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Renormalization group flow
• Consider interacting d.o.f. with various scales 

(interaction energies, masses, etc) 

• In deep IR limit, we are left with a scale invariant 
theory: Conformal field theory 

• Usually very simple! But occasionally interesting 

• Ex: 2nd order phase transition: 

• Ordered state IR: free goldstones (interactions 
irrelevant) 

• Disordered state IR: empty (everything massive) 

• Critical point: Massless theory, with novel scaling 
behavior

 ⟨𝒪⟩ ∼ (p − pc)ξ

⟨𝒪(x)𝒪(y)⟩ ∼
1

|x − y |2Δ



Renormalization group flow
• We know a lot about RG flows when things are Poincare 

invariant - what if they aren’t? 

• Gluing two different systems together along a shared 
boundary 

• Lower dimensional system interacting with bulk ambient 
theory 

• Line defect inserted into larger theory 

• How do RG flows behave here? What types of scale invariant 
fixed points? 

• Can we generalize  theorems to mixed dimensional 
systems? (monotonic measures of # d.o.f.) 

• Extended operators are acted on by generalized symmetry 
operators

c/F/a

CFT “A”

CFT “B” Def

⃗x∥

⃗x⊥



Renormalization group flow
• Add defect (b.c., new d.o.f., …) to -dim’l subspace  in a CFT 

• Take this whole system and flow to the infrared, resulting in a new mixed-
dimensional scale invariant system 

• If ambient space and defect are both flat, then 

•  

• Lower dimensional system is not standard CFT, as there is no 
conserved stress tensor,  

• New “displacement” operator  on the defect 

• One-point functions can be nonzero,  

• Mixed system, with ambient (bulk) and defect operators

d∥ Σ

SO(d,2) → SO(d∥,2) × SO(d⊥)

∇μTμi = δ(Σ)D̂i ≠ 0

D̂i

⟨T⟩ ∼
hD

|x⊥ |d , ⟨Jθ⟩ ∼
C

|x⊥ |d−2 ,

Defect

⃗x∥

⃗x⊥



AKA Massive 2+1d fermion

Simple example: Chern insulator

• Consider a Chern insulator, modeled 
by 2+1d fermion with finite mass: 

•  

• Sign of mass breaks parity 

• Build an interface between systems 
with opposite alignment (sign of ) 

• Away from interface, gapped (empty 
CFT)

[iγμ∂μ − m(y)] ψ = 0

m(y)
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AKA Massive 2+1d fermion

Simple example: Chern insulator

• Direct inspection shows that for 

•  

•  

• Crucially 2+1d, since then  

• So for  choice, we have a normalizable chiral edge mode 

• Massless d.o.f., localized to edge, only moving right, not left,  

• Can generalize to system with interacting ambient space d.o.f. mixing 
with defect d.o.f.

ψ = ψ0e−iωt+ikxe∓M(y), k = ± ω

M′￼(y) = m(y), γ01ψ0 = ± ψ0

γ0γ1 = − γ2

e−M(y)

∂ω
∂k

= + 1
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AKA Massive 2+1d fermion

Simple example: Chern insulator

• Topologically protected edge state 

•  is parity odd 

• Int. out massive Dirac fermion: 

•  

• Away from defect,  

• Needs  for gauge invariance (anomaly inflow)

ψ ψ

S1PI(A) ⊃
sign(m)

2 ∫
1

4π
AdA

S =
1

8π ∫y>0
AdA −

1
8π ∫y<0

AdA

∫y=0
χ(Dt − Dx)χ
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Magnetic defects

• Magnetic defects in 3+1d system: Consider 
magnetic flux for a background global symmetry 

• In the limit of infinitely thin solenoid, 

•  

•  

• A.B. phase:  

• Scale invariant co-dimension two system: 

•

A = μdθ, F = 2π μ δ(Σ)

1
2π ∫ F =

1
2π ∮ A = μ

g = e2πiμ, μ ∼ μ + 1

SO(4,2) → SO(2,2) × SO(2)

Defect

xa
∥

xi
⊥

Σ



Magnetic defects

•  

• We can consider more general “flat” backgrounds 
with conical deficits: 

•  

•  

• This implies , and may be 
necessary to cancel  monodromy 

• Curvature version of solenoid 

•  deficit,   excess

SO(4,2) → SO(2,2) × SO(2)

ds2 = − dt2 + dx2 + dρ2 + n2ρ2dθ2

Δθ = 2π

R ∼ (n − 1)δ(Σ)
U(1)R

0 < n < 1 : n > 1 :

Defect

xa
∥

xi
⊥

Σ



Why conical singularity?
• Generalized background with conical singularities: 

Why? R-symmetry! 

• The Killing spinor equation in the boundary theory is, 

roughly,  

• Integrability:  

• If we have , we can fix the 

chirality of the spinor,  and satisfy with 

• : 

• conical singularity!

Dμϵ = ∂μ +
1
4

γabωabμ − iA(R)
μ = 0

[Dμ, Dν]ϵ = ( 1
4

Rabγab + F(R)) ϵ = 0

F(R) = μRδ(Σ) ρdρ ∧ dθ
γ12ϵ = ± ϵ

R12 ∼ ± μRδ(2)(Σ) ρdρ ∧ dθ

Defect

xa
∥

xi
⊥

Σ



Monodromy defects

• How does the system respond to the solenoid? 

• By symmetries, we can have circulating currents 

•  

• We also have nontrivial stress tensor 

•  

•  

• We can calculate . What other data?

⟨Jθ⟩ =
C(μ)
ρ2

, ⟨Jρ⟩ = ⟨Jx∥
⟩ = 0

⟨Tab⟩ = −
hD(μ)

2π
ηab

ρ4
, ⟨Tij⟩ = +

hD(μ)
2π

3δij − 4
xi

⊥x j
⊥

ρ2

ρ4

⟨T⟩ =
hD(μ)
2πρ4 (dt2 − dx2 − dρ2 + 3ρ2dθ2)

C(μ), hD(μ)

Defect

xa
∥

xi
⊥

Σ



Monodromy defects

• Trace anomaly of 4d/2d system classified completely 
(ignoring parity odd possibilities …) 

• Standard ambient space terms,  

• A nontrivial defect gives three new central charges, 

•  

•  does not depend on defect marginal couplings (type A) 

•  can (type B) 

• There is a -theorem for flows driven by defect couplings, 
with 

⟨Tμ
μ⟩ = cW2 − aE4

⟨Tμ
μ⟩ = −

1
24π (bR(Σ) + d1K̃

μ
abK̃ab

μ − d2(ϕ*W )ab
ab)

b

d1,2

b
bIR < bUV

Defect

Defect

xa
∥

xi
⊥

Σ



Monodromy defects

•  

• For a flat defect, writing , recall 

• ,   

• With  SUSY: 

•  indep. of some bulk marginal couplings,  

•

⟨Tμ
μ⟩ = −

1
24π (bR(Σ) + d1K̃

μ
abK̃ab

μ − d2(ϕ*W )ab
ab)

xi
⊥xi

⊥ = ρ2

⟨T⟩ =
hD

2πρ4 (dt2 − dx2 − dρ2 + 3ρ2dθ2) d2 = 18πnhD

(0,2)

b d1 = d2

⟨(JR)θ⟩ =
nhD

2πρ2
, CR =

nhD

2π
=

d2

(6π)2

Defect

Defect

xa
∥

xi
⊥

Σ



Monodromy defects

• For monodromy defects, for flavor currents 

• , 

• It was shown that  

• Calculation involves relating  to on-shell action in spherical Weyl frame 

• To integrate  we need also  

• Related to Weyl map which gives super-Renyi entropy  

• And thus from calculating  we can derive 

⟨(JI)θ⟩ =
CI(μ)

ρ2

d
dμI

b(μ) =
1
n

12π2CI(μ)

b

b ∂nb = −
1
n

d2 + 12a

⟨T⟩, ⟨J⟩ b

Defect

Defect

xa
∥

xi
⊥

Σ



Monodromy defects

• We could also extract  from entanglement entropy: 
for  

•  

• This is a more complicated calculation we leave to 
future work (hints how to proceed in literature…) 

• Note that the “universal” part of the entanglement 
is no longer monotonic 

• Unclear precisely how to generalize to general 

b
n = 1

SEE = γ1
ℓ2

ϵ2
− 4a ln(ℓ/ϵ) +

1
3

(b − d2/3)ln(ℓ/ϵ)

n

Defect

xa
∥

xi
⊥

Σ



Holographic defects

• We wish to study holographic duals of conformal 
magnetic defects - natural starting point is  SYM 

• Preserving only  SUSY, we can turn on 
monodromies in  

• We can also consider the  LS theory 

• Turn on a mass for one of the three chiral multiplets in 
 SYM, flows to strongly coupled  theory 

• Monodromies in 

𝒩 = 4

(0,2)
(U(1)2)F × U(1)R ⊂ SU(4)R

𝒩 = 1

𝒩 = 4 𝒩 = 1

U(1)F × U(1)R ⊂ SU(2)F × U(1)R

Defect

xa
∥

xi
⊥

Σ



Holographic defects

• : Monodromies in  

• : Monodromies in  

• If we satisfy an algebraic constraint on the monodromies, we 
can also turn on the SUSY mass deformation to flow from 

 to  

• SUSY: , where  

• Holomorphic due to  chirality 

• constant  then requires  

• In this restricted case, we can then compare  at               
UV and IR

𝒩 = 4 (U(1)2)F × U(1)R

𝒩 = 1 U(1)F × U(1)R

𝒩 = 4 𝒩 = 1

DmF = 0 D = ∂ + i(A1 + A2 − A3)

(0,2)

mF μ1 + μ2 − μ3 = 0

b, hD

Defect

xa
∥

xi
⊥

Σ



Why conical singularity?

• Any time  monodromy is nonzero, SUSY puts us on              a  
a conical background 

• From holographic perspective, no big change 

• Simply a modified coordinate periodicity 

• Must dial  to be able to integrate  from  

• ,  

U(1)R

n b ⟨J⟩, ⟨T⟩

d
dμI

b(μ, n) =
1
n

12π2CI(μ, n) ∂nb(μ, n) = −
1
n

d2(μ, n) + 12a

Defect

xa
∥

xi
⊥

Σ



Lots of holography and SUSY magic under the hood

Some results

• As expected, our  grants us a great deal of 
analytic control 

• We can use conserved quantities from the BPS 
equations to extract field asymptotics without having 
explicit solutions at hand, allowing us to extract VEVs 

• See the paper for the details (or Chris’ talk!) 

• a lovely story for a SUGRA conference, but not here 

• Instead, I will tell you some of our results

𝒩 = (0,2) Defect

xa
∥

xi
⊥

Σ



 defects𝒩 = 4
• We have three monodromy parameters , and on the 

primary branch of solutions (adiabatically connected to 
the vacuum) we find 

•  

• where  is the SUSY chirality 

• We will parameterize solutions by  remembering 
implicitly that we are always satisfying the above SUSY 
constraint.

μi

μR = μ1 + μ2 + μ3 = κ(1 − n)

κ = ± 1

μi



 defects𝒩 = 4
• Where do solutions exist? Not for all monodromies
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Figure 5: Solutions space of STU solutions as a function of two independent mon-

odromy parameters gµ1, gµ2 for n = 1 (left plot) and n = 10 (right plot), for the

main branch of solutions with s = �/2 (we have set  = +1).

solid blue line is the boundary of the region where the STU defect solutions actually

exist.20 We have also plotted the naive bounds on the gµi for various sub-classes of

solutions: (i) the restricted STU solutions with gµB = �n (red line) and (ii) the

defect solutions with gµ3 = 0 and enhanced N = (2, 2) supersymmetry (green line);

for both of these cases we find that the naive bound is actually the true bound on the

space of solutions. (iii) STU defects with gµB = 0 (dashed purple line); for this case

when n = 1, so gµR = 0, we have gµB = 0 implies that gµ3 = 0 and so the green line

is coincident with the dashed purple line for n = 1. Also for this case, we see in the

right plot that when n = 10, the true bound for gµB = 0, which lies inside the blue

solid curve, is more restricted than the naive bound. Finally we have also marked on

top of the dashed purple line, the bound for the existence of LS solutions lying on

the main branch, |gµF | < n+ 1
2 , given in (4.9).

A number of further comments are also now in order. Firstly, for the STU so-

lutions, if in addition to the constraint on the R-symmetry source given in (5.1) we

also impose gµB = �n then one recovers the results for the restricted STU solutions

discussed in previous sections, as expected. In particular, the core values of ↵, � and

V take the attractor values given in (4.8). We plot a restricted STU solution in figure

6 with n = 1 for comparison with the previous solutions with ' 6= 0 in figures 3 and

4. Also, as we have just noted, the restricted STU solutions appear to exist for values

of the monodromy parameters consistent with the naive bound (the red lines in figure

20
There is an interesting interplay with the complementary existence of spindle type solutions as

discussed in the context of minimal gauged supergravity in appendix G.

40



 defects𝒩 = 4
• Currents: 

• ,

,

 

• Stress tensor: 

•

⟨J1⟩ =
N2

4π2
μ1 (1 +

μ2

κn ) (1 +
μ3

κn )
⟨J2⟩ =

N2

4π2
μ2 (1 +

μ3

κn ) (1 +
μ1

κn )
⟨J3⟩ =

N2

4π2
μ3 (1 +

μ1

κn ) (1 +
μ2

κn )

hD = −
2π
3κn (⟨J1⟩ + ⟨J2⟩ + ⟨J3⟩) = −

2π
κn

⟨J𝒩=4
R ⟩



 defects𝒩 = 4
• To calculate  recall

 

• Where  at large  

• It is a nontrivial check that the above is actually closed given our 
results, subject to the constraint  

• It can be integrated to yield 

•  

• Where 

b

db = 12π2 ( 1
n ∑

i

⟨Ji⟩dμi − 3
hD

2π
dn) + 12a𝒩=4dn

a𝒩=4 = N2/4 N

μR = μ1 + μ2 + μ3 = κ(1 − n)

b𝒩=4 = − 12a𝒩=4n(F𝒩=4 − 1) = − 3N2n(F𝒩=4 − 1)

F𝒩=4 = (1 +
μ1

κn ) (1 +
μ2

κn ) (1 +
μ3

κn )



 defects𝒩 = 4
•  

• Where  and 

 

• Remarkably, this agrees with free theory results (modulo 
assumptions about b.c. in free system) 

• When studying free field theory, there are marginal defect 
parameters related to b.c. at the core 

• We can identify these b.c. to match the above precisely! 

• Nominally continuous but matching fixes  or 

b𝒩=4 = − 12a𝒩=4n(F𝒩=4 − 1) = − 3N2n(F𝒩=4 − 1)

F𝒩=4 = (1 +
μ1

κn ) (1 +
μ2

κn ) (1 +
μ3

κn )
μ1 + μ2 + μ3 = κ(1 − n)

ξi = 0 1



 defects𝒩 = 4
• We can also calculate the (appropriately renormalized)         

on-shell action, and we find 

•  

• We can equivalently write this as 

•

S =
N2

2π
vol(AdS3)[nF𝒩=4]

S = vol(AdS3)
1

6π (12a𝒩=4n − b𝒩=4)



 LS defects𝒩 = 1
• The mass deformation flowing to  LS requires 

•  

• Which leaves us with one flavor monodromy  

•  

• And the  monodromy related to the conical deficit, 

•

𝒩 = 1

μB = μ1 + μ2 − μ3 = 0

μF = μ1 − μ2

U(1)R

μR = κ(1 − n)



 LS defects𝒩 = 1
• Currents: 

•  

•  

• And as required by SUSY, 

•

⟨JLS
R ⟩ =

N2

32π2
κ

n + 1
n2 (1 − n2 − μ2

F)

⟨JF⟩ =
N2

8π2
μF (1 +

1
2n )

hD = −
2π
κn

⟨JLS
R ⟩



 LS defects𝒩 = 1
• To calculate  recall

 

• Where now  at large  

• Again a nontrivial check that the above is actually closed given our results, 
subject to the constraint  

• It can be integrated to yield 

•  

• Where 

b

db = 12π2 ( 1
n (⟨JLS

R ⟩dμR + ⟨JF⟩dμF) − 3
hLS

D

2π
dn) + 12aLSdn

aLS =
27

128
N2 N

μR = κ(1 − n)

bLS = − 12aLSn(FLS − 1) = −
81
32

N2n(FLS − 1)

FLS = (1 +
4μ1

3κn ) (1 +
4μ2

3κn ) (1 +
2μ3

3κn )



• We can also calculate the (appropriately renormalized)         
on-shell action, and we find 

•  

• We can equivalently write this as 

•

S =
N2

2π
vol(AdS3)[nFLS]

S = vol(AdS3)
1

6π (12aLSn − bLS)

 LS defects𝒩 = 1



• We have calculated properties of defects for both 
 and LS theories - let’s compare them (when mass 

def. allowed) 

•  

•  

• First, note that for , , it increases! 

• For , it can either increase or decrease!

𝒩 = 4

b𝒩=4 |μB=0 =
3N2

32n2 ((n − 1)(1 + 8n + 23n2) + 4(1 + n)μ2
F)

bLS =
3N2

32n2 ((n − 1)(1 + 7n + 19n2) + 4(1 + 2n)μ2
F)

n = 1 bLS =
3
2

b𝒩=4

n ≠ 1

/LS bulk flows𝒩 = 4



/LS bulk flows - 𝒩 = 4 bIR/bUV



• We can similarly compare the on-shell actions, which depend 
only on  central charges. 

•  

• One can use our previous results to explicitly demonstrate 
that  

• (Explicit expressions ugly, in the paper) 

• Strongly indicative that  is a good RG monotone

a, b

S = vol(AdS3)
1

6π (12an − b)

SLS /S𝒩=4 < 1

12an − b

/LS bulk flows𝒩 = 4



/LS bulk flows - 𝒩 = 4 SIR/SUV



Topics I don’t have time for

• Matching to free results 

• Supersymmetric Renyi entropy (via the conical singularity) 

• “Baroque” conformal defects with  

• Details of how we extracted all these VEVs without analytic solutions 

• Periodicity of monodromies / boundary conditions for regular 
solutions 

• The 3d/1d analog (VEVs similar, but no anomalies in 3d/1d)

mF =
λ
ρ



Conclusions

• New extensive study of  2d/4d magnetic defects 

• Explicit expressions for new central charges 

• New conjectured monotonic quantity! 

• To do: 

• Scattering (two-point functions), entanglement entropy, … 

• Detailed analysis of defect core holographic renormalization

(0,2)



Thank you!

the preserved supersymmetry rotates between being chiral at one pole to anti-chiral at the other. Very
recently Inglese, Martelli and Pittelli have constructed a generalized supersymmetric index for both twist
and anti-twist spindles [13].

The second object of interest in this project is the S-fold - so named due to the fact that one
must now extend the notion of gluing charts together beyond simple di↵eomorphisms to include non-
trivial S-duality actions. Here we consider quantum field theory or string theory with non-perturbative
strong/weak dualities related by some duality group - a standard example for gauge theories and string
theory is G = SL(2,Z). For example, hyperbolic S-fold compactification is accomplished by taking a
theory on an S1 with nontrivial SL(2,Z) monodromy. The geometric data for this compactification
includes, among other things, a complex function ⌧ transforming under linear fractional transformations.
Under standard compactifications one would requite that ⌧ , as a simple function, is directly identified
under gluing of charts together. However, when considering for instance the sigma-model description
underlying a string theory construction, one may consider more general gluings which involve a nontrivial
duality group action. Such a transformation is non-perturbative in nature and leads to intrinsically strongly
coupled field theories, but thanks to the power of supersymmetry and precision holography we are able to
study them.

Figure 1: Left: two spindles, WCP1
[2,1] and WCP1

[3,2], color graded by their curvature. Right: A schematic

diagram of an S-fold compactification as a twisted circle bundle over R2 - that is, with non-standard
boundary conditions.

Supersymmetric S-folds of the IIB string [16] are dual to wrapping N = 4 super Yang-Mills (SYM)
on a circle with a monodromy. These are sometimes called T-folds, where one interprets the SL(2,Z)
structure as coming from a torus fibration in F theory. Like spindles, S-fold circle reductions have only
recently been constructed [17], and are subtly related to the physics of interfaces. They can be considered
as a method of taking in isolation a co-dimension one defect CFT, separating the localized theory on the
interface from the extended bulk system. There has been a great deal of recent excitement studying these
both on their own and in relation to such defects [18–23], and is an exciting and active area of research.
Due to the common occurrence of such non-perturbative duality groups in string theory and field theory,
there will be many more examples of S-fold compactifications to be discovered.

In both of these cases, spindles and S-folds, a key question is understanding how we can ensure that
considering new singular or non-geometric backgrounds can still be well-posed in the context of string the-
ory, at the level of the worldsheet sigma model as well as e↵ective supergravity and D-brane descriptions.
The goal of this research project is to study these objects in the context of string theory and compacti-
fication, via direct dimensional reduction or more general wrapped brane scenarios (see a detailed action
plan in Approach section below). Using the powerful tools of holography and supersymmetry, we can
study these systems both on the field theory and gravity sides of the AdS/CFT correspondence. Super-
symmetry is a now common mathematical tool which simultaneously can greatly simplify computations in
the systems we study as well as guaranteeing their stability and well-posedness. However, the extension
of spinors and supersymmetry to these new compactifications, generalising the work of Festuccia and
Seiberg [24] can be subtle and complex [8, 21, 22], and is one of the reasons that they are only now being
investigated.
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