New Techniques for Cosmological Correlators

Going off-shell / Going non-local

Denis Werth

Cosmological Correlators in Taiwan December 2nd 2024 Based on

DW [2024]

Jazayeri, Renaux-Petel, **DW** [2023] Jazayeri, Renaux-Petel, Tong, **DW**, Zhu [2023]

Towards a Standard Model of Inflationary Cosmology

The early Universe is a unique probe of the physics at the highest reachable energies

Signals of New Physics

New physics is encoded in soft limits of cosmological correlators

Observable signatures are imprints of non-analyticities in the complex energy plane

Signals of New Physics

Detecting new physics requires precise subtraction of the background

Data will be noisy and limited by cosmic variance. Do we have the necessary theoretical tools?

Signals of New Physics

The challenge is to probe soft-enough kinematic configurations without being limited by cosmic variance

- Easy analytically
- Hard numerically

Background

- Easy numerically
- Hard analytically

We need new techniques to distinguish signal/background and to derive simple but precise templates for the background

Going Off-Shell

Going Non-Local

Going Off-Shell

- Massive Fields in de Sitter
- Bootstrapping with the Spectral Representation

Going Off-Shell in One Slide: General Philosophy

Uplift scattering amplitudes to the complex momenta/energy plane

Use of Complex Analysis

- (Non)-analyticity (poles/branch cuts)
- Cauchy's residue theorem

$$\oint \frac{\mathrm{d}z}{z} = 2i\pi$$

Physical Principles

- Causality/Locality/Unitarity
- Internal resonant states as poles
- Bound states as branch cuts
- ...

Computational Power

- Crossing symmetry
- Recursion relations
- ...

We want to import similar techniques to cosmology as going to the complex plane (i) makes physics manifest, and (ii) makes analytical computations more tractable

Massive Fields in de Sitter

From (non-)Analyticity to Contour Integrals

Free Propagation in de Sitter

Flat Space
$$(\partial_t + k^2)\sigma_k = 0$$

$$-\infty \qquad \qquad \downarrow t$$

$$\sim e^{\pm ikt} \qquad \qquad \downarrow t$$

De Sitter
$$[\partial_{\tau}^{2} + \omega_{k}^{2}(\tau)]\sigma_{k} = 0$$
 with $\omega_{k}^{2}(\tau) = k^{2} + \frac{\mu^{2} + \frac{1}{4}}{\tau^{2}}$, $\mu^{2} = \frac{m^{2}}{H^{2}} - \frac{9}{4}$ sub-Hubble $k/a \gg H$ super-Hubble $k/a \ll H$
$$\frac{1}{-\infty} \qquad \qquad H^{-1} \qquad \qquad H^{-1} \qquad \qquad Non-analytic \qquad \qquad Non-analytic$$

$$\tau \to -\infty \qquad \frac{\text{Particle Production}}{\sigma_k(\tau) \sim e^{-ik\tau}} \qquad \tau \to 0$$

$$\hat{a}_{\boldsymbol{k}} |0\rangle_a = 0 \qquad a \langle 0|\hat{b}_{\boldsymbol{k}}^{\dagger} \hat{b}_{\boldsymbol{k}} |0\rangle_a = |\beta_k|^2 \neq 0 \qquad \hat{b}_{\boldsymbol{k}} |0\rangle_b = 0$$

$$(\tau \to -\infty, \mu \to 0)$$

 $(\tau \to 0, \mu \to +\infty)$

Analytic Continuation

Positive Frequency

Connection Formula

 $\sinh(\pi\mu)H_{i\mu}(z) = e^{+\pi\mu}J_{+i\mu}(z) - J_{-i\mu}(z)$

 $H_{-i\mu}(z)$

Negative Frequency

Asymptotic Behaviour

$$\sim e^{\pm iz}$$

Analytic Continuation

$$J_{-i\mu}(z)$$

Asymptotic Behaviour

$$\sim z^{\pm i\mu}$$

Particle Production

$$_{a} \langle 0|\hat{b}_{\mathbf{k}}^{\dagger} \hat{b}_{\mathbf{k}} |0\rangle_{a} = |\beta_{k}|^{2} = \frac{1}{e^{2\pi\mu} - 1} \quad \text{with } T_{dS} = H/2\pi$$

with
$$T_{\rm dS} = H/2\pi$$

Flat-space Feynman Propagator

Time ordering can be traded for a contour integral in the complex energy domain

In de Sitter, particle production leads to a branch cut in the energy domain

Massive Propagator in de Sitter

Time ordering can be traded for a contour integral in the complex mass domain

Contour Integral

$$\mathcal{G}(k;\tau_1,\tau_2) = i \int_{-\infty}^{+\infty} d\nu \mathcal{N}_{\nu} \frac{\varphi_k^*(\tau_1,\nu)\varphi_k^*(\tau_2,\nu)}{(\nu^2 - \mu^2)_{i\epsilon}}$$

$$\varphi_k^*(\tau,\nu) \sim H_{-i\nu}(-k\tau)$$

Pole Prescription

$$\frac{1}{(\nu^2 - \mu^2)_{i\epsilon}} \equiv \frac{1}{2\sinh(\pi\mu)} \left[\frac{e^{+\pi\mu}}{\nu^2 - \mu^2 + i\epsilon} - \frac{e^{-\pi\mu}}{\nu^2 - \mu^2 - i\epsilon} \right]$$

Projects outgoing particle states onto ingoing ones

Melville, Pimentel [2024]

$$H_{-i\mu}$$
 Connection Formula $J_{\pm i\mu}$ Connection Formula $(\text{from "Bessology"})$ $(
u
ightarrow \infty)$ (from pole prescription)

Massive Propagator in de Sitter

The spectral representation makes the origin of certain limits manifest

$$\frac{1}{(\nu^2 - \mu^2)_{i\epsilon}} = \frac{1}{2\sinh(\pi\mu)} \left[\frac{e^{+\pi\mu}}{\nu^2 - \mu^2 + i\epsilon} - \frac{e^{-\pi\mu}}{\nu^2 - \mu^2 - i\epsilon} \right]$$

Flat-space Limit
$$(H \to 0, \mu \to \infty)$$

$$\frac{1}{(\nu^2 - \mu^2)_{i\epsilon}} \to \frac{1}{\nu^2 + \mu^2 + i\epsilon}$$

Select one pole

$$\mathcal{G}(k; \tau_1, \tau_2) = J_{+i\mu}(-k\tau_1)J_{-i\mu}(-k\tau_2)$$

$$\sim \left(\frac{\tau_1}{\tau_2}\right)^{+i\mu} \sim e^{-i\mu(t_1 - t_2)}$$

Gradients have redshifted away

$$\omega^2(\mathbf{k}) = k^2 + \mu^2 \to \mu^2$$

Soft Limit $(k \to 0)$

$$\mathcal{G}(k; \tau_1, \tau_2) \sim i \int_{-\infty}^{+\infty} d\nu \mathcal{N}_{\nu} \frac{(k^2 \tau_1 \tau_2)^{\nu}}{(\nu^2 - \mu^2)_{i\epsilon}}$$
$$\sim \delta(\mu) [k^2 \tau_1 \tau_2]^{+i\mu} + \delta^*(\mu) [k^2 \tau_1 \tau_2]^{-i\mu}$$
$$\sim e^{-\pi \mu} \cos(\mu \log k)$$

Bootstrapping with the Spectral Representation

Summing Towers of Residues

Massive Exchange Correlators in de Sitter

The spectral representation of massive propagators factorises nested time integrals

Conformally Coupled External Field $(m = \sqrt{2}H)$

"Legendrology" ("Bessology" with higher transcendality)

Legendre polynomial basis have different scaling behaviours at small and large masses

"Hypergeometric"
$$P_{\pm i\mu-1/2}(z), Q_{\pm i\mu-1/2}(z) \sim \int H_{\pm i\mu}(z), J_{\pm i\mu}(z)$$

$$(z \to -\infty, \mu \to 0) \qquad (z \to 0, \mu \to +\infty)$$

$$P_{+i\mu-1/2}(z) \qquad Q_{+i\mu-1/2}(z)$$
Connection Formula
$$P_{i\mu-1/2}(z) \propto Q_{-i\mu-1/2}(z) - Q_{+i\mu-1/2}(z)$$
Analytic Continuation
$$P_{i\mu-1/2}(e^{+i\pi}z) \propto e^{+\pi\mu}Q_{+i\mu-1/2}(z) - e^{-\pi\mu}Q_{-i\mu-1/2}(z)$$

$$Q_{-i\mu-1/2}(z)$$

Off-Shell 3p Function

Closing the contour in the complex mass plane requires changing Legendre basis

Kinematics

$$u \equiv \frac{s}{k_1 + k_2} \to 1$$

$$v \equiv \frac{s}{k_3 + k_4} = z^{-1}$$

Non-Analyticity in the Energy Domain

Particle production poles in the complex mass plane rotate the kinematics in the energy domain

$$F^{(3)}(z,\mu) \to F^{(3)}(e^{+i\pi}z,\mu)$$

Discontinuity along the Branch Cut

$$\operatorname{Disc}_{z}\left[F^{(3)}(z,\mu)\right] \propto F^{(3)}(e^{+i\pi}z,\mu)$$

Dispersive Integral

$$F^{(3)}(z,\mu) = \oint_{\mathcal{C}} \frac{\mathrm{d}z'}{2i\pi} \frac{F^{(3)}(z',\mu)}{z'-z}$$

$$= \int_{-\infty}^{-1} \frac{\mathrm{d}z'}{2i\pi} \frac{\mathrm{Disc}_{z'} \left[F^{(3)}(z',\mu)\right]}{z'-z}$$

$$\propto \int_{-\infty}^{-1} \frac{\mathrm{d}z'}{2i\pi} \frac{F^{(3)}(e^{+i\pi}z',\mu)}{z'-z}$$

(Residue Theorem)

Massive Exchange Correlators in de Sitter

Summing Residues

$$\int_{-\infty}^{+\infty} d\nu \mathcal{N}_{\nu} \frac{F^{(3)}(u^{-1}, \nu) F^{(3)}(v^{-1}, \nu)}{(\nu^{2} - \mu^{2})_{i\epsilon}}$$

$$\downarrow$$

$$Q_{\pm i\nu - 1/2}(u^{-1}) Q_{\pm i\nu - 1/2}(v^{-1})$$

$$Q_{\pm i\nu - 1/2}(u^{-1}) Q_{\mp i\nu - 1/2}(v^{-1})$$

$$\downarrow$$

Connection Formula + Analytical Continuation

Analytic Structure in the Energy Domain

Signals of new physics are images of branch cuts just like Breit-Wigner resonances are images of poles

Going Non-Local

Going Non-Local in One Slide: General Philosophy

We want to accurately model the background to derive ready-to-use simple templates

Locally integrating out heavy fields is not precise enough to correctly subtract the background, we need to go non-local

Non-Local EFT

In the long wavelength regime, the system is populated by particle states with low frequencies

Spectrum of Propagating Modes

$$\omega_{\varphi}^2(\boldsymbol{p}) = c_s^2 \boldsymbol{p}^2 \qquad \rightarrow \boldsymbol{0} \qquad \leftarrow \qquad \text{Gapless}$$

<u>Mildly-Long Wavelength Regime</u> $p^2 \lesssim m^2 \to \omega_{\varphi}^2(p) \lesssim \omega_{\sigma}^2(p)$

$$\frac{1}{\omega^2 - \boldsymbol{p}^2 - m^2} \sim \frac{-1}{\boldsymbol{p}^2 + m^2} \longrightarrow \text{Non-dynamical}$$

High-frequency particle states fastly decay into low-frequency ones

Real Space

$$\mathcal{G}(\boldsymbol{x},t;\boldsymbol{y},t') \to \delta(t-t') \underbrace{\frac{e^{-m|\boldsymbol{x}-\boldsymbol{y}|}}{4\pi|\boldsymbol{x}-\boldsymbol{y}|}}_{\text{Dropagation}} \leftarrow Yukawa-type interaction}$$

Instantaneous propagation -

Cosmological Correlator Background Made Simple

Integrating out heavy fields in a non-local manner yields precise and simple templates

$$\int_{-\infty^+}^0 d\tau_1 d\tau_2 J(\tau_1) \mathcal{G}(\boldsymbol{s}; \tau_1, \tau_2) J(\tau_2)$$

$$\int_{-\infty^+}^{0} d\tau \, \frac{J^2(\tau)}{s^2 + m^2}$$

$$\frac{1}{-\Box + m^2} = \mathcal{D}^{-1} \sum_{n} (-1)^n \left[\partial_{\tau}^2 \mathcal{D} \right]^n$$

Building Block
$$\mathcal{D}^{-1} \equiv (k^2 + m^2)^{-1}$$

Fully non-local:
$$\mathcal{D}^{-1} = \frac{1}{k^2} \sum_{n} \left(\frac{-m^2}{k^2} \right)^n$$
 Fully local: $\mathcal{D}^{-1} = \frac{1}{m^2} \sum_{n} \left(\frac{-k^2}{m^2} \right)^n$

Fully local:
$$\mathcal{D}^{-1} = \frac{1}{m^2} \sum_{n} \left(\frac{-k^2}{m^2} \right)^n$$

- Single-field theory with simple mode functions
- Contact diagrams
- Corrections to leading-order non-local EFT can be computed systematically
- Very general / Very precise

Emergent Non-Locality as a Residue: Example

Background signal arises from a single pole of the non-local operator instead of the infinite tower of poles

Conclusion

- Explore the space of observational signatures
- Build a complete theory/observable dictionary

- Explore/construct the space of theories
- Develop new techniques for cosmological correlators

- Numerous/precise future data
- Need accurate templates

Take-Home Messages

Spectral Representation

(No nested time integrals) Particle Production

Simple & Precise Templates

- Multiple-exchange and loop diagrams?
- Towards cosmological recursion relations (beyond rational correlators)?
- (Perturbative) Källén-Lehmann spectral representation and positivity constraints?
- Numerical Bootstrap to solve crossing equations non-perturbatively?
- Particle production pole prescription accounting for all in-in branches?
- Partial-wave expansion, crossing symmetry and Regge limit in de Sitter?
- Organising principle to construct non-local EFTs?
- Bounds on non-local EFTs ?
- Integrating out beyond tree level?
- How to resum asymptotic time-derivative expansions?

State-of-the-Art Perturbative Calculations

Cosmological Correlators (full results)

Tree-level single massive exchange diagram

"Generalised hypergeometric" (Kampé de Fériet)

Arkani-Hamed, Baumann, Lee, Pimentel [2018]

One-loop massive diagram

Not-yet-named nor studied function

Xianyu, Zhang [2022] Qin [2024]

Tree-level double massive exchange diagram

Not-yet-named nor studied function

Aoki, Pinol, Sano, Yamaguchi, Zhu [2024]

Cosmological Correlators (signal only)

Melon diagrams

Qin, Xianyu [2023]

Triangle diagram

Qin, Xianyu [2023]

Box diagram

Qin, Xianyu [2023]

