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The duality



Part I − The duality

Noether’s theorem on Lorentz invariance, J̇µν = 0, decomposes

Jµν = Lµν + Sµν (1)

This kinematic/dynamic complementarity is made geometric by

(1 + 3)-decomposing wrt ηµν = pµpν

p2 + hµν ,

Jµν = Eµν + Hµν : {pν ? Eµν = 0 , Hµνpν = 0} := H (2)

This is a Hodge decomposition, generalization of the R3 Helmholtz

decomposition (into curl-free and divergence-free parts). For Jµν ,

pν ? L
µν = 0 and Sµνpν = 0 (SSC) (3)

Algebraically, SSC = Sµν set as generators of the little group.
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Part I − The duality

Hodge decomposition separates between electric and magnetic parts,

Jµν = Eµpν − Eνpµ + εµνρσpρHσ (4)

where

Eµ =
Lµνpν
p2

= nµ spacelike four-position

Hµ =
pν ? Sµν

p2
= W µ Pauli-Lubanski (position) vector

(5)

We call them electric/magnetic parts since, in the rest frame,

Jµν = m

(
0 −ni

ni εijkWk

)
+

(6)
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Part I − The duality

Then, if pµ 7→ pµ, spin-orbit duality is an electric-magnetic duality,

nµ 7→W µ

W µ 7→ −nµ
⇔ J 7→ ?J

Why is this a (meaningful) duality?

. It is an automorphism of structure H (original motivation).

. It preserves the Poincarè conservation laws J̇ = ṗ = 0.

. For Fµν , it is the usual U(1) electromagnetic duality.
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Part I − The duality

• Algebraically, the Lorentz algebra so(1, 3) is preserved.

(Hints: J̇ = 0 and ? is a linear map that shifts orthonormal basis).

• Geometrically, J 7→ ?J is a swap between rotations and boosts,

i.e. the topological invariance

RP3 × R3 7→ R3 × RP3

• Translation generators are preserved (hint: ṗ = 0). But spacetime

transforms and those are not translations anymore. The Poincarè group

transforms.
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Part I − The duality

For Poincarè generators, their possible compositions are

W :=
?(J ∧ P)

P2
and N :=

J · P
P2

(7)

whereas L = N ∧ P. Then, W generates SO(3) and N boosts,

[W,W] =
J

P2
, [W,N] =

?J

P2
, [N,N] = − J

P2
(8)

The duality is

N 7→W

W 7→ −N
⇔ J 7→ ?J (9)

It leaves the W,N algebra invariant ↔ so(1, 3) and H are preserved.

It does not say anything (yet) for the Poincarè algebra.

6



Part I − The duality

The map nµ 7→ ñµ := W µ becomes trivial at

ρ =
√
W 2 =

S

m
or ρ̂ =

~
√
s(s + 1)

m
(Møller radius)

(10)

. ρ is a natural localization boundary: Classically, envelopes region of

non-covariance. Quantum-mechanically, ρ̂ ∼ λC , signifies pair production.

This is a conformal immersion R3 \ {0} → S2. The holographic map

R1,3 7→ S2 × R
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Part I − The duality

I In fact: defining the timelike position as A = DP
P2 : X = A + N,

[Xµ,Xν ] = −Sµν

P2
(11)

Formally, this means a massive theory with spin is noncommutative.

This was first seen in relativistic mechanics by [Pryce1948] and

on the superparticle by [Casalbuoni1976] and [Brink&Schwarz1981].

. This sets the fundamental scale at ρ̂ ∼ λC , exactly on S2 × R.

. It reaffirms ρ̂ (where duality becomes trivial) as natural QM boundary.
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Part I − The duality

QM on S2 × R is noncommutative,

[X̂µ, X̂ ν ] =
i

p2

(
X̂µpν − X̂ νpµ + εµνρσX̂ρpσ

)
[X̂µ, p̂ν ] = i

p̂µp̂ν

p2

(12)

Minus the 3rd term, it is a κ-deformation of the Poincarè-Hopf algebra,

with κ = m. Also,

[X̂ i , p̂0] = −i p̂
i

p̂0
→ Newton-Wigner localization (13)

In the rest frame, or in the low-energy regime,

[X̂ 0, X̂ i ] = −i X̂
i

m
→ κ-Minkowski

[X̂ i , X̂ j ] = −iλC εijk X̂k → fuzzy sphere

(14)

9



Part I − The duality

In QM vacuum, the duality implies

〈X̂ i 〉 =
〈Ŝ i 〉
m

(15)

2s + 1 states −on the dual fuzzy sphere− are uncertainty rings:

. Left: 〈Ẑ 〉 =
〈ŜZ 〉
m

=
s

m

〈X̂〉=〈Ŷ 〉=0
=======⇒ {∆Z = 0 , ∆X∆Y = rXY }.

. Right: 〈X̂ 〉 = 〈Ŷ 〉 =
s√
2m

〈Ẑ〉=0
===⇒ {∆Z ,∆X ,∆Y 6= 0}. 10



Part II

Duality as a Hopf fibration

and the conformal group



Part II − Duality as a Hopf fibration

In Euclidean signature, since:

. nµ (nµnµ > 0) is an SO(4) rep, foliating R4 into concentric S3’s,

. S3 ∼= SU(2) is a U(1)-bundle, since the homogeneous S2 ∼= SU(2)/U(1),

nµ 7→W µ = 1st Hopf map S3 S1

−→ S2

In this view, the duality induces the conformal immersion

R4 \ {0} ∼= S3 × R → S2 × R (16)
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Part II − Duality as a Hopf fibration

Realization: SU(2) spinor ψ : ψ†ψ = const., a hypersurface S3 ⊂ C2.

The Hopf map is S3 → S2 ⊂ R3,

ψ → x i = ψ†σiψ (17)

where x2 = (ψ†ψ)2 = const. ⇒ x i ∈ S2.

Example: the 4D CBS superparticle,

SCBS =

∫
dt e−1(ẋµ − i θ̇σµθ̄ + iθσµ ˙̄θ)2 − em2 (18)

feels the duality (true symmetry of SCBS , also acting as parity)

x i 7→ x̃ i = W i = θσi θ̄ (19)

which realizes the Hopf map.
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Part II − Duality and the conformal group

R1,3 7→ S2 × R yields that the bulk G = ISO(1,3) transforms:

. SO(1,3) subgroup is preserved,

. translations (ṗ = 0 preserved) are realized projectively,

G̃ = SO(2,3)

• SO(2,3) ∼= Conf(1,2) ∼= Conf(S2 × R).

• SO(1,3) is now realized as Conf(2) = Conf(S2).

• The inverse map G̃ 7→ G may be an Inonu-Wigner contraction.
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Part III

Oscillator vs Ising model



Part III − Dual Landau levels

The simplest arena is a spin-s charge in a uniform magnetic field,

B i = εijk∂jAk , producing the Landau levels (ωc = B
m ),

H =
1

2m

(
pi + Ai (x j)

)2
, En = ωc

(
n +

1

2

)
(20)

The duality R3 7→ S2 takes x i 7→ x̃ i , with x̃ i ∈ S2 (i.e. x̃2 = ρ2) and

H̃ =
1

2m

(
pi + Ai (x̃ j)

)2
, Ẽn =

1

2mρ2

(
n2 + n(2s + 1) + s

)
(21)

where Hopf map S3 S1

−→ S2 takes the U(1) connection Ai (x j) 7→ Ai (x̃ j),

the potential of a Dirac monopole of minimum charge.
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Part III − Dual Landau levels

The dual monopole problem on S2 has Lowest Landau Level:

• Ẽ0 (= E0) = ωc

2 ,

• (2s + 1)-fold degenerate = 2s + 1 Landau orbitals,

i.e. a spin-s SO(3) rep: fuzzy sphere.

l

Original postulate of the duality: the vacuum on the dual S2 is a fuzzy

sphere of 2s + 1 eigenstates. X
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Part III − Dual Landau levels

Taking ρ, s →∞, holding B = s
ρ2 fixed, is the thermodynamic limit,

Ẽn
TL−→ En = ωc

(
n +

1

2

)
(22)

I But, what is the interpretation of TL on the dual spectrum?

. The dual theory is on Conf[S2 × R], hence TL is actually mandatory:

The dual spectra match, Ẽn = En.
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Part III − Oscillator vs Ising model

For uniform B i = εijk∂jAk , the generic form of the Hamiltonian is

H =
p2

2m
+

1

2
mω2

cx
2 + ωLB · L (23)

The duality takes x i 7→ S i

m −and also Li 7→ S i− hence

H̃ =
p2

2m
+
ω2
c

2m
S2 + ωLB · S (24)

I This is an Ising model for just one electron:

. The 1st term, with pi conjugate to x̃ i = S i

m , only makes sense on S2.

. The 2nd term is self-interaction, a QM memory term (new ∝ old state).

. The 3rd term is the usual coupling between S i and external B i . 17



Part III − Oscillator vs Ising model

Disregarding electric repulsion (wrt the external B i ), consider N

electrons, i.e. the center-of-mass position x i = (x i1 + . . .+ x iN)/N,

H =
N∑(

p2

2m
+

1

2
mω2

cx
2 + ωLB · L

)
+ mω2

c

N∑
a 6=b

xa · xb (25)

and the duality implies

H̃ =
N∑(

p2

2m
+
ω2
c

2m
S2 + ωLB · S

)
+
ω2
c

m

N∑
a 6=b

Sa · Sb (26)

I This is an Ising model for N electrons:

. The new term is the known inter-site interaction. It is between all

possible spin-lattice sites: i.e. not only for next-neighbor (short-range)

interactions but for long-range ones too.

. How to interpret its independence of inter-site distance? 18



Part IV

QFT realization



Part IV − QFT realization

In field theory, the simplest example is QED,

S =

∫
d4x iψ̄ /Dψ −mψ̄ψ − F 2

4
(27)

I In analogy, we understand the duality to:

. leave the kinetic terms invariant,

. shift Aµ into a monopole,

. transform the mass term.

I The mass term should somehow transform, since:

. the dual theory on S2 × R is conformal, G̃ = SO(2,3),

. ψ̄ψ is the probability density, a field analog of position.
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Part IV − QFT realization

There is an elegant way to realize the duality. The generalized momenta

Πµ = i∂µψ, Π̄µ = i∂µψ̄ define a kind of generalized field coordinates,

Ψµ :=
γµψ

2
√
−p2

and Ψ
µ

:= − ψ̄γµ

2
√
−p2

, (28)

I Those make sense, because:

. Ψ ·Ψ = ψ̄ψ
m2 is the probability density, analog of position,

. [Ψ
µ
,Ψν ] = − iψ̄ Sµνψ

p2 , same as the underlying QM algebra.
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Part IV − QFT realization

We may even extract a spacelike coordinate Nµ (analog of nµ),

by considering the projector Aµν = i2
←−
∂ µ
−→
∂ ν/p

2,

Ψ · N = Ψ ·Ψ−Ψ · (A ·Ψ) =
ψ̄ψ

m2
− 1

4

ψ̄ψ

m2
=

3

4

ψ̄ψ

m2
, (29)

The numerical factors naturally decompose into timelike/spacelike dof.

Manipulating the Dirac equation, we obtain an explicit expression,

Nµ :=
Sµν∂νψ

p2
and N

µ
:=

∂νψ̄ Sνµ

p2
. (30)

Moreover, it turns out we may isolate the spatial dof into ψ̄ψ,

ψ̄ψ → Ψ · N (31) 21



Part IV − QFT realization

We may even define an analog of orbital angular momentum acting on

Dirac spinors,

Lµν :=
Sµρ∂ρ
p2

∂ν −
Sνρ∂ρ
p2

∂µ (32)

Then, the total angular momentum generator,

Jµν = Lµν + Sµν , (33)

where Sµν = Sµν/2, satisfies the Lorentz algebra. Hence, the duality

Jµν 7→ ?Jµν is (in this representation) Jµν 7→ ?Jµν . Equally,

Nµ 7→ Wµ

where Wµ = (i
−→
∂ ν ? Sµνψ)/p2. 22



Part IV − QFT realization

Hence, the duality transforms the mass term,

Ψ̄ · N 7→ Ψ̄ ·W (34)

or, wrt Dirac spinors,

m ψ̄ψ 7→ i
ψ̄γµ

2
(∂ν ? Sµν)ψ

=
i

4
λ̄γα

[
ebβ ∇βeaα

]
σabλ

(35)

Here, γµ = γaeαa e
µ
α : eαa = 3D vielbein and eµα = 4D/3D duality map.

Also, λ are Weyl spinors. Finally,

m ψ̄ψ 7→ i

4
λ̄ γα ωα

ab σab λ

where ω is the spin connection on S2 × R. 23



Part IV − QFT realization

Hence, the duality transforms the action,

S =

∫
R1,3

iψ̄ /Dψ −mψ̄ψ 7→ S̃ =

∫
S2×R

i λ̄γα
(
Dα −

1

4
ωα

ab σab

)
λ

where Nf massive 4D Dirac spinors realize 2Nf massless 3D Weyl’s.

I Hence, the 4D mass term transforms:

. in analogy with position, representing the probability density,

. into a massless structure, since the dual theory must be conformal,

. into exactly the spin connection needed for the dual S2 × R.
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Part IV − Path integral

For the 4D free fermion, the (Euclidean) path integral in R4,

Z4D = exp

{
−V4 m

4

(4π)
4
2

(
log

µ2

m2
+ finite

)}
(36)

For the dual two 3D massless fermions on S2 × R,

Z3D = exp

{
−V3 R

−3

(4π)
3
2

(
log

R2

ε2
+ finite

)}

= exp

{
−V3 m

3

(4π)
3
2

(
log

µ2

m2
+ finite

)} (37)

where R = 1/m. The logarithm comes from finite effects on S2.
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Part IV − Path integral

But the dual space is Conf[S2 × R]. Setting gS2 × R = Ω2g̃R3 , then

Z3D = Z̃3D e
−A[Ω,g̃ ] (38)

In 3D, the conformal anomaly A comes from the boundary curvature.

However, conformally compactified R4 (i.e. Ω2g̃R3 ) exhibits a conformal

boundary: in this case, boundary conditions are obscure.

We suggest that A is defined via AdS/CFT [Astaneh&Solodukhin2017].

It gives a contribution of the (expected) form,

A ∝ V2

4πR2
log

R2

ε2
=

V2 m
2

4π
log

µ2

m2
(39)
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Part IV − Nested holography

The dual theory lives on Conf[S2 ×R], with G̃ = SO(2,3) = Isom(AdS4).

This is the conformal boundary of AdS4.

. Conf[S2 × R] cylinder continues inside to AdS4.

. The AdS/CFT duality, realizes a nested holography:

massive QFT

on R1,3

spin-orbit−−−−−⇀↽−−−−−
duality

(massless) CFT

on S2 × R
AdS/CFT−−−−−⇀↽−−−−−

duality

supergravity

on AdS4 ×M6
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The end

thanks!
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