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Renormalization group rlow

- Consider interacting d.o.f. with various scales
(interaction energies, masses, etc)

- In deep IR limit, we are left with a scale invariant
theory: Conformal field theory quantum

critical
: . : _ classical =~
- Usually very simple! But occasionally interesting critical

ordered disordered
state state

- Ex: 2nd order phase transition:

- Ordered state IR: free goldstones (interactions
irrelevant) <@> e (p —p )g
C

- Disordered state IR: empty (everything massive)

|
(6()0)) ~ —

. Critical point: Massless theory, with novel scaling | x — y |
behavior



Renormalization group rlow

- We know a lot about RG flows when things are Poincare
invariant - what if they aren’t?

- Gluing two different systems together along a shared CFTA
boundary
- Lower dimensional system interacting with bulk ambient
theory
CFT “B”

- Line defect inserted into larger theory

- How do RG flows behave here? What types of scale invariant
fixed points?

. Can we generalize ¢/ F/a theorems to mixed dimensional
systems? (monotonic measures of # d.o.f)

- Extended operators are acted on by generalized symmetry
operators

D5-brane




Renormalization group rlow

. Add defect (b.c, newd.of,..)to d”—dim’l subspace 2 ina CFT

- Take this whole system and flow to the infrared, resulting in a new mixed-
dimensional scale invariant system

- |f ambient space and defect are both flat, then
. 50d,2) — SO(d”,Z) X S0(d,)

- Lower dimensional system is not standard CFT, as there is no
conserved stress tensor, V ﬂT/“‘i = 6(X)D' £ 0

- New “displacement” operator D' on the defect

Defect

h C
Dd’<J9>N 15"
| x| | x|

_ One-point functions can be nonzero, (T') ~

- Mixed system, with ambient (bulk) and defect operators



Simple example: Chern insulator
AKA Massive 2+1d fermion

« Consider a Chern insulator, modeled
by 2+1d fermion with finite mass:

.kW@—m@ﬂw=O

. Sign of mass breaks parity

- Build an interface between systems
with opposite alignment (sign of m(y))

- Away from interface, gapped (empty
CET)



Simple example: Chern insulator
AKA Massive 2+1d fermion

- Direct inspection shows that for

. W = woe—ia)t+ikxe¢M(y), F=+ o

L W) = G i = e U

. Crucially 2+1d, since then yoyl = }/2

. So for e ™M) choice, we have a normalizable chiral edge mode

80))

. Massless d.o.f., localized to edge, only moving right, not left, — = + 1

ok

- Can generalize to system with interacting ambient space d.o.f. mixing
with defect d.o.f.



Simple example: Chern insulator
AKA Massive 2+1d fermion

- Topologically protected edge state

« Yy is parity odd

« |Int. out Mmassive Dirac fermion:

sign(m) [ 1
. S9p(A) D AdA
by
I Ik
~ Away from defect, § = — AdA — — AdA
8TT . il 8T <0
. Needs X (D, — D)y for gauge invariance (anomaly inflow)

y y:O



Magnetic defects

- Magnetic defects in 3+1d system: Consider
magnetic flux for a background global symmetry

- |n the limit of infinitely thin solenoid,

» A=udl, F =251 u 6(X)

1 1

; 27:[ 2 i

. AB.phase: g = e*™, 71~ ae L

- Scale invariant co-dimension two system:

- 504,2) — SO(2,2) X SO(2)




Magnetic defects

- 504,2) —- SO(2,2) X SO(2)

- We can consider more general “flat” background
with conical deficits:

s e
L NG =T

. Thisimplies R ~ (n — 1)0(2), and may be
necessary to cancel U(1), monodromy

« Curvature version of solenoid

S e e > 1 : excess




Why conical singularity”

- Generalized background with conical singularities:
Why? R-symmetry!

- The Killing spinor equation in the boundary theory is, Defect

roughly, De = 0, + Zyaba)abﬂ = iA/gR) =0

= 1 b (R)
. Integrability: [D,,, D e = ZRab}/“ + Y 1e=0

. If we have F® = 11,6(2) pdp A d6, we can fix the
chirality of the spinor, }/126 = * € and satisfy with

+ R, ~ * 1x0'9(X) pdp A dO

. conical singularity!




Monodromy detects

- How does the system respond to the solenoid?

- By symmetries, we can have circulating currents

C(u)
02

. (Jo) = : (o) =) =0

« We also have nontrivial stress tensor

ab 3517 e 4Xiji
<Tab> o hD(M) " , <Tl'j> ey hD(M) p
; 2 F 2r p*
h
B i (dt* — dx* — dp* + 3p*d6?)

O

- We can calculate C(u), hp(u). What other data?

Defect




Monodromy detects

- Trace anomaly of 4d/2d system classified completely
(ignoring parity odd possibilities ...)

Defect

+ Standard ambient space terms, (T# ) = cW? — aE,

- A nontrivial defect gives three new central charges,

1 i
. <T’uﬂ> —_ Tﬂ- <bR(2) A dlKZbKZb L5 dQ(Cb*W)abab)

. b does not depend on defect marginal couplings (type A)
. d1,2 can (type B)

. There is a b-theorem for flows driven by defect couplings,
with b < byy



Monodromy detects

1
- 5 <bR(Z)+dKZbKZb dz(gb*W)“bab)

Defect

. For a flat defect, writing xixi = p?, recall

L W=

Y (dt* — dx* — dp* + 3p*d6*), d, = 18znhy,

. With (0,2) SUSY:

- b indep. of some bulk marginal couplings, d; = d,

nhy, d,
CR —gt =
27rp I alGm)e

<(J R)g) e



Monodromy detects

- For monodromy defects, for flavor currents

I(M)

. AUpa) =

Defect

d |
_ It was shown that —b(u) = —127r2CI(,u)
d,l/l] n

. Calculation involves relating b to on-shell action in spherical Weyl frame

meniniediatesh. we need also d,.b = — —d, + 12a
n

- Related to Weyl map which gives super-Renyi entropy

» And thus from calculating (T'), (J) we can derive b



Monodromy detects

. We could also extract b from entanglement entropy:
feitn =1

Defect

o |
Sgp = 11— —4aln(¢/e) + g(b — d,/3)In(¢/€)
€

This is a more complicated calculation we leave to
future work (hints how to proceed in literature...)

Note that the “universal” part of the entanglement
IS no longer monotonic

Unclear precisely how to generalize to general n



Holographic detects

- We wish to study holographic duals of conformal
magnetic defects - natural starting pointis #/ = 4 SYM

Defect

. Preserving only (0,2) SUSY, we can turn on
monodromies in (U(l)z)F XU(l), C SU4)x

5 e eeln ellse welnslieel e 1 = LS iineary

.« Turn on a mass for one of the three chiral multiplets in
N = 4 SYM, flows to strongly coupled A = 1 theory

» Monodromiesin U(1) X U(1), C SUR2)r X U(1)p



Holographic detects

- N = 4: Monodromies in (U(l)z)F X U(1)p

.« N = 1: Monodromies in U(1)r X U(1)p

- |f we satisfy an algebraic constraint on the monodromies, we
can also turn on the SUSY mass deformation to flow from

= dio M=

. SUSY: Dmy = 0, where D = d + A"+ Ay
« Holomorphic due to (0,2) chirality

. constant my then requires p; + iy — 3 = 0

- In this restricted case, we can then compare b, hy, at
UV and IR

Defect




Why conical singularity”

» Any time U(1)z monodromy is nonzero, SUSY puts us on
a conical background

Defect

- From holographic perspective, no big change

- Simply a modified coordinate periodicity

- Must dial n to be able to integrate b from (J), (T')

d | |
. —b(u, n) = —122°Cy(u,n), 3,b(u,n) = ——ds(,n) + 12a
du; ) )



SOme results
Lots of holography and SUSY magic under the hood

. As expected, our J = (0,2) grants us a great deal of Defoct
analytic control

- We can use conserved qguantities from the BPS
eguations to extract field asymptotics without having
explicit solutions at hand, allowing us to extract VEVs

- See the paper for the details (or Chris’ talk!)
. a lovely story for a SUGRA conference, but not here

. Instead, | will tell you some of our results



N = 4 defects

- We have three monodromy parameters ,ui, and on the
orimary branch of solutions (adiabatically connected to
the vacuum) we find

» Pp = T+ + s = k(1 — n)
. where k = * 1 is the SUSY chirality
- We will parameterize solutions by p; remembering

implicitly that we are always satisfying the above SUSY
constraint.



N = 4 defects

« Where do solutions exist? Not for all monodromies

| = Allowed LS IR

Naive Boundary

| — True Boundary

Figure 5: Solutions space of STU solutions as a function of two independent mon-

odromy parameters guq, gus for n = 1 (left plot) and n = 10 (right plot), for the

main branch of solutions with s = —x/2 (we have set kK = +1).




N = 4 defects

- Currents:
N? Mo 72
.<J1>=EM1 L L
T KN Kn
N2
(o) = — (1 +£> (1 +ﬂ>
T KN KN
2
(J3) = L (1 +ﬂ> (1 +&)
T KN KN

« Stress tensor:

s T
iy = = e () 4 ) + () = =



N = 4 defects

. To calculate b recall

| h
Wl = 100 (— Z (J)du; — 32—an) 12a _,dn
. /s

n
l

. Where a y_, = N*/4 atlarge N

- |tis a nontrivial check that the above is actually closed given our
results, subject to the constraint pp = py + Uy + p3 = k(1 — n)

- |t can be integrated to yield

O, n(F = — 1) = = 3AN*n(FV=* —dd

 Wihee = (1 +ﬂ> (1 +&> (1 +ﬁ>
KN KN KN



N = 4 defects

e by_g=—12a,_n(FY* = 1) = = 3N*n(F¥=* - 1)

e F = = <1+ﬂ) (1+&> (1+ﬁ) and
Kn Kn Kn

pi+ iy + s = k(1 = n)

- Remarkably, this agrees with free theory results (modulo
assumptions about b.c. in free system)

- When studying free field theory, there are marginal defect
oarameters related to b.c. at the core

- We can identify these b.c. to match the above precisely!

- Nominally continuous but matching fixes &; = 0 or 1



N = 4 defects

- We can also calculate the (appropriately renormalized)
on-shell action, and we find

N2
. S = —vol(AdS;)[nF"=4]
Dosi

- We can equivalently write this as

|
. S — VOl(AdS3)6_ (1261/,/=4n w5 bﬂ/=4)
T



N = 11S defects

. The mass deformation flowing to 4 = 1 LS requires

c Up=p1+py—pu3 =0

- Which leaves us with one flavor monodromy
s ep = Y
. And the U(1)p monodromy related to the conical deficit,

+ up = k(1 —n)



N = 11S defects

- Currents:
Ne
B = K 1 —n?
V7 272 n? (
= Ak 1 + :
s\ = SEZ”F o
- And as required by SUSY,
A
sl = _ﬂU]ISS)

Kn



N = 11S defects

. To calculate b recall
LS

1
db = 127> (Z ((JESYdug + (Jpyduz) — 32idn> + 124, «dn

T

Wh Gl N?at | N
, ere Nnow aLS e at large
128

- Again a nontrivial check that the above is actually closed given our results,
subject to the constraint yp = k(1 — n)

. |t can be integrated to yield

81
B — 1) = — 3—2N2n(FLS =)

4 4 2
Wl = 1+ﬂ 1+ﬁ l+ﬂ
3kn 3kn 3kn



N = 11S defects

- We can also calculate the (appropriately renormalized)
on-shell action, and we find

NZ
. S = —vol(AdS,)[nFL]
27

- We can equivalently write this as

1
= Vol(Aa’S3)6— (12a;4n — byg)
T



N = 4/1.S bulk flows

- We have calculated properties of defects for both

N = 4 and LS theories - let's compare them (when mass
def. allowed)

by | Ak ((n = D(1 + 8n + 23n%) + 4(1 + n)uz)
s =0 Ay g2
3N? - ,
b= —— ((n = DA + Tn + 19n%) + 4(1 + 2n)u;)
n

L Elist notetidnior n = 1, by ¢ = Eb/,/:4, it increases!

. Forn # 1, it can either increase or decrease!






N = 4/1.S bulk flows

- We can similarly compare the on-shell actions, which depend
only on a, b central charges.

1
.S = Vol(AdS3)6— (12an — b)

JU

- One can use our previous results to explicitly demonstrate
that Sy /S oy < 1

. (Explicit expressions ugly, in the paper)

. Strongly indicative that 12an — b is a good RG monotone






Topics I don't have time for

- Matching to free results

. Supersymmetric Renyi entropy (via the conical singularity)

A

. 'Baroque” conformal defects with my = —
P

- Details of how we extracted all these VEVs without analytic solutions

. Periodicity of monodromies / boundary conditions for regular
solutions

- The 3d/1d analog (VEVs similar, but no anomalies in 3d/1d)



Conclusions

- New extensive study of (0,2) 2d/4d magnetic defects
- Explicit expressions for new central charges
- New conjectured monotonic quantity!
e olclo:
. Scattering (two-point functions), entanglement entropy, ...

- Detailed analysis of defect core holographic renormalization
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