Raamsdonk (2002), the BMN matrix model can be derived by regularizing
the light-cone (super)membrane in the 11d maximally susy KG background...

Equivalently, the light-cone (super)membrane on the maximally susy plane-wave background can be seen as the
continuum (matrix dimensionality N → ∞) limit of the BMN matrix model...

In the following we are going to work exclusively with the classical bosonic membrane on the 11-dimensional maximally
susy plane-wave background...

We are going to construct solutions of spinning membranes, based on some tools and techniques that were introduced
for flat space...

Let us first briefly review the corresponding membrane action...

9 / 53

https://arxiv.org/abs/hep-th/0205185


Introduction M-theory on a plane wave

M-theory on a plane wave from membranes

The mass terms of the BMN matrix model lift the flat directions of BFSS, making the supermembrane spectrum
discrete... On the other hand, the Myers term allows for static fuzzy sphere solutions:

Xi = r · Ji , i = 1, 2, 3 & Xj = 0, j = 4, . . . , 9,

where the matrices Ji furnish a N-dimensional representation of su (2). The radii,

r = 0, r =
µ

3
, r =

µ

6
,

correspond to the max susy vacuum Xi = 0, a 1/2-BPS solution and, an unstable, non-susy, positive-energy solution...

The BMN matrix model describes the discrete light-cone quantization (DLCQ) of M-theory on the KG background...

As shown by Dasgupta, Sheikh-Jabbari, Van Raamsdonk (2002), the BMN matrix model can be derived by regularizing
the light-cone (super)membrane in the 11d maximally susy KG background...

Equivalently, the light-cone (super)membrane on the maximally susy plane-wave background can be seen as the
continuum (matrix dimensionality N → ∞) limit of the BMN matrix model...

In the following we are going to work exclusively with the classical bosonic membrane on the 11-dimensional maximally
susy plane-wave background...

We are going to construct solutions of spinning membranes, based on some tools and techniques that were introduced
for flat space...

Let us first briefly review the corresponding membrane action...

9 / 53

https://arxiv.org/abs/hep-th/0205185


Introduction M-theory on a plane wave

M-theory on a plane wave from membranes

The mass terms of the BMN matrix model lift the flat directions of BFSS, making the supermembrane spectrum
discrete... On the other hand, the Myers term allows for static fuzzy sphere solutions:

Xi = r · Ji , i = 1, 2, 3 & Xj = 0, j = 4, . . . , 9,

where the matrices Ji furnish a N-dimensional representation of su (2). The radii,

r = 0, r =
µ

3
, r =

µ

6
,

correspond to the max susy vacuum Xi = 0, a 1/2-BPS solution and, an unstable, non-susy, positive-energy solution...

The BMN matrix model describes the discrete light-cone quantization (DLCQ) of M-theory on the KG background...

As shown by Dasgupta, Sheikh-Jabbari, Van Raamsdonk (2002), the BMN matrix model can be derived by regularizing
the light-cone (super)membrane in the 11d maximally susy KG background...

Equivalently, the light-cone (super)membrane on the maximally susy plane-wave background can be seen as the
continuum (matrix dimensionality N → ∞) limit of the BMN matrix model...

In the following we are going to work exclusively with the classical bosonic membrane on the 11-dimensional maximally
susy plane-wave background...

We are going to construct solutions of spinning membranes, based on some tools and techniques that were introduced
for flat space...

Let us first briefly review the corresponding membrane action...

9 / 53

https://arxiv.org/abs/hep-th/0205185


Introduction M-theory on a plane wave

M-theory on a plane wave from membranes

The mass terms of the BMN matrix model lift the flat directions of BFSS, making the supermembrane spectrum
discrete... On the other hand, the Myers term allows for static fuzzy sphere solutions:

Xi = r · Ji , i = 1, 2, 3 & Xj = 0, j = 4, . . . , 9,

where the matrices Ji furnish a N-dimensional representation of su (2). The radii,

r = 0, r =
µ

3
, r =

µ

6
,

correspond to the max susy vacuum Xi = 0, a 1/2-BPS solution and, an unstable, non-susy, positive-energy solution...

The BMN matrix model describes the discrete light-cone quantization (DLCQ) of M-theory on the KG background...

As shown by Dasgupta, Sheikh-Jabbari, Van Raamsdonk (2002), the BMN matrix model can be derived by regularizing
the light-cone (super)membrane in the 11d maximally susy KG background...

Equivalently, the light-cone (super)membrane on the maximally susy plane-wave background can be seen as the
continuum (matrix dimensionality N → ∞) limit of the BMN matrix model...

In the following we are going to work exclusively with the classical bosonic membrane on the 11-dimensional maximally
susy plane-wave background...

We are going to construct solutions of spinning membranes, based on some tools and techniques that were introduced
for flat space...

Let us first briefly review the corresponding membrane action...

9 / 53

https://arxiv.org/abs/hep-th/0205185


Introduction M-theory on a plane wave

M-theory on a plane wave from membranes

The mass terms of the BMN matrix model lift the flat directions of BFSS, making the supermembrane spectrum
discrete... On the other hand, the Myers term allows for static fuzzy sphere solutions:

Xi = r · Ji , i = 1, 2, 3 & Xj = 0, j = 4, . . . , 9,

where the matrices Ji furnish a N-dimensional representation of su (2). The radii,

r = 0, r =
µ

3
, r =

µ

6
,

correspond to the max susy vacuum Xi = 0, a 1/2-BPS solution and, an unstable, non-susy, positive-energy solution...

The BMN matrix model describes the discrete light-cone quantization (DLCQ) of M-theory on the KG background...

As shown by Dasgupta, Sheikh-Jabbari, Van Raamsdonk (2002), the BMN matrix model can be derived by regularizing
the light-cone (super)membrane in the 11d maximally susy KG background...

Equivalently, the light-cone (super)membrane on the maximally susy plane-wave background can be seen as the
continuum (matrix dimensionality N → ∞) limit of the BMN matrix model...

In the following we are going to work exclusively with the classical bosonic membrane on the 11-dimensional maximally
susy plane-wave background...

We are going to construct solutions of spinning membranes, based on some tools and techniques that were introduced
for flat space...

Let us first briefly review the corresponding membrane action...

9 / 53

https://arxiv.org/abs/hep-th/0205185


Introduction M-theory on a plane wave

M-theory on a plane wave from membranes

The mass terms of the BMN matrix model lift the flat directions of BFSS, making the supermembrane spectrum
discrete... On the other hand, the Myers term allows for static fuzzy sphere solutions:

Xi = r · Ji , i = 1, 2, 3 & Xj = 0, j = 4, . . . , 9,

where the matrices Ji furnish a N-dimensional representation of su (2). The radii,

r = 0, r =
µ

3
, r =

µ

6
,

correspond to the max susy vacuum Xi = 0, a 1/2-BPS solution and, an unstable, non-susy, positive-energy solution...

The BMN matrix model describes the discrete light-cone quantization (DLCQ) of M-theory on the KG background...

As shown by Dasgupta, Sheikh-Jabbari, Van Raamsdonk (2002), the BMN matrix model can be derived by regularizing
the light-cone (super)membrane in the 11d maximally susy KG background...

Equivalently, the light-cone (super)membrane on the maximally susy plane-wave background can be seen as the
continuum (matrix dimensionality N → ∞) limit of the BMN matrix model...

In the following we are going to work exclusively with the classical bosonic membrane on the 11-dimensional maximally
susy plane-wave background...

We are going to construct solutions of spinning membranes, based on some tools and techniques that were introduced
for flat space...

Let us first briefly review the corresponding membrane action...

9 / 53

https://arxiv.org/abs/hep-th/0205185


Introduction M-theory on a plane wave

M-theory on a plane wave from membranes

The mass terms of the BMN matrix model lift the flat directions of BFSS, making the supermembrane spectrum
discrete... On the other hand, the Myers term allows for static fuzzy sphere solutions:

Xi = r · Ji , i = 1, 2, 3 & Xj = 0, j = 4, . . . , 9,

where the matrices Ji furnish a N-dimensional representation of su (2). The radii,

r = 0, r =
µ

3
, r =

µ

6
,

correspond to the max susy vacuum Xi = 0, a 1/2-BPS solution and, an unstable, non-susy, positive-energy solution...

The BMN matrix model describes the discrete light-cone quantization (DLCQ) of M-theory on the KG background...

As shown by Dasgupta, Sheikh-Jabbari, Van Raamsdonk (2002), the BMN matrix model can be derived by regularizing
the light-cone (super)membrane in the 11d maximally susy KG background...

Equivalently, the light-cone (super)membrane on the maximally susy plane-wave background can be seen as the
continuum (matrix dimensionality N → ∞) limit of the BMN matrix model...

In the following we are going to work exclusively with the classical bosonic membrane on the 11-dimensional maximally
susy plane-wave background...

We are going to construct solutions of spinning membranes, based on some tools and techniques that were introduced
for flat space...

Let us first briefly review the corresponding membrane action...

9 / 53

https://arxiv.org/abs/hep-th/0205185


Introduction Membranes in the light-cone gauge

Subsection 3

Membranes in the light-cone gauge
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Introduction Membranes in the light-cone gauge

Bosonic membrane in a curved background

Bosonic membranes in curved backgrounds are described by the Dirac-Nambu-Goto (DNG) action:

SDNG = −T

∫
dτd2σ

{
√
−h + Ẋm∂1X

n∂2X
rArnm (X )

}
, T ≡

1

(2π)2 ℓ311
,

where (m, n, r , s = 0, . . . , 10),

hij ≡ Gmn∂iX
m∂jX

n (induced metric) h ≡ det hij & Fmnrs = 4∂[mAnrs] (field strength),

and Anrs is the (antisymmetric) 3-form field of 11-dimensional supergravity...
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Introduction Membranes in the light-cone gauge

The light-cone gauge

In the light-cone gauge, we write:

X± =
1
√
2

(
X 0 ± X 10

)
& X+ = τ.

Goldstone-Hoppe (1982)

The light-cone Hamiltonian is then written as follows (G−− = Ga− = 0):

H = T

∫
d2σ

{
1

2

G+−

P− − C−

[(
Pa − Ca −

P− − C−

G+−
Ga+

)2

+
1

2
GabGcd{X a,X c}{X b,X d}

]
−

−
1

2

P− − C−

G+−
G++ − C+ +

1

P− − C−

[
C−C+− − {X a,X b}PaC+−b

]}
,

de Wit-Peeters-Plefka (1998)

where (a, b, c, d = 1, . . . , 9),

C± ≡ C±ab − ∂1X
a∂2X

b, C+− ≡ −C+−a{X−,X a}, Ca ≡ −
(
C−ab{X b,X−}+ Cabc∂1X

b∂2X
c
)
.
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Introduction Membranes in the light-cone gauge

Poisson brackets

The Poisson bracket is defined as:

{f , g} ≡
ϵrs√
w (σ)

∂r f ∂sg =
1√

w (σ)
(∂1f ∂2g − ∂2f ∂1g) ,

where d2σ =
√

w (σ) dσ1 dσ2. In a flat space-sheet, w (σ) = 1.
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Spherical Euler-top membranes in flat backgrounds Membranes in the light-cone gauge

Section 2

Spherical Euler-top membranes in flat backgrounds

M. Axenides, E. Floratos, L. Perivolaropoulos
Metastability of spherical membranes in supermembrane and matrix theory

JHEP 11 (2000) 020 [arXiv:hep-th/0007198]

M. Axenides, E. Floratos
Euler-top dynamics of Nambu-Goto p-branes

JHEP 03 (2007) 093 [arXiv:hep-th/0608017]

14 / 53

http://arxiv.org/abs/hep-th/0007198v2
http://arxiv.org/abs/hep-th/0608017


Spherical Euler-top membranes in flat backgrounds Membranes in the light-cone gauge

Light-cone gauge in flat space

In a flat background

G+− = −1, Gab = δab, G++ = G−− = Ga± = 0, C± = C+− = Ca = 0,

therefore the light-cone Hamiltonian becomes (P− = −1):

H =
T

2

∫
d2σ

[
P2 +

1

2
{X i ,X j}2

]
.

The corresponding equations of motion and the Gauss law constraint become:

Ẍ i = {{X i ,X j},X j} &
9∑

i=1

{Ẋ i ,X i} = 0.
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Spherical Euler-top membranes in flat backgrounds Membranes in the light-cone gauge

Euler-top membranes in flat space

Consider the ansatz:

X i = R ij (τ)X j
0 (σ) , R ≡ exp (Ω τ) , ΩT = −Ω .

If we define the angular momentum and moment of inertia matrices of the membrane as

Iij = T

∫
d2σ X iX j & Lij = T

∫
d2σ

(
Ẋ iX j − Ẋ jX i

)
,

we can prove that the energy of the membrane is given by

E = −
3

4
·
Tr [Ω · L]2

2Tr [Ω2 · I]
,

Axenides-Floratos (2006)

which is the generalization of the familiar from point-particle mechanics Euler-top Hamiltonian:

E =
ℓ2x
2Ix

+
ℓ2y

2Iy
+

ℓ2z
2Iz

.
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Spherical Euler-top membranes in flat backgrounds Spherical Euler tops

The spherical ansatz

Consider the following spherical configuration:

Xi ≡ xi (τ) · e1, i = 1, 2, . . . , q1

Yj ≡ Xq1+j = yj (τ) · e2, j = 1, 2, . . . , q2, & q1 + q2 + q3 = 9

Zj ≡ Xq2+k = zk (τ) · e3, k = 1, 2, . . . , q3,

Collins-Tucker (1976)

that breaks the manifest so (9) symmetry of the action to so (q1)× so (q2)× so (q3). We have defined:

(e1, e2, e3) = (cosϕ sin θ, sinϕ sin θ, cos θ), ϕ ∈ [0, 2π), θ ∈ [0, π]

{ei , ej} = ϵijk ek ,

∫
ei ej d

2σ =
4π

3
δij

and the membrane area element is given by:

d2σ = dσ1 dσ2 = sin θ dϕ dθ &
√

w (θ) = sin θ.

17 / 53

https://doi.org/10.1016/0550-3213(76)90493-4


Spherical Euler-top membranes in flat backgrounds Spherical Euler tops

The spherical ansatz

Here’s the energy of the bubble:

E =
2πT

3

[
ẋ2 + ẏ2 + ż2 + x2y2 + y2z2 + z2x2

]
.

The corresponding equations of motion are:

ẍi +
(
y2 + z2

)
xi = 0, ÿj +

(
z2 + x2

)
yj = 0, z̈k +

(
y2 + x2

)
zk = 0,

while the Gauss law constraint

q1∑
i=1

{ẋ i , x i}+

q2∑
j=1

{ẏ j , y j}+

q3∑
k=1

{żk , zk} = 0,

is automatically satisfied by this ansatz.
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Spherical Euler-top membranes in flat backgrounds Spherical Euler tops

The spherical ansatz

Let us switch to the notation:

r2x ≡ x2 =

q1∑
i=1

xixi , r2y ≡ y2 =

q2∑
j=1

yjyj , r2z ≡ z2 =

q3∑
k=1

zkzk

(ℓx )ij ≡ ẋixj − xi ẋj

∣∣∣
so(q1)

, (ℓy )ij ≡ ẏiyj − yi ẏj

∣∣∣
so(q2)

, (ℓz )ij ≡ żizj − zi żj

∣∣∣
so(q3)

conserved

ẋ2 ≡
q1∑
i=1

ẋi ẋi = ṙ2x +
ℓ2x
r2x

, ẏ2 ≡
q2∑
j=1

ẏj ẏj = ṙ2y +
ℓ2y

r2y
, ż2 ≡

q3∑
k=1

żk żk = ṙ2z +
ℓ2z
r2z

,

which allows to write the energy of the membrane as follows:

E =
2πT

3
(Ekin + Veff) , Ekin ≡ ṙ2x + ṙ2y + ṙ2z & Veff ≡

ℓ2x
r2x

+
ℓ2y

r2y
+

ℓ2z
r2z

+ r2x r
2
y + r2y r

2
z + r2z r

2
x ,

where

ℓ2x =
1

2
(ℓx )ij (ℓx )ij , ℓ2y =

1

2
(ℓy )ij (ℓy )ij , ℓ2z =

1

2
(ℓz )ij (ℓz )ij .
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Spherical Euler-top membranes in flat backgrounds Spherical Euler tops

Spherical Euler tops

As shown by Axenides-Floratos (2006), the radii rx = x20 , ry = y2
0 , rz = z20 of the Euler top solutions

x (τ) = eΩxτ · x0, y (τ) = eΩyτ · y0, z (τ) = eΩzτ · z0,

can be determined for all antisymmetric matrices Ωx , Ωy , Ωz in terms of the corresponding angular momenta ℓx ,
ℓy , ℓz , by minimizing the effective potential:

Veff ≡
ℓ2x
r2x

+
ℓ2y

r2y
+

ℓ2z
r2z

+ r2x r
2
y + r2y r

2
z + r2z r

2
x ,

i.e. by solving

dVeff

drx
= −

2ℓ2x
r3x

+ 2rx
(
r2y + r2z

)
=

dVeff

dry
= −

2ℓ2y

r3y
+ 2ry

(
r2z + r2x

)
=

dVeff

drz
= −

2ℓ2z
r3z

+ 2rz
(
r2x + r2y

)
= 0.

Equivalently we can plug the above ansatz into the equations of motion in order to determine the relation between
the radii rx , ry , rz and the components of the matrices Ωx , Ωy , Ωz .
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Spherical Euler-top membranes in flat backgrounds Spherical Euler tops

Symmetric & axially symmetric Euler spheres

For a single radius r = rx = ry = rz , ℓ = ℓx = ℓy = ℓz the effective potential becomes:

Veff ≡
3ℓ

r2
+ 3r4,

finding

r(min) =
ℓ1/3

21/6
, Veff(min) =

9ℓ4/3

41/3
.

The axially symmetric (two-radii) rα = rx = ry , ℓα = ℓx = ℓy effective potential is:

Veff ≡
2ℓ2α
r2α

+
ℓ2z
r2z

+ r4α + 2r2αr
2
z

with

r2α(min) =
2ℓ

4/3
α(

ℓz +
√

ℓ2z + 8ℓ2α

)2/3 , r2z(min) =
ℓz

2ℓ
2/3
α

(
ℓz +

√
ℓ2z + 8ℓ2

)1/3

Veff(min) =
6ℓ

2/3
α(

ℓz +
√

ℓ2z + 8ℓ2α

)4/3
[
ℓz

(
ℓz +

√
ℓ2z + 8ℓ2α

)
+ 2ℓ2α

]
.
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Section 3

Spherical dielectric tops in plane-wave backgrounds

M. Axenides, E. Floratos, D. Katsinis, GL

M-theory as a dynamical system generator

[arXiv:2007.07028]

M. Axenides, E. Floratos, GL

to appear
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Spherical dielectric tops in plane-wave backgrounds Spherical ansatz

Light-cone gauge in the plane-wave background

In the maximally supersymmetric plane background,

G+− = −1, Gab = δab, G++ = −
µ2

9

3∑
i=1

x ix i −
µ2

36

6∑
j=1

y jy j , G−− = Ga± = 0

C− = C+− = Ca = 0, C+ =
µ

3
ϵijk∂1x

i∂2x
jxk ,

the light-cone Hamiltonian becomes (for P− = −1):

H=
T

2

∫
d2σ

[
π2
i +

1

2

{
x i , x j

}2
+

1

2

{
y i , y j

}2
+
{
x i , y j

}2
+

µ2x2

9
+

µ2y2

36
−

µ

3
ϵijk

{
x i , x j

}
xk
]
.
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Light-cone gauge in the plane-wave background

In the maximally supersymmetric plane background,

G+− = −1, Gab = δab, G++ = −
µ2

9

3∑
i=1

x ix i −
µ2

36

6∑
j=1

y jy j , G−− = Ga± = 0

C− = C+− = Ca = 0, C+ =
µ

3
ϵijk∂1x

i∂2x
jxk ,

which can also be expressed as a sum of squares:

H =
T

2

∫
d2σ

[
π2 +

(µ
3
xi −

1

2
ϵijk
{
xj , xk

})2
+

1

2

{
yi , yj

}2
+

µ2

36
yjyj +

{
xi , yj

}2]
.
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Light-cone gauge in the plane-wave background

In the maximally supersymmetric plane background,

G+− = −1, Gab = δab, G++ = −
µ2

9

3∑
i=1

x ix i −
µ2

36

6∑
j=1

y jy j , G−− = Ga± = 0

C− = C+− = Ca = 0, C+ =
µ

3
ϵijk∂1x

i∂2x
jxk ,

which can also be expressed as a sum of squares:

H =
T

2

∫
d2σ

[
π2 +

(µ
3
xi −

1

2
ϵijk
{
xj , xk

})2
+

1

2

{
yi , yj

}2
+

µ2

36
yjyj +

{
xi , yj

}2]
.

The corresponding equations of motion and the Gauss law constraint read:

ẍi =
{{

xi , xj
}
, xj
}
+
{{

xi , yj
}
, yj
}
−

µ2

9
xi +

µ

2
ϵijk
{
xj , xk

}
,

3∑
i=1

{
ẋ i , x i

}
+

6∑
j=1

{
ẏ j , y j

}
= 0

ÿi =
{{

yi , yj
}
, yj
}
+
{{

yi , xj
}
, xj
}
−

µ2

36
yi .
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Spherical dielectric tops in plane-wave backgrounds Spherical ansatz

The spherical ansatz

Here’s the generalization of the flat spherical ansatz to the maximally supersymmetric plane-wave background:

xi ≡ x1i = x̃1i (τ) e1 (σ) , i = 1, . . . , q1, yi ≡ y1i = ỹ1i (τ) e1 (σ) , i = 1, . . . , s1

xq1+j ≡ x2j = x̃2j (τ) e2 (σ) , j = 1, . . . , q2, ys1+j ≡ y2j = ỹ2j (τ) e2 (σ) , j = 1, . . . , s2

xq1+q2+k ≡ x3k = x̃3k (τ) e3 (σ) , k = 1, . . . , q3, ys1+s2+k ≡ y3k = ỹ3k (τ) e3 (σ) , k = 1, . . . , s3,

where

q1 + q2 + q3 = 3 & s1 + s2 + s3 = 6,

and again,

(e1, e2, e3) = (cosϕ sin θ, sinϕ sin θ, cos θ), ϕ ∈ [0, 2π), θ ∈ [0, π]

{ei , ej} = ϵijk ek ,

∫
ei ej d

2σ =
4π

3
δij

d2σ = dσ1 dσ2 = sin θ dϕ dθ &
√

w (θ) = sin θ.
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Spherical dielectric tops in plane-wave backgrounds Spherical ansatz

The spherical ansatz

Now switch to the notation:

r2xx ≡ x̃21 =

q1∑
i=1

x̃1i x̃1i , r2xy ≡ x̃22 =

q2∑
i=1

x̃2i x̃2i , r2xz ≡ x̃23 =

q3∑
i=1

x̃3i x̃3i

(ℓxx )ij ≡ ˙̃x1i x̃1j − x̃1i ˙̃x1j

∣∣∣
so(q1)

, (ℓxy )ij ≡ ˙̃x2i x̃2j − x̃2i ˙̃x2j

∣∣∣
so(q2)

, (ℓxz )ij ≡ ˙̃x3i x̃3j − x̃3i ˙̃x3j

∣∣∣
so(q3)

conserved

˙̃x21 ≡
q1∑
i=1

˙̃x1i ˙̃x1i = ṙ2xx +
ℓ2xx
r2xx

, ˙̃x22 ≡
q2∑
i=1

˙̃x2i ˙̃x2i = ṙ2xy +
ℓ2xy

r2xy
, ˙̃x23 ≡

q3∑
i=1

˙̃x3i ˙̃x3i = ṙ2xz +
ℓ2xz
r2xz

,

and similarly for the six coordinates y :

r2yx ≡ ỹ2
1 =

s1∑
j=1

ỹ1j ỹ1j , r2yy ≡ ỹ2
2 =

s2∑
j=1

ỹ2j ỹ2j , r2yz ≡ ỹ2
3 =

s3∑
j=1

ỹ3j ỹ3j

(ℓyx )ij ≡ ˙̃y1i ỹ1j − ỹ1i ˙̃y1j

∣∣∣
so(s1)

, (ℓyy )ij ≡ ˙̃y2i ỹ2j − ỹ2i ˙̃y2j

∣∣∣
so(s2)

, (ℓyz )ij ≡ ˙̃y3i ỹ3j − ỹ3i ˙̃y3j

∣∣∣
so(s3)

conserved

˙̃y2
1 ≡

s1∑
j=1

˙̃y1j ˙̃y1j = ṙ2yx +
ℓ2yx

r2yx
, ˙̃y2

2 ≡
s2∑
j=2

˙̃y2j ˙̃y2j = ṙ2yy +
ℓ2yy

r2yy
, ˙̃y2

3 ≡
s3∑
j=1

˙̃y3j ˙̃y3j = ṙ2yz +
ℓ2yz

r2yz
.
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The spherical ansatz

Here’s the resulting effective potential:

Veff =
2πT

3

[
ℓ2xx
r2xx

+
ℓ2xy

r2xy
+

ℓ2xz
r2xz

+
ℓ2yx

r2yx
+

ℓ2yy

r2yy
+

ℓ2yz

r2yz
+ r2xx r

2
xy + r2xy r

2
xz + r2xz r

2
xx + r2yx r

2
yy + r2yy r

2
yz+

+r2yz r
2
yx + r2xx

(
r2yy + r2yz

)
+ r2xy

(
r2yz + r2yx

)
+ r2xz

(
r2yx + r2yy

)
+

µ2

9

(
r2xx + r2xy + r2xz

)
+

+
µ2

36

(
r2yx + r2yy + r2yz

)
− 2µ ϵijk x̃1i x̃2j x̃3k

]
.
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The spherical ansatz

Here’s the resulting effective potential:

Veff =
2πT

3

[
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+
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r2xz

+
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r2yx
+

ℓ2yy

r2yy
+

ℓ2yz

r2yz
+ r2xx r

2
xy + r2xy r

2
xz + r2xz r

2
xx + r2yx r

2
yy + r2yy r

2
yz+

+r2yz r
2
yx + r2xx

(
r2yy + r2yz

)
+ r2xy

(
r2yz + r2yx

)
+ r2xz

(
r2yx + r2yy

)
+

µ2

9

(
r2xx + r2xy + r2xz

)
+

+
µ2

36

(
r2yx + r2yy + r2yz

)
− 2µ ϵijk x̃1i x̃2j x̃3k

]
.

The effective potential is made up of four basic types of terms: • (1) kinetic/angular momentum terms (repulsive),
• (2) quartic interaction terms (attractive), • (3) mass terms (attractive), and • (4) cubic Myers terms (repulsive).
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.

The effective potential is made up of four basic types of terms: • (1) kinetic/angular momentum terms (repulsive),
• (2) quartic interaction terms (attractive), • (3) mass terms (attractive), and • (4) cubic Myers terms (repulsive).

The last two types of terms (i.e. mass terms and Myers terms) are µ-dependent and therefore absent from the flat
space case (µ → 0), which was studied in Axenides-Floratos (2006)...
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The spherical ansatz
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.

The effective potential is made up of four basic types of terms: • (1) kinetic/angular momentum terms (repulsive),
• (2) quartic interaction terms (attractive), • (3) mass terms (attractive), and • (4) cubic Myers terms (repulsive).

The last two types of terms (i.e. mass terms and Myers terms) are µ-dependent and therefore absent from the flat
space case (µ → 0), which was studied in Axenides-Floratos (2006)...

In either case (µ = 0 or µ ̸= 0), it is the equilibration between attraction and repulsion which determines the minima
of the effective potential...
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The spherical ansatz

Here’s the resulting effective potential:
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The effective potential is made up of four basic types of terms: • (1) kinetic/angular momentum terms (repulsive),
• (2) quartic interaction terms (attractive), • (3) mass terms (attractive), and • (4) cubic Myers terms (repulsive).

The last two types of terms (i.e. mass terms and Myers terms) are µ-dependent and therefore absent from the flat
space case (µ → 0), which was studied in Axenides-Floratos (2006)...

In either case (µ = 0 or µ ̸= 0), it is the equilibration between attraction and repulsion which determines the minima
of the effective potential... Yet another interesting aspect of these systems is the existence of closed periodic orbits
which do not correspond to critical points...
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The spherical ansatz

Here’s the resulting effective potential:

Veff =
2πT

3

[
ℓ2xx
r2xx

+
ℓ2xy

r2xy
+

ℓ2xz
r2xz

+
ℓ2yx

r2yx
+

ℓ2yy

r2yy
+

ℓ2yz

r2yz
+ r2xx r

2
xy + r2xy r

2
xz + r2xz r

2
xx + r2yx r

2
yy + r2yy r

2
yz+

+r2yz r
2
yx + r2xx

(
r2yy + r2yz

)
+ r2xy

(
r2yz + r2yx

)
+ r2xz

(
r2yx + r2yy

)
+

µ2

9

(
r2xx + r2xy + r2xz

)
+

+
µ2

36

(
r2yx + r2yy + r2yz

)
− 2µ ϵijk x̃1i x̃2j x̃3k

]
.

As in flat spacetime, minimization of the effective potential leads to (dielectric) top solutions of the form:

x̃1 (τ) = eΩxxτ · x̃10, x̃2 (τ) = eΩxyτ · x̃20, x̃3 (τ) = eΩxzτ · x̃30

ỹ1 (τ) = eΩyxτ · ỹ10, ỹ2 (τ) = eΩyyτ · ỹ20, ỹ3 (τ) = eΩyzτ · ỹ30.

We can identify 3 cases, based on the ways we can distribute the 3 spatial coordinates xi into 3 groups:

Case I: x1, x2, x3 ∼ e1 Case II: x1, x2 ∼ e1 & x3 ∼ e3 Case III: x1 ∼ e1, x2 ∼ e2, x3 ∼ e3.

In each case, we obtain a set of different effective potentials and (dielectric or not) membrane tops.
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Spherical dielectric tops in plane-wave backgrounds Case I

Case I: q1 = 3, q2 = q3 = 0

For q1 = 3, q2 = q3 = 0 the spherical ansatz for the x-coordinates takes the form:

(x1, x2, x3) = (x̃1 (τ) e1 , x̃2 (τ) e1 , x̃3 (τ) e1) & r2x ≡
3∑

i=1

x̃i (τ) x̃i (τ)

(ℓx )ij ≡ ˙̃xi (τ) x̃j (τ)− x̃i (τ) ˙̃xj (τ) .

The effective potential becomes:

Veff =
2πT

3

[
ℓ2x
r2x

+
ℓ2yx

r2yx
+

ℓ2yy

r2yy
+

ℓ2yz

r2yz
+ r2yx r

2
yy + r2yy r

2
yz + r2yz r

2
yx + r2x

(
r2yy + r2yz

)
+

µ2r2x
9

+

+
µ2

36

(
r2yx + r2yy + r2yz

) ]
.

Completely symmetric (single-radius) configuration: r = rx = ryx = ryy = ryz , ℓ = ℓx = ℓyx = ℓyy = ℓyz .

There are 5 different axially symmetric (2-radii) configurations.

There are 4 configurations with 3 different radii.
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Spherical dielectric tops in plane-wave backgrounds Case II

Case II: q1 = 2, q2 = 0, q3 = 1

For q1 = 2, q2 = 0, q3 = 1 our ansatz is written:

(x1, x2, x3) = (x̃11 (τ) e1 , x̃12 (τ) e1 , rxz (τ) e3) & r2xx ≡ x̃211 (τ) + x̃212 (τ)

(ℓxx )ij ≡ ˙̃x1i (τ) x̃1j (τ)− x̃1i (τ) ˙̃x1j (τ) .

The effective potential is given by:

Veff =
2πT

3

[
ℓ2xx
r2xx

+
ℓ2yx

r2yx
+

ℓ2yy

r2yy
+

ℓ2yz

r2yz
+ r2xx r

2
xz + r2yx r

2
yy + r2yy r

2
yz + r2yz r

2
yx + r2xx

(
r2yy + r2yz

)
+

+r2xz
(
r2yz + r2yx

)
+

µ2

9

(
r2xx + r2xz

)
+

µ2

36

(
r2yx + r2yy + r2yz

) ]
.

Completely symmetric configuration: r = rxx = rxz = ryx = ryy = ryz , ℓ = ℓxx = ℓyx = ℓyy = ℓyz .

There are 13 different axially symmetric (2-radii) configurations.

There exist 21 three-radii configurations.
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Spherical dielectric tops in plane-wave backgrounds Case II

Example 1

Take for example a type II configuration with all the SO (6) variables yi set to zero:

x1 = x (τ) · e1, x2 = y (τ) · e1, x3 = z (τ) · e2 & yi = 0, i = 1, . . . , 6,

The corresponding effective potential reads,

Veff =
2πT

3

[
ℓ2

x2 + y2
+
(
x2 + y2

)
z2 +

µ2

9

(
x2 + y2 + z2

) ]
,

where we have set ℓx1 = ℓ. The corresponding minimization condition ∇Veff = 0 leads to

x z2 +
µ2x

9
−

x ℓ2

(x2 + y2)2
= y z2 +

µ2y

9
−

y ℓ2

(x2 + y2)2
= z

(
x2 + y2

)
+

µ2z

9
= 0,

which has the following solution

x2 + y2 =
3ℓ

µ
& z = 0.

To agree with the form of the above ansatz we can choose, for instance,

x (τ) =

√
3ℓ

µ
cos

µ τ

3
, y (τ) =

√
3ℓ

µ
sin

µ τ

3
, z (τ) = 0.
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Spherical dielectric tops in plane-wave backgrounds Case II

Example 1

Alternatively we could have directly inserted the ansatz into the light-cone equations of motion,

ẍ · e1 = −x z2 · e1 −
µ2x

9
· e1 + µ y z · e3

ÿ · e1 = −y z2 · e1 −
µ2y

9
· e1 + µ x z · e3

z̈ · e2 = −z
(
x2 + y2

)
· e2 −

µ2z

9
· e2,

from which it can be seen that any solution of the type

x̃1 (τ) = eΩxxτ · x̃10, x̃2 (τ) = eΩxyτ · x̃20, x̃3 (τ) = eΩxzτ · x̃30,

will satisfy

x2 + y2 =
3ℓ

µ
& z = 0.
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Spherical dielectric tops in plane-wave backgrounds Case II

Example 2

Another interesting type II solution is the following:

x1 = x (τ) · e1, x2 = y (τ) · e2, x3 = 0 & yi = 0, i = 1, . . . , 6,

where again all the SO (6) variables yi and the SO(3) coordinate x2 are zero... The effective potential becomes,

Veff =
2πT

3

[
x2y2 +

µ2

9

(
x2 + y2

) ]
,

so that there is only one trivial critical point at x = y = 0, which is obtained by minimizing the effective potential:

x y2 +
µ2x

9
= y x2 +

µ2y

9
= 0.

Potentials of the above form (which are in fact generalizations of the YM potential x2y2/2) have a very interesting
and rich set of (stable) periodic orbits... See e.g. Contopoulos-Harsoula (2023)...
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Spherical dielectric tops in plane-wave backgrounds Case III

Case III: q1 = q2 = q3 = 1

For q1 = q2 = q3 = 1 the spherical ansatz becomes:

(x1, x2, x3) = (rxx (τ) e1 , rxy (τ) e2 , rxz (τ) e3) .

In this case the effective potential reads:

Veff =
2πT

3

[
ℓ2yx

r2yx
+
ℓ2yy

r2yy
+

ℓ2yz

r2yz
+ r2xx r

2
xy + r2xy r

2
xz + r2xz r

2
xx + r2yx r

2
yy + r2yy r

2
yz + r2yz r

2
yx+

+r2xx
(
r2yy + r2yz

)
+ r2xy

(
r2yz + r2yx

)
+ r2xz

(
r2yx + r2yy

)
+

µ2

9

(
r2xx + r2xy + r2xz

)
+

+
µ2

36

(
r2yx + r2yy + r2yz

)
− 2µrxx rxy rxz

]
.

Completely symmetric configuration: r = rxx = rxy = rxz = ryx = ryy = ryz , ℓ = ℓyx = ℓyy = ℓyz .

There are 9 different axially symmetric (2-radii) configurations.

There are 10 configurations with 3 different radii.
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Spherical dielectric tops in plane-wave backgrounds Case III

An example

Consider the following (out the 9 in total) axially symmetric configuration of case III:

rx = rxx = rxy = rxz & ry = ryx = ryy = ryz & ℓy = ℓyx = ℓyy = ℓyz

with effective potential:

Veff = 2πT

[
ℓ2y

r2y
+ r4x + 2r2x r

2
y +

µ2r2x
9

+
µ2r2y

36
−

2µ

3
r3x

]
.

The minimization conditions read:

dVeff

drrx
= rx

(
r2x −

µ

2
rx + r2y +

µ2

18

)
=

dVeff

drry
= r6y +

(
r2x +

µ2

72

)
r4y −

ℓ2y

2
= 0.

We obtain the following selection rule:

ry ≤
µ

12
& rx ≥

1442ℓ2y

µ5
+

µ

12

e.g. in the marginal case rx = µ/4, ry = µ/12, ℓy = µ3/144
√
6, it’s Veff(min) = 7πTµ4/1296.

We also find the static solutions ry = 0, rx = µ/3 (BPS) and rx = µ/6 (for which Veff(min) = πTµ4/648)...
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Static dielectric membranes in SO (3) Setup

Section 4

Static dielectric membranes in SO (3)

M. Axenides, E. Floratos, GL
M2-brane dynamics in the classical limit of the BMN matrix model

PLB 773 (2017) 265 [arxiv:1707.02878]

M. Axenides, E. Floratos, GL
Multipole stability of spinning M2-branes in the classical limit of the BMN matrix model

PRD 97 (2018) 126019 [arxiv:1712.06544]

M. Axenides, E. Floratos, GL

to appear
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Static dielectric membranes in SO (3) Setup

The SO(3) solution

Setting all SO (6) coordinates of type III configurations to zero and switching to dimensionless time t ≡ µτ ,

xi = µuiei , i = 1, 2, 3 & yi = µvi = 0, i = 1, . . . 6,

the membrane equations of motion become:

ü1 +

(
u22 + u23 +

1

9

)
u1 = u2u3, ü2 +

(
u21 + u23 +

1

9

)
u2 = u1u3, ü3 +

(
u21 + u22 +

1

9

)
u3 = u1u2

v̈i = 0, i = 1, . . . , 6.

The dynamics is fully specified in terms of the Hamiltonian...

H =
4πTµ4

3
· H, H ≡

1

2

[
p21 + p22 + p23 + u21u

2
2 + u22u

2
3 + u21u

2
3 +

1

9

(
u21 + u22 + u23

)
− 2u1u2u3

]
,

and Hamilton’s equations of motion:

pi = u̇i , ṗi = −
∂H
∂ui

,

which evidently imply the above Lagrangian equations of motion...
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Static dielectric membranes in SO (3) Setup

The SO(3) solution

Setting all SO (6) coordinates of type III configurations to zero and switching to dimensionless time t ≡ µτ ,

xi = µuiei , i = 1, 2, 3 & yi = µvi = 0, i = 1, . . . 6,

the membrane equations of motion become:

ü1 +

(
u22 + u23 +

1

9

)
u1 = u2u3, ü2 +

(
u21 + u23 +

1

9

)
u2 = u1u3, ü3 +

(
u21 + u22 +

1

9

)
u3 = u1u2

v̈i = 0, i = 1, . . . , 6.

The effective potential energy of the static membrane is given by

Veff =
2πTµ4

3

[ (
u21u

2
2 + u22u

2
3 + u21u

2
3

)
+

1

9

(
u21 + u22 + u23

)
− 2u1u2u3

]
.
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Static dielectric membranes in SO (3) Setup

The SO(3) solution

Setting all SO (6) coordinates of type III configurations to zero and switching to dimensionless time t ≡ µτ ,

xi = µuiei , i = 1, 2, 3 & yi = µvi = 0, i = 1, . . . 6,

the membrane equations of motion become:

ü1 +

(
u22 + u23 +

1

9

)
u1 = u2u3, ü2 +

(
u21 + u23 +

1

9

)
u2 = u1u3, ü3 +

(
u21 + u22 +

1

9

)
u3 = u1u2

v̈i = 0, i = 1, . . . , 6.

The effective potential energy of the static membrane is given by

Veff =
2πTµ4

3

[ (
u21u

2
2 + u22u

2
3 + u21u

2
3

)
+

1

9

(
u21 + u22 + u23

)
− 2u1u2u3

]
.

This potential turns out to be a special case of the so-called generalized 3-dimensional Hénon-Heiles potential,

VHH =
1

2

(
u21 + u22 + u23

)
+ K3 u1u2u3 + K0

(
u21 + u22 + u23

)2
+ K4

(
u41 + u42 + u43

)
(Efstathiou-Sadovskii, 2004).

For K3 = −9, K0 = −K4 = 9/4, VHH obviously reduces to the above effective potential Veff.
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Static dielectric membranes in SO (3) Setup

SO(3) extrema

The extrema of the potential solve the equilibrium conditions:

∂iVeff = 0 ⇒
(
u22 + u23 +

1

9

)
u1 = u2u3

(
u23 + u21 +

1

9

)
u2 = u3u1

(
u21 + u22 +

1

9

)
u3 = u1u2.

Here are the corresponding roots:

u0 = 0, u1/6 =
1

6
· (±1,±1,±1) , u1/3 =

1

3
· (±1,±1,±1) ,
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The extrema are nine in total because the product of their components must be non-negative...
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The extrema are nine in total because the product of their components must be non-negative...

Veff has the symmetry of a tetrahedron Td that is generated by the 4 critical points u1/3 and u1/6...
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Static dielectric membranes in SO (3) Setup

SO(3) extrema

The extrema of the potential solve the equilibrium conditions:

∂iVeff = 0 ⇒
(
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1

9

)
u1 = u2u3

(
u23 + u21 +
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9

)
u2 = u3u1

(
u21 + u22 +

1

9

)
u3 = u1u2.

Here are the corresponding roots:

u0 = 0, u1/6 =
1

6
· (±1,±1,±1) , u1/3 =

1

3
· (±1,±1,±1) ,

The extrema are nine in total because the product of their components must be non-negative...

Veff has the symmetry of a tetrahedron Td that is generated by the 4 critical points u1/3 and u1/6...

u0 (point-like membrane) and u1/3 (Myers dielectric sphere) are global minima, while u1/6 is a saddle point...
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Static dielectric membranes in SO (3) Setup

SO(3) extrema

The value of the effective potential at the extremal points is

Veff (0) = Veff

(
1

3

)
= 0, Veff

(
1

6

)
=

2πTµ4

64
.
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Hessian matrix is positive-definite for u0 and u1/3 (global minima) and indefinite for u1/6 (saddle point)...
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.

Hessian matrix is positive-definite for u0 and u1/3 (global minima) and indefinite for u1/6 (saddle point)...

This result will be confirmed below by leading order (LO) radial and angular/mutlipole perturbations... next-to-leading
order (NLO) perturbations will be studied right after...
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order (NLO) perturbations will be studied right after...

When the ui in are not all equal, the equations of motion are so complicated that exact time-dependent solutions
can only be found numerically...
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SO(3) extrema

The value of the effective potential at the extremal points is

Veff (0) = Veff

(
1

3

)
= 0, Veff

(
1

6

)
=

2πTµ4

64
.

Hessian matrix is positive-definite for u0 and u1/3 (global minima) and indefinite for u1/6 (saddle point)...

This result will be confirmed below by leading order (LO) radial and angular/mutlipole perturbations... next-to-leading
order (NLO) perturbations will be studied right after...

When the ui in are not all equal, the equations of motion are so complicated that exact time-dependent solutions
can only be found numerically...

When all the SO (3) membrane coordinates ui are equal, an analytic solution is possible...
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Static dielectric membranes in SO (3) Spherically symmetric membrane

Subsection 2

Spherically symmetric membrane
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Static dielectric membranes in SO (3) Spherically symmetric membrane

The spherically symmetric membrane

The ansatz for the fully symmetric membrane in SO(3) reads:

u ≡ u1 = u2 = u3.

The membrane Hamiltonian is that of a double-well oscillator:

H = 2πTµ4

[
p2 + u2

(
u −

1

3

)2
]
.

Here are the corresponding equations of motion:

u̇ = p, ṗ = −u

[
2u2 +

1

9
− u

]
.

Define E ≡ E/2πTµ4, Ec ≡ 6−4. There are three kinds of orbits:
• (1) oscillations of small energies (E < Ec ) around either of the
two stable global minima (u0 = 0, 1/3) • (2) oscillations of larger
energies (E > Ec ) around the local maximum (u0 = 1/6) • (3)
two homoclinic orbits through the unstable equilibrium point at
u0 = 1/6 with energy equal to the potential height (E = Ec ).
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Static dielectric membranes in SO (3) Spherically symmetric membrane

The spherically symmetric membrane

The orbits may be computed from the initial conditions:

u̇0 (0) = 0, u0 (0) =
1

6
±
√

1

62
+

√
E,

where the ± signs correspond to the right/left side of the double-
well potential.

Integrating the energy integral we find the solution:

u0 (t) =
1

6
±
√

1

62
+

√
E · cn

[√
2
√
E · t

∣∣∣∣∣12
(
1 +

1

36
√
E

)]
,

where only the plus sign should be kept for E ≥ Ec .
For the critical energy E = Ec the homoclinic orbit is obtained:

u0 (t) =
1

6
±

1

3
√
2
· sech

(
t

3
√
2

)
.
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Static dielectric membranes in SO (3) Spherically symmetric membrane

The spherically symmetric membrane

The period as a function of the energy is given in terms of
the complete elliptic integral of the first kind:

T (E) = 2

√
2

√
E

· K
(
1

2

(
1 +

1

36
√
E

))
,

it becomes infinite for the homoclinic orbit E = Ec . For
more, see e.g. Brizard-Westland (2017).
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Static dielectric membranes in SO (3) Leading order stability

Subsection 3

Leading order stability
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Static dielectric membranes in SO (3) Leading order stability

Leading order stability analysis

The full type III equations of motion around each of the SO(3) extremal points read:

ü1 +

(
u22 + u23 +

r2y2

µ2
+

r2y3

µ2
+

1

9

)
u1 = u2u3, v̈i +

(
r2y2

µ2
+

r2y3

µ2
+ u22 + u23 +

1

36

)
vi = 0

ü2 +

(
u23 + u21 +

r2y3

µ2
+

r2y1

µ2
+

1

9

)
u2 = u3u1, v̈j +

(
r2y3

µ2
+

r2y1

µ2
+ u23 + u21 +

1

36

)
vj = 0

ü3 +

(
u21 + u22 +

r2y1

µ2
+

r2y2

µ2
+

1

9

)
u3 = u1u2, v̈k +

(
r2y1

µ2
+

r2y2

µ2
+ v2

1 + v2
2 +

1

36

)
vk = 0,

where we have set t ≡ µτ and

xi = µuiei , i = 1, 2, 3 & yi = µvie1, i = 1, . . . , s1

yj = µvje2, j = s1 + 1, . . . , s1 + s2

yk = µvke3, k = s1 + s2 + 1, . . . , s1 + s2 + s3.
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Static dielectric membranes in SO (3) Leading order stability

Radial stability analysis

By radially perturbing each of the 9 critical points as:

ui = u0i + δui (t) , i = 1, 2, 3, & vj = δvj (t) , j = 1, . . . , 6,

we obtain the following system of fluctuation equations

δü = −

 2u20 + 1
9

2u01u
0
2 − u03 2u01u

0
3 − u02

2u02u
0
1 − u03 2u20 + 1

9
2u02u

0
3 − u01

2u03u
0
1 − u02 2u03u

0
2 − u01 2u20 + 1

9

 · δu & δv̈ = −
(
2u20 +

1

36

)
· δv,

where we have defined

u20 ≡
(
u01
)2

=
(
u02
)2

=
(
u03
)2

,

for the common value of the square of each extremum’s components. Then we plug the particular solution[
δu
δv

]
= eλt ξ,

we solve the resulting eigenvalue/eigenvector problem...
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Static dielectric membranes in SO (3) Leading order stability

Radial stability analysis

By radially perturbing each of the 9 critical points as:

ui = u0i + δui (t) , i = 1, 2, 3, & vj = δvj (t) , j = 1, . . . , 6.

This way we confirm the conclusion we derived above from the corresponding Hessian matrix, i.e. that u0 and u1/3
are global minima (positive-definite Hessian) and u1/6 is a saddle point (indefinite Hessian):

extremum location eigenvalues r = λ2 (degeneracy) stability

u0 0 − 1
9
(3) , − 1

36
(6) center (stable)

u1/6
(
± 1

6
,± 1

6
,± 1

6

)
1
18

(1) , − 5
18

(2) , − 1
12

(6) saddle point

u1/3
(
± 1

3
,± 1

3
,± 1

3

)
− 1

9
(1) , − 4

9
(2) , − 1

4
(6) center (stable)

Axenides-Floratos-GL (2017a)

where the negative eigenvalues r = λ2 < 0 correspond to stable directions and the positive eigenvalues r = λ2 > 0
lead to stable/unstable directions (depending on the sign of the real eigenvalue λ)...
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Static dielectric membranes in SO (3) Leading order stability

Angular stability analysis

We may also perform more general (angular/multipole) perturbations of the following form:

xi (t) = x0i + δxi (t) , i = 1, 2, 3,

where δxi is expanded in spherical harmonics Yjm (θ, ϕ):

xi (t) = µui (t) ei , x0i = µu0i ei , δxi (t) = µ ·
∞∑
j=1

j∑
m=−j

ηjmi (t)Yjm (θ, ϕ) .

For the critical points u0, u1/6, u1/3 we find the eigenvalues (Axenides-Floratos-GL, 2017b):

u0 : λ2
P = λ2

± = −
1

9
, λ2

θ = −
1

36

u1/6 : λ2
P = 0, λ2

+ = −
1

36
(j + 1) (j + 4) , λ2

− = −
j (j − 3)

36
, λ2

θ = −
1

36

(
j2 + j + 1

)
u1/3 : λ2

P = 0, λ2
+ = −

1

36
(j + 1)2 , λ2

− = −
j2

9
, λ2

θ = −
1

36
(2j + 1)2 ,

with multiplicities dP = 2j + 1, d+ = 2j + 3, d− = 2j − 1 and dθ = 6 (2j + 1), respectively.
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Static dielectric membranes in SO (3) Leading order stability

Angular stability analysis

The critical point u0 (point-like membrane) is obviously stable.

u1/3 has a zero mode of degeneracy 2dP while all its other eigenvalues are stable for j = 1, 2, . . .

u1/6 has one 2dP -degenerate zero mode for every j and a 10-fold degenerate zero mode for j = 3. It is unstable for
j = 1 (2-fold degenerate) and j = 2 (6-fold degenerate).

The above results were first obtained by (Dasgupta, Sheikh-Jabbari, Van Raamsdonk (2002)) from the BMN matrix
model point-of-view.

In the flat-space limit (µ → 0), we recover the results of (Axenides-Floratos-Perivolaropoulos, 2000, 2001).
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The SO(3) × SO(6) symmetric membrane

Section 5

The SO(3)× SO(6) symmetric membrane

M. Axenides, E. Floratos, GL
M2-brane dynamics in the classical limit of the BMN matrix model

PLB 773 (2017) 265 [arxiv:1707.02878]

M. Axenides, E. Floratos, GL
Multipole stability of spinning M2-branes in the classical limit of the BMN matrix model

PRD 97 (2018) 126019 [arxiv:1712.06544]

M. Axenides, E. Floratos, GL

to appear
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The SO(3) × SO(6) symmetric membrane

The SO(3)× SO(6) sector

Similar analysis can be carried out in the SO(3)× SO(6) sector where the equations of motion become:

ü1 +

(
u22 + u23 +

r2y2

µ2
+

r2y3

µ2
+

1

9

)
u1 = u2u3, v̈i +

(
r2y2

µ2
+

r2y3

µ2
+ u22 + u23 +

1

36

)
vi = 0, i , j , k = 1, 2, 3,

ü2 +

(
u23 + u21 +

r2y3

µ2
+

r2y1

µ2
+

1

9

)
u2 = u3u1, v̈j +

(
r2y3

µ2
+

r2y1

µ2
+ u23 + u21 +

1

36

)
vj = 0

ü3 +

(
u21 + u22 +

r2y1

µ2
+

r2y2

µ2
+

1

9

)
u3 = u1u2, v̈k +

(
r2y1

µ2
+

r2y2

µ2
+ v2

1 + v2
2 +

1

36

)
vk = 0.

A solution of these equations of motion is

u0i = u0, v0
j (t) = v0 cos

(
ωt + φj

)
, w0

j (t) ≡ v0
j+3 (t) = v0 sin (ωt + φk ) ,

where (u0, v0) are the critical points of the corresponding (axially symmetric) potential

V ≡
Veff

2πTµ4
= u4+2u2v2 + v4 +

u2

9
+

v2

36
−

2u3

3
+

ℓ2

v2
, ℓµ3 ≡ ℓ1 = ℓ2 = ℓ3.

It can be proven that the critical points (u0, v0) always lie within the interval:

1

6
≤ u0 ≤

1

3
& 0 ≤ v0 ≤

1

12
.

46 / 53



The SO(3) × SO(6) symmetric membrane

Radial stability analysis

Setting,

ui = u0i + δui (t) , vi = v0
i (t) + δv ′

i (t) , wi = w0
i (t) + δw ′

i (t) ,

we find the radial eigenvalues

λ2
1± =

1

9
−

5u0

2
±

√
1

92
−

u0

9
−

5u20
12

+ 4u30 , λ2
2± =

5

18
−

5u0

2
±

√
52

182
−

35u0

18
+

163u20
12

− 20u30 .
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The SO(3) × SO(6) symmetric membrane

Angular stability analysis

Going further, we again set out to perform angular/multipole perturbations of the form:

xi = x0i + δxi , i = 1, 2, 3 & yk = y0
k + δyk , k = 1, . . . , 6,

where the δxi , δyk are expanded in spherical harmonics Yjm (θ, ϕ) as:

δxi = µ ·
∑
j,m

ηjmi (τ)Yjm (θ, ϕ) δyk = µ ·
∑
j,m

ϵjmk (τ)Yjm (θ, ϕ) δyl = µ ·
∑
j,m

ζ jml (τ)Yjm (θ, ϕ) ,

and i = 1, 2, 3, k = 1, 3, 5 and l = 2, 4, 6.

One of the eigenvalues always vanishes, two others are given by the following analytic expression

λ2
P =

1

2

(
j2 + j + 2

)
u0 −

1

18

(
1 + j (j + 1)± 3

√
144 (j2 + j − 2) u30 − 12 (j2 + j − 14) u20 − 24u0 + 1

)
,

while 6 more eigenvalues λ± are also known in closed forms but are too complicated to be included here.

The corresponding multiplicities of the eigenvalues are dP = 2j + 1, d+ = 2j + 3, d− = 2j − 1.

48 / 53



The SO(3) × SO(6) symmetric membrane

Lowest-lying modes

For j = 1 four eigenvalues vanish, while two others coincide with those found from radial perturbations:

λ2
P = 4u0 +

1

3
, λ2

+ =
5u0

2
−

1

9
±

√
1

92
−

u0

9
−

5u20
12

+ 4u30

λ2
− =

5u0

2
−

5

18
±

√
52

182
−

35u0

18
+

163u20
12

− 20u30 .

For j = 2 there’s one zero eigenvalue while λP > 0. We can also plot the eigenvalues of λ±:
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The SO(3) × SO(6) symmetric membrane

Multipole stability

The nonzero j = 1 eigenvalues are all positive/stable in the interval 1
6
≤ u0 ≤ 1

3
, 0 ≤ v0 ≤ 1

12
, except λ2

−(−)
which

is positive/stable only for ucrit < u0 < 1/3, where ucrit ≡ 1
60

(
11 +

√
21
)
.

For j = 2, the λP , λ+ and one of the λ− eigenvalues are positive/stable. The remaining λ− eigenvalue is nega-
tive/unstable in the interval 1

6
≤ u0 ≤ 0.207245 < ucrit.

Here’s a summary of the angular/multipole spectrum:

eigenvalues j = 1 j = 2 j ≥ 3 degeneracy

λ2
P 0, 0,+ 0,+,+ 0,+,+ dP = 2j + 1

λ2
+ 0,+,+ +,+,+ +,+,+ d+ = 2j + 3

λ2
− 0,+, {0,±} +,+, {0,±} +,+,+ d− = 2j − 1( positive for

u0 > ucrit

) ( positive for
u0 > 0.207245

)
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The SO(3) × SO(6) symmetric membrane

Instability cascade

By examining higher orders in perturbation theory beyond the linear level (in the interval 1/6 ≤ u0 ≤ ucrit) we
expect to obtain a cascade of instabilities that originates from the j = 1, 2 sectors and propagates towards the higher
multipoles...

xi =
∞∑
n=0

εnδxni = x0i +
∞∑
n=1

εnδxni , i = 1, 2, 3

yi =
∞∑
n=0

εnδyn
i = y0

i +
∞∑
n=1

εnδyn
i , i = 1, . . . , 6.

This is due to the fact that the various (constant j) multipoles at a given order in perturbation theory couple to all
the j ’s of the previous orders through an effective forcing term that arises in the corresponding fluctuation equation...

δxni = µ ·
∑
j,m

ηnjmi (τ)Yjm (θ, ϕ) , ηnjmi (0) = 0, i = 1, 2, 3

δyn
i = µ ·

∑
j,m

θnjmi (τ)Yjm (θ, ϕ) , θnjmi (0) = 0, i = 1, . . . , 6.

E.g. the lowest order instabilities (j = 1, 2) couple to all the modes (having different j ’s) of the first order...
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Conclusions

Conclusions

The spherically symmetric membrane in SO(3) is integrable (Axenides-Floratos-GL, 2017a).

Radial & angular perturbation analysis for the elliptic SO(3) membrane was carried out in (Axenides-Floratos-GL,
2017a, 2017b). Found instabilities...

Radial & angular perturbation analysis in the SO(3)×SO(6) case in (Axenides-Floratos-GL, 2017a, 2017b). Studied
instabilities...

Analysis of higher orders in perturbation theory... instability cascade... (Axenides-Floratos-Katsinis-GL, 2020, 2021).

Ευχαριστώ!
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