Critical Dynamics - Theory

Yukinao Akamatsu (Osaka)

Tutorial Workshop for High Energy Heavy-Ion Collisions Osaka University, August 6-8, 2024

- 1. Location and existence of QCD critical point is still unclear
- 2. QCD critical point ∼ Ising model
	- \blacktriangleright Why baryon number fluctuations?
	- \blacktriangleright Why higher order cumulants?
- 3. Non-equilibrium condition hinders critical fluctuation to equilibrate
	- \triangleright No divergence even when the system passes the critical point
	- \triangleright Need to be considered in experimental critical point search

Contents

- 1. [Location of QCD critical point](#page-3-0)
- 2. [Critical fluctuations](#page-15-0)
- 3. [Critical dynamics](#page-27-0)
- 4. [Summary](#page-36-0)

Contents

1. [Location of QCD critical point](#page-3-0)

- 2. [Critical fluctuations](#page-15-0)
- 3. [Critical dynamics](#page-27-0)
- 4. [Summary](#page-36-0)

Lattice QCD has the sign problem at finite μ

Path integral for QCD partition function

$$
Z(\beta, \mu) = e^{P(T, \mu)V/T} = \text{Tr}e^{-\beta(H - \mu N)}
$$

$$
= \int \mathcal{D}U \underbrace{\det[\mathcal{D}(U) + m_q - \mu \gamma_4]}_{\text{complex "probability" at } \mu \neq 0} e^{S_E[U]}
$$

Monte Carlo method fails \rightarrow several attempts

- \blacktriangleright Taylor expansion
- \blacktriangleright Canonical approach
- \blacktriangleright Reweighting method
- \blacktriangleright Imaginary chemical potential
- \blacktriangleright Lefschetz thimble
- \blacktriangleright Path optimization

. . .

 \blacktriangleright Complex Langevin method

QCD phase diagram by reweighting method

Phase quenching reweighting method

$$
\langle O \rangle = \frac{\int dx O(x)P(x)}{\int dx P(x)} = \frac{\int dx O(x) e^{i\theta(x)} |P(x)|}{\int dx |P(x)|} / \underbrace{\int dx e^{i\theta(x)} |P(x)|}_{\sim 0 \text{ at large } V, \beta, \mu}
$$

 $[e]$ Fodor-Katz, JHEP04(2004)050]

Several approaches presented at CPOD2024

- \blacktriangleright Lattice QCD with Taylor expansions \leftarrow
- \blacktriangleright Lee-Yang edge singularities \leftarrow
- **Dyson-Schwinger equations**
- \blacktriangleright Functional renormalization group
- \blacktriangleright Black hole engineering \leftarrow

[Borsanyi @CPOD2024]

Several approaches presented at CPOD2024

- \blacktriangleright Lattice QCD with Taylor expansions \leftarrow
- \blacktriangleright Lee-Yang edge singularities \leftarrow
- **Dyson-Schwinger equations**
- \blacktriangleright Functional renormalization group
- ► Black hole engineering ←

[Stephanov @Lattice2006] point are model predictions: NJLa89, NJLB89 – [12], RM98 – [13], RM98 – [15], R

Lattice QCD with Taylor expansions

e

Basic idea: Expand $P(T,\mu)$ in terms of μ *^j M*′ **.** (B.4) **.**

$$
\begin{aligned}\n\text{attice QCD with Taylor expansions} \\
\text{Basic idea: Expand } P(T, \mu) \text{ in terms of } \mu \\
\frac{P(T, \mu)}{T^4} &= \frac{P(T, 0)}{T^4} + \frac{1}{2!} \frac{\mu^2}{T^2} \chi_2(T) + \frac{1}{4!} \frac{\mu^4}{T^4} \chi_4(T) + \cdots \\
e^{P(T, \mu)V/T} &= \int \mathcal{D}U \det[\varphi(U) + m_q - \mu \gamma_4] e^{S_E[U]}\n\end{aligned}
$$

Lattice calculation of χ_{2n} involves expansion of $\det(\cdots)$

[Borsanyi et al, JHEP10(2018)205] be used in each factor. Alternatively, the expectation value of the bias has to be subtracted.

Taylor coefficients up to μ^8 $(1/2)$

Budapest-Wuppertal: First results of $\chi_{6,8}$ with continuum extrapolation

upper (lower) panels: $\mu_S = 0$ ($n_S = 0$) s_1 continuum s_1

[Borsanyi et al, 2312.07528] in contrast to the continuum, the free energy gets contri-*^B*

Taylor coefficients up to μ^8 (2/2)

Hot QCD Collaboration: Continuum extrapolation up to $\chi_4?$

[Bollweg et al, PRD105(2022)074511]

What can we learn from χ_{2-8} ? – Padé approximation (1/2)

1. Taylor series up to μ^8

$$
\frac{P(\mu) - P(0)}{T^4} = P_2 \hat{\mu}^2 + P_4 \hat{\mu}^4 + P_6 \hat{\mu}^6 + P_8 \hat{\mu}^8, \quad \hat{\mu} = \frac{\mu}{T}
$$

$$
\frac{P_4 \Delta P(\mu)}{P_2^2 T^4} = \bar{x}^2 + \bar{x}^4 + c_6 \bar{x}^6 + c_8 \bar{x}^8, \quad \bar{x} = \sqrt{\frac{P_4}{P_2}} \hat{\mu}
$$

2. [4,4] Padé approximation

$$
\frac{P_4\Delta P(\mu)}{P_2^2 T^4} \simeq \underbrace{(1-c_6)\bar{x}^2 + (1-2c_6+c_8)\bar{x}^4}_{4 \text{ poles in complex } \bar{x} \text{ plane}} = P[4, 4]
$$

What can we learn from χ_{2-8} ? – Padé approximation (2/2)

3. Poles in complex $\hat{\mu}$ plane (nearest to the origin)

 $[Bollweg et al, PRD105(2022)074511]$ \mathbf{r} are sults for the case \mathbf{r} , is spin symmetric case (right).

- 4. Critical point is unlikely to exist in 135 ≤ *T* ≤ 165 MeV
► Because poles are away from real $\hat{\mu}$ $\mathbf{C} \mathbf{v}$
- \blacktriangleright Because poles are away from real $\hat \mu$
- **Exercise poles are away from real** \blacktriangleright It may exist below $T = 135$ MeV
	- ► Conformal Padé approach can be more quantitative [Basar, 2112.06952] shown in Fig. 6. Only the two poles in the region

What can we learn from χ_{2-8} ? – Black hole engineering (1/2)

1. Black hole solutions of Einstein-Maxwell-Dilaton equations

$$
S = \frac{1}{2\kappa_5} \int_{\mathcal{M}_5} d^5 x \sqrt{-g} \Big[R - \frac{(\partial \phi)^2}{2} - \underbrace{V(\phi)}_{s^{\text{lat}}} - \frac{F_{\mu\nu}^2}{4} \underbrace{f(\phi)}_{\chi_2^{\text{lat}}} \Big]
$$

Determine $V(\phi)$ and $f(\phi)$ by fitting $s^{\text{lat}}(T, \mu = 0)$ and $\chi_2^{\text{lat}}(T, \mu = 0)$ Introduce dilaton ϕ for non-conformal systems

2. Calculate the phase diagram for a particular $V(\phi)$ and $f(\phi)$

[Hippert et al, 2309.00579]

What can we learn from χ_{2-8} ? – Black hole engineering (2/2)

3. Systematics with Bayesian inference

[Hippert et al, 2309.00579]

- ▶ PHA and PA: parametrizations of $V(\phi)$ and $f(\phi)$ with ~ 10 parameters
- \blacktriangleright No critical point in 20% of prior samples
- Predicts a critical point at $(T_c, \mu_c) \sim (105 \text{ MeV}, 580 \text{ MeV})$ SC0022023, DE-SC0023861. This work was supported in

Contents

- 1. [Location of QCD critical point](#page-3-0)
- 2. [Critical fluctuations](#page-15-0)
- 3. [Critical dynamics](#page-27-0)
- 4. [Summary](#page-36-0)

Critical point search in heavy-ion collisions

Obstacles

- \triangleright System size is finite \leftarrow
- \triangleright System lifetime is finite
- \triangleright System is non-equilibrium

Goal of this section

- \triangleright Basics of the QCD critical point
- \blacktriangleright Why baryon number fluctuations?
- \blacktriangleright Why higher order fluctuations?

Phase transition in the mean field approximation

1. Double-well potential

$$
f(\phi) = \frac{1}{2}a\phi^2 + \frac{1}{4}b\phi^4 - h\phi, \quad b > 0
$$

2. Phase diagram and symmetry breaking

Lesson: identify the symmetry (Z_2) and find the order parameter (ϕ)

QCD phase transition in the mean field approximation

- 1. Symmetry for massless quarks: $\text{SU}(N_f)_L \otimes \text{SU}(N_f)_R$
- 2. Order parameter: $N_f \times N_f$ matrix $\Sigma \to$ construct $f(\Sigma)$
- 3. Columbia plot: Order of phase transition at finite T and $\mu = 0$

[de Forcrand and D'Elia (2017)]

QCD critical point in the mean field approximation

1. Columbia plot indicates its existence

2. Z_2 universality class: same with Ising model and liquid-gas transition

We can use the critical exponents of Ising model for *static* observables

Mapping Ising model on QCD phase diagram

Mapping

[Pradeep-Sogabe-Stephanov-Yee (24)]

Isentropic trajectories on QCD phase diagram $(1/2)$

Non-monotonicity of s/n on $T_{h=0}(\mu)$

[Pradeep-Sogabe-Stephanov-Yee (24)]

Isentropic trajectories on QCD phase diagram (2/2)

Simple geometric picture on (*s*, *n*) plane

Generalization of Fig.1 of [Akamatsu-Teaney-Yan-Yin (19)]

Critical fluctuations of QCD critical point

1. Ising model: $r = a - a_c$

2. QCD critical point: $\varphi \equiv \langle \overline{q}q \rangle - \langle \overline{q}q \rangle_c$

$$
\frac{\partial}{\partial \hat{h}} \leftrightarrow \varphi, \quad \frac{\partial}{\partial \hat{r}} \leftrightarrow \varphi^2
$$

3. QCD thermodynamics

$$
\frac{\partial}{\partial \hat{h}} = c_1 \frac{\partial}{\partial \beta} + c_2 \frac{\partial}{\partial (\beta \mu)} \leftrightarrow c_1 \underbrace{(e - e_c)}_{\Delta e} + c_2 \underbrace{(n - n_c)}_{\Delta n} \leftrightarrow \varphi,
$$

$$
\frac{\partial}{\partial \hat{r}} = c_3 \frac{\partial}{\partial \beta} + c_4 \frac{\partial}{\partial (\beta \mu)} \leftrightarrow c_3 (e - e_c) + c_4 (n - n_c) \leftrightarrow \varphi^2
$$

Almost any linear combinations of ∆*e* and ∆*n* are critical

Correlation length

1. Mean field approximation around ground state $\phi - \langle \phi \rangle = \delta \phi \rightarrow \phi$

$$
f(\phi) = \frac{1}{2}m^2\phi^2 + \frac{1}{3}b_3\phi^3 + \frac{1}{4}b_4\phi^4
$$

2. Naive extension to field theory

$$
F[\phi] = \int_x f(\phi(x)) = \underbrace{\int_x \frac{1}{2} m^2 \phi^2 + \frac{1}{3} b_3 \phi^3 + \frac{1}{4} b_4 \phi^4}_{}
$$

each point is independent !

3. Smooth configuration costs less energy

$$
F[\phi] = \int_x \frac{1}{2} (\nabla \phi)^2 + \frac{1}{2} m^2 \phi^2 + \frac{1}{3} b_3 \phi^3 + \frac{1}{4} b_4 \phi^4
$$

$$
\xi = 1/m
$$

For $\Delta x > \xi$, we can neglect the kinetic term

Non-Gaussian fluctuations (1/2)

1. Renormalization group

2. Roughly, free energy with ∆*x* ∼ ξ is at the fixed point

$$
F[\phi] \simeq \xi^3 \sum_{i} \left[\frac{1}{2} m^2 \phi_i^2 + \frac{1}{3} b_3 \phi_i^3 + \frac{1}{4} b_4 \phi_i^4 \right] \sim T,
$$

$$
\phi_i \sim \sqrt{T/\xi}, \quad b_3 \sim \bar{b}_3 / T^{1/2} \xi^{3/2}, \quad b_4 \sim \bar{b}_4 / T \xi
$$

Non-Gaussian fluctuations (2/2)

3. Cumulants near the critical point

$$
V\kappa_2 = \frac{1}{V} \int_{x,y} \langle \phi(x)\phi(y) \rangle_c \sim \frac{\xi^6}{V} \sum_i \langle \phi_i^2 \rangle_c \sim \frac{\xi^6}{V} \frac{V}{\xi^3} \frac{T}{\xi} \sim T\xi^2,
$$

$$
V^{n-1}\kappa_n = \frac{1}{V} \int_{x_1, \cdots, x_n} \langle \phi(x_1) \cdots \phi(x_n) \rangle_c \sim \frac{\xi^{3n}}{V} \sum_i \langle \phi_i^n \rangle_c
$$

$$
\sim \frac{\xi^{3n}}{V} \frac{V}{\xi^3} \left(\frac{T}{\xi}\right)^{n/2} \sim T^{n/2} \xi^{5n/2 - 3}
$$

4. Formula [Stephanov (06)]

$$
\therefore \kappa_n \sim \frac{T^{n/2} \xi^{n(5-\eta)/2 - 3}}{V^{n-1}}, \quad \eta \approx 0.04
$$

Higher-order cumulants are sensitive to ξ but suppressed by 1/*V*

Contents

- 1. [Location of QCD critical point](#page-3-0)
- 2. [Critical fluctuations](#page-15-0)
- 3. [Critical dynamics](#page-27-0)
- 4. [Summary](#page-36-0)

Critical point search in heavy-ion collisions

Obstacles

- \triangleright System size is finite
- \triangleright System lifetime is finite \leftarrow
- \triangleright System is non-equilibrium \leftarrow

Goal of this section

- \triangleright Dynamics of the QCD critical point
- \triangleright What is Kibble-Zurek scaling?

Hydrodynamic description

Long-time and long wavelength phenomena

- \triangleright Conserved densities \rightarrow change only through surface
- Nambu-Goldstone modes \rightarrow massless boson
- \triangleright Critical amplitudes near the critical point \rightarrow large correlation length
- \triangleright Gauge fields \rightarrow unscreened magnetic field

Modes with $\lim_{k\to 0} \omega(\mathbf{k}) = 0$ are relevant

Soft modes near the QCD critical point

1. Recall that almost any linear combinations of ∆*e* and ∆*n* are critical

$$
\frac{\partial}{\partial \hat{h}} = c_1 \frac{\partial}{\partial \beta} + c_2 \frac{\partial}{\partial (\beta \mu)} \leftrightarrow c_1 \underbrace{(e - e_c)}_{\Delta e} + c_2 \underbrace{(n - n_c)}_{\Delta n} \leftrightarrow \varphi
$$

- 2. QCD critical point is Z_2 symmetry breaking \rightarrow no NG modes
- 3. Color magnetic screening at long distance
- 4. Mixed with momentum density $g \to H$ ydrodynamics \to Model H

Candidate: Hydrodynamics with ∆*e*, ∆*n*, *g*

Keep relevant modes: Model H with $\hat{s} = \Delta(s/n), g_T$

Conductivity $\sigma \propto \xi$, intuitively [Hohenberg-Halperin (77)]

1. A lump of ˆ*s* with linear dimension *L* in an electric field *E*

2. Electric current *j* ∼ $\hat{s}v$ in the equilibrium

$$
j \sim \hat{s}v = \underbrace{\frac{\hat{s}^2}{\eta}L^2}_{\sim \sigma}E, \quad \hat{s}^2 \sim \underbrace{L^{-3}\frac{1}{L^{-2} + \xi^{-2}}}_{d^3k/(k^2 + \xi^{-2})}, \quad \sigma \sim \frac{1}{\eta L}\frac{1}{L^{-2} + \xi^{-2}} \lesssim \frac{\xi}{\eta}
$$

Conductivity scales with $\sigma \propto \xi$

Dynamical critical exponent $z \approx 3$

1. We can think of electric field generated by chemical potential slope

$$
\partial_t \hat{s} = -\nabla \cdot j = -\sigma \nabla \cdot E = \sigma \nabla \cdot \underbrace{\nabla \mu}_{=-E} = -\frac{\sigma}{\chi} \underbrace{\nabla^2 \hat{s}}_{= D}
$$

2. Diffusion constant scales with

$$
D = \frac{\sigma}{\chi} \sim \frac{\xi}{\xi^2} = \frac{1}{\xi}
$$

3. Time scale of diffusion for wavelength ξ

$$
\frac{1}{t} \sim D\nabla^2 \sim \frac{1}{\xi} \cdot \frac{1}{\xi^2} \sim \frac{1}{\xi^3}, \quad t \sim \xi^3 (=:\xi^z) \quad \therefore z \simeq 3
$$

Relaxation time diverges $\propto \xi^z$ (critical slowing down)

QCD critical point in an expanding system

Trajectory on the Ising phase diagram

$$
r(t) = t/\tau_Q, \quad h(t) = 0, \quad \xi(t) \sim \ell_o |r(t)|^{-\nu} \quad (\nu \approx 0.5)
$$

Kibble-Zurek scaling $(1/2)$ [Chandran-Erez-Gubser-Sondhi (12)]

1. Longest wavelength ℓ_Q equilibrated at $t \sim \tau_Q$

$$
\tau_Q = \tau_o \left(\frac{\ell_Q}{\ell_o}\right)^2 \qquad \rightarrow \qquad \ell_Q = \ell_o \left(\frac{\tau_Q}{\tau_o}\right)^{\frac{1}{2}}
$$

 \overline{z} expansion time \overline{z} relaxation time

2. Effective time scales near the critical point

Power-laws of
$$
r(t)
$$
 \rightarrow $\frac{\dot{r}(t)}{r(t)} = \frac{1}{t}$

3. Scales when the critical mode ξ starts to get out of equilibrium

$$
t_* = \tau_o \left(\frac{\xi(t_*)}{\ell_o}\right)^z \sim \tau_o \left(\frac{t_*}{\tau_Q}\right)^{-\nu z} \to t_* = \tau_o \left(\frac{\tau_Q}{\tau_o}\right)^{\frac{\nu z}{1+\nu z}}, \quad \ell_* = \xi(t_*)
$$

 $=$ reflective changing time $=$ relaxation time

$$
\tau_o \ll t_* \ll \tau_Q, \quad \ell_o \ll \ell_* = \underbrace{\ell_o \left(\frac{\tau_Q}{\tau_o}\right)^{\frac{\nu}{1+\nu z}}}_{\therefore z \simeq 3 > 2} \ll \ell_Q
$$

Kibble-Zurek scaling (2/2) [Chandran-Erez-Gubser-Sondhi (12)]

4. In the slow passing limit $\tau_Q/t_o \gg 1$, scaling with t_* and ℓ_*

$$
\langle \phi(t_1, x_1) \phi(t_2, x_2) \rangle = \left(\frac{1}{\ell_*}\right)^{2\Delta} \mathcal{G}\left(\frac{t_1}{t_*}, \frac{t_2}{t_*}, \frac{x_1 - x_2}{\ell_*}\right) \quad : \quad \text{KZ scaling}
$$

5. Mean field approx. of model B & H [Akamatsu-Teaney-Yan-Yin (19)]

 $\bar{N}_{\hat{s}\hat{s}}(t,k) = N_{\hat{s}\hat{s}}(t,k)/C_p(t_*),$ Note: $\hat{s} = n\Delta(s/n)$ in this paper

Baryon number correlation enhances to $(n/s)^2 C_p(t_*)$ for $k \sim 1/\ell_*$ Baryon fluctuation $\propto C_p(t_* \neq 0)$ is finite even in the luckiest case

Contents

- 1. [Location of QCD critical point](#page-3-0)
- 2. [Critical fluctuations](#page-15-0)
- 3. [Critical dynamics](#page-27-0)
- 4. [Summary](#page-36-0)

Main messages again

- 1. Location and existence of QCD critical point is still unclear
- 2. QCD critical point ∼ Ising model
	- \triangleright Why baryon number fluctuations? \rightarrow how Ising *h* axis is embedded
	- I Why higher order cumulants? → basically from φ(*x* ∼ ξ) ∼ p *T*/ξ
- 3. Non-equilibrium condition hinders critical fluctuation to equilibrate \triangleright No divergence even when the system passes the critical point

$$
\langle \phi(t_1, x_1) \phi(t_2, x_2) \rangle_{\text{KZ}} = \underbrace{\left(\frac{1}{\ell_*}\right)^{2\Delta}}_{\text{finite}} \mathcal{G} \left(\frac{t_1}{\ell_*^2}, \frac{t_2}{\ell_*^2}, \frac{x_1 - x_2}{\ell_*}\right)
$$
\n
$$
\text{c.f.} \quad \langle \phi(t_1, x_1) \phi(t_2, x_2) \rangle_{\text{eq}} = \underbrace{\left(\frac{1}{\xi}\right)^{2\Delta}}_{\text{singular at CP}} \mathcal{F} \left(\frac{t_1 - t_2}{\xi^2}, \frac{x_1 - x_2}{\xi}\right)
$$

Need to be considered in experimental critical point search