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Part | — The duality

Noether's theorem on Lorentz invariance, J* = 0, decomposes
JHY = [ 4 SV (1)

This kinematic/dynamic complementarity is made geometric by

(1 + 3)-decomposing wrt n"* = p‘;ﬁ’y + hHv,

JHY = EMY 4 {py*EM =0, H"p, =0} :=H (2)

This is a Hodge decomposition, generalization of the R3 Helmholtz
decomposition (into curl-free and divergence-free parts). For J*¥,

py*xL" =0 and S"p,=0 (SSC) (3)

Algebraically, SSC = S#¥ set as generators of the little group.



Part | — The duality

Hodge decomposition separates between electric and magnetic parts,

JHr — E,upu _ Ez/p/t + E/LV/)UPPHU (4)
where
L*p, . e
Et = ——=n" spacelike four-position
p
o )
*
PP = Piz = WH Pauli-Lubanski (position) vector
p

We call them electric/magnetic parts since, in the rest frame,

0 —n'
Hy = m . .
J ( ni EUka >+ (6)



Part | — The duality

Then, if p* +— p*, spin-orbit duality is an electric-magnetic duality,

nt — WH
= J—*xJ
WH +— —nt

Why is this a (meaningful) duality?

> It is an automorphism of structure H (original motivation).
> It preserves the Poincaré conservation laws J = p = 0.

> For F#¥, it is the usual U(1) electromagnetic duality.



Part | — The duality

e Algebraically, the Lorentz algebra so(1,3) is preserved.
(Hints: J =0 and * is a linear map that shifts orthonormal basis).

e Geometrically, J+—> xJ is a swap between rotations and boosts,
i.e. the topological invariance

RP’ xR* — R®xRP’
e Translation generators are preserved (hint: p = 0). But spacetime

transforms and those are not translations anymore. The Poincaré group
transforms.



Part | — The duality

For Poincaré generators, their possible compositions are

*(JAP J-P
W::% and N:? (7)

whereas L = N A P. Then, W generates SO(3) and N boosts,

J *J J
The duality is
N— W
&= J— 9)
W — —N

It leaves the W, N algebra invariant < so0(1,3) and H are preserved.
It does not say anything (yet) for the Poincare algebra.



Part | — The duality

The map n* — i* := WH becomes trivial at
h 1
p= VW2 = % or = % (Mgiller radius)
(10)

> p is a natural localization boundary: Classically, envelopes region of
non-covariance. Quantum-mechanically, p ~ A¢, signifies pair production.

M4

This is a conformal immersion R3 \ {0} — S2. The holographic map

[ RY¥ — S$*2xR ]




Part | — The duality

» In fact: defining the timelike position as A = %: X=A+N,
Suv

X = Ty

(11)

Formally, this means a massive theory with spin is noncommutative.
This was first seen in relativistic mechanics by [Prycel948] and
on the superparticle by [Casalbuonil976] and [Brink&Schwarz1981].

> This sets the fundamental scale at j ~ Ac, exactly on S? x R.

> It reaffirms p (where duality becomes trivial) as natural QM boundary.



Part | — The duality

QM on S$? x R is noncommutative,

S B i 5 5 &
[XM7XV] — ? (Xupu _ Xz/pu + euupaxppa_)
v (12)

p"p

(R3] = i

Minus the 3rd term, it is a k-deformation of the Poincare-Hopf algebra,
with K = m. Also,

X, 6% = _i% — Newton-Wigner localization (13)
p

In the rest frame, or in the low-energy regime,

om @F Xi
X0 X' = —i— -Minkowski
(X", X'] i — k-Minkowski (14)

[X7, XI] = —idce X, — fuzzy sphere



Part | — The duality

In QM vacuum, the duality implies

(&iy = &) (15)

o Left: | (2) = 22 2 S [ K=D0 177 g AXAY = ryy ).
m m
> Right: | (R) = (V) = —— [ 222 tAZ AX,AY £0}. "
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Part Il — Duality as a Hopf fibration

In Euclidean signature, since:

> n* (n*n, > 0) is an SO(4) rep, foliating R* into concentric S%'s,

> §% 22 SU(2) is a U(1)-bundle, since the homogeneous S? =2 SU(2)/U(1),

n* — WH = 1st Hopf map S3 i S?

In this view, the duality induces the conformal immersion

R*\ {0} 2 $*xR — S?xR (16)

11



Part Il — Duality as a Hopf fibration

Realization: SU(2) spinor ¢ : 1y = const., a hypersurface S* C C2.
The Hopf map is S — S? € R3,

v = x =y¢lely (17)

where x2 = (11)? = const. = x' € S°.

Example: the 4D CBS superparticle,

Sces = / dt e L(x* — b0 + i9049)? — em? (18)

feels the duality (true symmetry of Scgs, also acting as parity)

which realizes the Hopf map.

12



Part Il — Duality and the conformal group

RY3 + §2 x R yields that the bulk G = 1SO(1,3) transforms:

> SO(1,3) subgroup is preserved,

> translations (p = 0 preserved) are realized projectively,

[ G = SO(23) ]

e SO(2,3) = Conf(1,2) = Conf(S? x R).
e SO(1,3) is now realized as Conf(2) = Conf(S?).

e The inverse map G— G may be an Inonu-Wigner contraction.

13
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Part |1l — Dual Landau levels

The simplest arena is a spin-s charge in a uniform magnetic field,

B’ = €k 9; A, producing the Landau levels (w. = £),

?'{:i(p’#A"(xf))2 : En = w. <n+1) (20)

- 1 . X .02 ~ 1
_ i i) _ 2
H=o (' +A(%))", % 2y (n*+ n(2s+1) + )
(21)

1 . . . .
where Hopf map S3 = S? takes the U(1) connection Ai(x/) — Ai(%)),
the potential of a Dirac monopole of minimum charge.
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Part |1l — Dual Landau levels

The dual monopole problem on S? has Lowest Landau Level:

e £ (= k) =%,

o (254 1)-fold degenerate = 2s+ 1 Landau orbitals,
i.e. a spin-s SO(3) rep: fuzzy sphere.

Original postulate of the duality: the vacuum on the dual S? is a fuzzy
sphere of 25 + 1 eigenstates. v

15



Part |1l — Dual Landau levels

Taking p,s — oo, holding B = % fixed, is the thermodynamic limit,

E, — E,=uw <n o ;) (22)

» But, what is the interpretation of TL on the dual spectrum?

> The dual theory is on Conf[S? x R], hence TL is actually mandatory:

The dual spectra match, E,=E,.

16



Part 11l — Oscillator vs Ising model

For uniform B’ = eifké'jAk, the generic form of the Hamiltonian is

2
1
H= 2t ol +w B L (23)

The duality takes x' — % —and also L — S'— hence

~ w2
H:—+—;S2+wLB~5 (24)

» This is an Ising model for just one electron:

2 only makes sense on S2.

> The 1st term, with p' conjugate to &' = =

> The 2nd term is self-interaction, a QM memory term (new  old state).

> The 3rd term is the usual coupling between S’ and external B'. 17



Part 11l — Oscillator vs Ising model

Disregarding electric repulsion (wrt the external B'), consider N
electrons, i.e. the center-of-mass position x' = (xi + ...+ xj)/N,

N 5 N
1
H= E (pm+mw§x2+wLB~L> —|—mw3 E X3 Xp (25)

2m " 2
a#b
and the duality implies
. by P2 w? o, RN
H—Z(m+2m5 +CULB-5>+m§Sa'5b (26)

» This is an Ising model for N electrons:

> The new term is the known inter-site interaction. It is between all
possible spin-lattice sites: i.e. not only for next-neighbor (short-range)
interactions but for long-range ones too.

> How to interpret its independence of inter-site distance? 18
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Part IV — QFT realization

In field theory, the simplest example is QED,

2
5= / Q% WD — mib — - (27)

» In analogy, we understand the duality to:

> |leave the kinetic terms invariant,
> shift A* into a monopole,
> transform the mass term.

» The mass term should somehow transform, since:

> the dual theory on S? x R is conformal, G = SO(2,3),
> 1) is the probability density, a field analog of position.

19



Part IV — QFT realization

There is an elegant way to realize the duality. The generalized momenta
N, = id,,N, = id,1 define a kind of generalized field coordinates,

yH = 'Y and V"= — Ll

, 28
W Wer (28)

» Those make sense, because:

> V.= ?TZ is the probability density, analog of position,

> [W#, Y] = m/;S“ Y same as the underlying QM algebra.

20



Part IV — QFT realization

We may even extract a spacelike coc:Ldinate N# (analog of n*),
by considering the projector A, = i? 8M31,/p2,

W 19y 39%

= S 2
m? 4 m? 4 m2’ (29)

The numerical factors naturally decompose into timelike/spacelike dof.
Manipulating the Dirac equation, we obtain an explicit expression,

_ SHY 9,0 d N 81,1/_1 (SZZ

N 2 ' 2

(30)

Moreover, it turns out we may isolate the spatial dof into ),

P — W-N 31) o



Part IV — QFT realization

We may even define an analog of orbital angular momentum acting on
Dirac spinors,

S#PH S$¥Po
= pzp(‘)l,— p2’]8u (32)

Then, the total angular momentum generator,

£

I = g4 e, (33)

where G#¥ = S /2 satisfies the Lorentz algebra. Hence, the duality
JH — xJMV s (in this representation) J** — xJ3". Equally,

(]

where WH = (ig,, *x SHh) / p. 22



Part IV — QFT realization

Hence, the duality transforms the mass term,

U.N — WU.W (34)

or, wrt Dirac spinors,
_ Dy
myp /w%(a”*sw)w
(35)
| -
=" [e5 VP e2] rapA
Here, v# = ~v?elel: ef = 3D vielbein and e = 4D/3D duality map.
Also, A\ are Weyl spinors. Finally,

mz/;d) — :115\ ~¢ Wa 2P 7o A

where w is the spin connection on S? x R. -



Part IV — QFT realization

Hence, the duality transforms the action,
o T 7, < FY A0 il ab
SE= vy — mfnp = S = iy | Dy — ZWa” Tab A
RL3 S?xR

where N¢ massive 4D Dirac spinors realize 2/Nf massless 3D Weyl's.

» Hence, the 4D mass term transforms:

> in analogy with position, representing the probability density,
> into a massless structure, since the dual theory must be conformal,

> into exactly the spin connection needed for the dual S? x R.

24



Part IV — Path integral

For the 4D free fermion, the (Euclidean) path integral in R?,

V, 4 2
Zo = exp{(: ")1 <|og,‘:72 + finite)} (36)
T)2

For the dual two 3D massless fermions on S? x R,

Vi3 R™3 R?
Zyp = exp{— (Zﬂ)% (Iogf2 + finite)}

V3m3 ,u2 o
= e - log — finite
Xp{ (477)3( B T

where R = 1/m. The logarithm comes from finite effects on S2.

(37)

25



Part IV — Path integral

But the dual space is Conf[S? x R]. Setting g.» , . = Q2&;s, then

Zp = Zye ALLE (38)

In 3D, the conformal anomaly A comes from the boundary curvature.
However, conformally compactified R* (i.e. Q%g;:) exhibits a conformal
boundary: in this case, boundary conditions are obscure.

We suggest that A is defined via AdS/CFT [Astaneh&Solodukhin2017].
It gives a contribution of the (expected) form,
Vi R Vom? R

2 _ Vom 1% (39)

2 flom = log F_
47 R? 8 €2 47 8 m?

A

26



Part IV — Nested holography

The dual theory lives on Conf[S? x R], with G = SO(2,3) = Isom(AdS;).
This is the conformal boundary of AdS,.

> Conf[S? x R] cylinder continues inside to AdS,.

> The AdS/CFT duality, realizes a nested holography:

massive QFT  spin-orbit  (massless) CFT ~ AdS/CFT supergravity
S 2 Er— 6
on RL3 duality on S xR duality on AdS4 X M

27




thanks !
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